Criteria

Display:

Results

Viewing 1 to 30 of 10366
2017-11-07
Technical Paper
2017-36-0089
Ana Carolina Rodrigues Teixeira, José Ricardo Sodré
Abstract In Brazil, since the purchase cost of an electric vehicle (EV) is still very high, the exchange of a conventional vehicle by an EV would only be worth if the vehicle was used as source income, such as the case of taxis. Short run distances and high daily mileage make conventional taxis ideal candidates to be replaced by battery EVs. Recently, São Paulo and Rio de Janeiro received EVs as a test project, but other major cities, such as Belo Horizonte, have yet to be tested. The taxi fleet in this city has currently 7,152 vehicles, all powered by internal combustion engines, significantly contributing to equivalent carbon dioxide (CO2eq) emissions since the daily distance traveled is high. With the aim to characterize the fleet and evaluate taxi driver’s option to EVs, data was collected from a systematic sample of taxi stands, of a total of 375, through a structured interview with the drivers, considering a finite and homogeneous population.
2017-11-07
Technical Paper
2017-36-0081
Gimaezio Gomes Carvalho, Luis Guilherme Mariano Viana Martins
Abstract The business environment is ever changing, several innovations have allowed companies to transcend borderlines and become global entities. While the opportunities are numerous so are the challenges. In this fiercely competitive global marketplace, success requires companies to pay closer attention to supplier relations. The relationship between an automotive industry and its suppliers is an example of it, so the application of CAE (Computer Aided Engineering) superelement technique may improve, in terms of NVH (Noise, Vibration and Harshness), the vehicle development efficiency, without compromising confidentiality directives. Most of NVH requirements must be tracked through Transfer Functions (TFs) analyses at response points located on the Trimmed-Body Finite Element Model (FEM), as for example: Point Mobility, Vibration Transfer Function (VTF) and Acoustic Transfer Function (ATF).
2017-11-07
Technical Paper
2017-36-0145
Kellen Christina Peitl, Caio Márcio de Oliveira Baptista
Abstract The growing demand for lower prices, higher quality and responsiveness is defining the current competitive scenario for all the organizations. Global market is inserted in a context of volatility, uncertainty, complexity and ambiguity. Based on that need, the new management directions must be flexible on the product development in order to precisely achieve its target under constant market changes. It is in the daily work processes and routine that the relations between people take place and it happens in all of the hierarchical levels (similar ones and distinguished ones). Organizations are responsible to promote an organizational environment favorable to the sharing relationships, aiming to motivate each employee individually to exchange information, knowledge and experience. The Agile Methodologies appear as an alternative to the traditional methods of development.
2017-11-07
Technical Paper
2017-36-0128
André Tognolli, Erica Machado, Fabio Batista, Paulo Mayer, Jamilton Silva, Fernando Utiyke
Abstract Through computational dynamic simulations is possible to achieve high reliability index in the development of automotive components, thus reducing the time and component cost can generate significant levels of competitiveness and quality. This work suggests the validation of a methodology for simulation, able to predict and quantify the best design of the parking brake cable that although it is flexible, has in its structure composite elements of different mechanical properties. Known difficulty of mathematically predict nonlinear relationships deformation under forces and moments effect was first established, studies based on experimental measurements serve as input parameters for simulating the dynamic behavior of the flexible cable. With the aid of motion making use of NX9 CAD software, it was prepared the dynamic movement that the leaf spring suspension system does.
2017-11-07
Technical Paper
2017-36-0126
Milton Monteverde Belli, Ricardo Daldegan
Abstract The development costs that new design requires are subject to everyday discussions and saving opportunities are mandatory. Using CAE to predict design changes can avoid excessive costs with prototypes parts, considering the high reliability those current mathematical models can provide. This paper presents the methodology used during the development of a parabolic leaf spring for the rear suspension of a commercial truck, considering mainly the parabolic profiles and stress distribution on the leaves, calculated using CAE software (ANSYS) and experimental tests to measure the actual stress on each leaf, certifying the correlation between computational calculations and real stress on the parts during bench and vehicle evaluations.
2017-11-07
Technical Paper
2017-36-0139
Juliano Afonso Tessaro, Allan Raul Silva, Leandro Brasil Araujo, Renan Oliveira Sardim
Abstract Due to the introduction of PROCONVE MAR-I emission regulation, the Brazilian automotive industry developed Diesel engines to comply with this legislation demanding new components to automotive supplier base. However, at the same time this industrial sector was facing a difficult financial situation caused mainly by the crisis that impacted Brazil in last years. In 2015, around 27 local suppliers filed for bankruptcy affecting the whole Automotive Supply Chain. This scenario already represents a problem for current products established in market, but it represents a major challenge for new launches. This paper will discuss how MWM Motores Diesel made sourcing decisions and manage to develop components and suppliers in this harsh scenario, also looking for the supplier base optimization.
2017-11-07
Technical Paper
2017-36-0386
Murilo Cesar Perin Briganti, Luiz Vicente Figueira de Mello Filho, Raquel Cardamoni, Yuzo Iano
Abstract The safety, reliability and efficiency in the progress of the autonomous vehicle have increased in recent years. In parallel, companies in the segment of people transportation, either individually or shared, took the world leadership using smartphone app into a new concept of urban mobility with conventional vehicles with drivers, starting consequently a change of habit of the population, and defying the laws of local transport. These services for urban mobility are related as tendencies of driving forces in the face of the relevance of the limitations of resources, population density, greater awareness toward the environment and traffic congestion. The acquisition of the “own vehicle” as currently, conceived and successful by Alfred Sloan in the 1920s, has become a question for future generations.
2017-11-07
Technical Paper
2017-36-0387
Ciro Galvão, Eduardo Tomanik, Hiroshi Fujita, Eliel Paes, Paulo Morais
Abstract Low viscosity combined with appropriated additive technology is one of the main paths to reduce friction on Internal Combustion Engines. Japan is on the cutting edge of low viscosity oils, having already available SAE 0W-8 in the market. On the other hands, in emergent countries like Brazil, SAE 15W-40 is still used in some passenger cars while the Japanese origin car brands use SAE 0W-20. Lubricant friction additives type also differs depending on the original equipment manufacturer (OEM) origin, and the Japanese ones usually containing high amounts of the Molybdenum type. In this paper, some of the advantages and challenges of using low viscosity oils are discussed and emphasis is given in the friction reduction obtained with the synergic effects of the right choice of additives components type and the material/coating used in the engine parts. Ring-liner rig and floating liner engine tests comparing different oils will be presented.
2017-11-07
Technical Paper
2017-36-0279
Danilo Steckelberg, Guira Barretto, Nicolás Morales
The world urbanization is growing rapidly, bringing many challenges for people to move in dense metropolitan regions. Public transportation is not able to attend the whole demand, and individual transportation modes are struggling with traffic congestion and stringent regulations to reduce its attractiveness, such as the license plate restriction in São Paulo. On the other hand, enablers like smartphones mass penetration, GPS connected services and shared economy have opened space to a whole new range of possible solutions to improve people perception on urban mobility. This work aims to evaluate the modal choice behavior models and understand the success factor of current mobility solutions in the city of São Paulo. The data available through origin/destination researches will be used to validate the models used in this work.
2017-11-07
Technical Paper
2017-36-0301
Rafael Bruno, Rafael Dezotti, Paulo Mordente
Abstract Governmental legislation with regards to emissions is an important driver for Heavy Duty Diesel (HDD) engine developments. To reach the targets, in most of cases it is necessary to increase the thermal-mechanical loads, increasing the level of technical demand for the engine components. Besides that, other important aspects drive the engine development, as the cost of ownership, demanding for instance an extended oil draining interval, which leads to harsher environment for the engine components. In order to cope with the modern engine demands, this article presents a piston and piston rings specially designed to meet these targets in a robust way. Starting with the ring pack, CrN based coatings applied by PVD (Physical Vapor Deposition) are commonly applied to top ring face to reach durability targets.
2017-11-07
Technical Paper
2017-36-0348
Rafael Kiemo Pfau Santos, Marcus Vinicius Hamann Silveira, Modesto Hurtado Ferrer
Abstract Considering technology development and the raise in computational power, numerical methods became important device in developing new products and in improving existing ones, being a differential for market competition among companies, consequently from the reduction of time and cost in projects. For Student Competition Teams, like Formula and Mini Baja SAE series, the use of simulation is even more important in their vehicle development, due to team limited resources available and their lack of experience. This work has the main goal of presenting the development steps of a structural component of the suspension system, the steering knuckle, for Formula SAE competition vehicles, aided by computational aided engineering. Starting from the geometrical and functional configuration of the vehicle, a multibody model was generated by the Altair Motion View software to simulate high performance maneuvers, and then estimate two cases of loads.
2017-11-07
Technical Paper
2017-36-0373
Ana Paula de Sá Santos Rabello, Marcelo Lopes de Oliveira e Souza
Abstract Complex and/or highly integrated systems require the evaluation of Dependability (Reliability, Maintainability, Availability, etc.) throughout their life cycle. The designs of these systems have three main sets of activities: managerial, technical and quality. The recent literature suggests that: 1) the growth of the committed project cost is much greater than the cost spent in the initial stages; and also, the cost to eliminate the defects is smaller in the initial stages of project; and 2) the functions, responsibilities, and authorities of Project Management and Systems Engineering are strongly coupled. Thus, based on the recent literature and the INPE´s (National Institute for Space Research) experience, this paper will show a discussion on the interaction between Project Management and Systems Engineering to improve the Dependability of space and automotive projects.
2017-11-07
Technical Paper
2017-36-0162
Paulo César de Ferreira Gomes, Carlos Fernando Mendes, Gustavo Santos Lopes, Erwin Karl Franieck, Alysson Fernandes Teixeira, José Guilherme Coelho Baeta, Nilton Antônio Diniz Netto
Abstract Recently many government Acts (Inova Energia, Inovar-Auto, RenovaBio) [1, 2, 3] have been implemented in order to expand the use of biofuels in Brazil. Besides the fulfillment until 2030 of the commitment assumed at the COP21[4] to reduce in 43% the gas emission contributing to the greenhouse effect, the expansion of the use of biofuels is important to assure regularity in the supply of fuels to the automotive sector in the next 15 years. In this context, it is worth mentioning a special characteristic of the Flex-Fuel engines that equip the majority of the automobiles in Brazil since their launching in 2003. The maximum compression ratio of these engines depends on the knocking characteristics of the gasoline, but usually an intermediate value, nearer to the ideal value for gasoline, is a compromise.
2017-11-07
Technical Paper
2017-36-0183
Alejandro Longton, Oliver Schulze, Jörg Bakker, Nuria Parera, Joel Leitao
Abstract A strong local initiative in Campinas - Brazil is studying how to be more effective in the improvement of road safety in order to align to other worldwide initiatives with similar goals. This paper describes the Brazilian initiative’s approach to the challenge of being aligned with iGLAD (Initiative for the Global Harmonization of Accident Data, starting as a project in 2011 and collecting data since 2007) on the delivery of its first set of accident cases from 2016. The Brazilian source of data started as a pilot project collecting local data with the aim of extending it within the next years to a larger region. In fact, a consistent method for the development of strategies and measures to prevent accidents and mitigate injury severity comes from accident database analysis.
2017-11-07
Technical Paper
2017-36-0188
Marcos F. Colombini, Thomas Cook
Abstract An actual trend in the automotive industry is to have global products in order to have economy of scale. This paper presents how a Belt Drive Rack EPS developed for the North American market had to be modified in order to be assembled in a Vehicle sold all around the world. Main technical challenges for achieving that goal were generated from different Architectures, whether electrical or mechanical, used in each vehicle, Packaging issues and Regional Requirements. Main features affected are Database Configuration, Electromagnetic Compatibility, Smooth Road Shake mitigation and Pull Compensation.
2017-11-07
Technical Paper
2017-36-0229
Jeeves Lopes dos Santos, Gabriela Vieira, Felype Nery de Oliveira Vasconcelos, Elaine Cristina Guglielmoni Silva, André Rolim Almeida Guimarães, Marcel Liberato Queda
Abstract The automotive industry has been facing a great challenge on the current market. With the rapid advance of technology and the growth complexity of its projects, one question comes up: how to speed up development time, while increasing options for the products, maintaining the quality and keeping the competitiveness at the same time? The answer for this question is not easy and can include several decisions and actions in the whole development process. In this context, partial system virtualization, or even a complete virtualization of systems included in a vehicle, can be used as an important tool to help answer the mentioned question. In other words, the usage of modeled components can help decrease the development time and increase product quality. Besides, this virtualization can be used on different steps during the development of new products or even for the maintenance of those already on the market.
2017-11-07
Technical Paper
2017-36-0240
Julio Cesar Lelis Alves, Flavio Koiti Maruyama, Leonardo José Della Volpe, Filipe Fabian Buscariolo, Felipe Magazoni
Abstract Environment concerns lead the automakers to invest resources and put research in engine downsize to reduce carbon emission. Turbo charge is a possibility due to its fuel consumption and emission reduction without compromise the performance. Nowadays, it is becoming common observe high performance small cars due to high torque and power available. In consequence, brake system need to dissipate more kinetic energy without adding mass or costs. Modern passenger cars require a high-speed brake system. To achieve proper brake system cooling, the rotor must be ventilated and designed to optimize the energy dissipated, which is generated by friction between pad and disk. Some approaches consider the rotor as a centrifugal air pump and the design rule is to improve the airflow inside the vanes. The approach considering a brake rotor similar to centrifugal air pump rotor may be considered as limited approach, once it simplifies the heat transfer phenomena inside chamber.
2017-11-07
Technical Paper
2017-36-0195
Fernando Afonso Siqueira, Tiago Sartor, Adelchi Tiboni
Abstract Among the most important finishing structures of a vehicle interior, the door trim panels reduce external noises, present ergonomic concepts generating comfort, improve appearance, and provide objects storage, knobs and buttons. The panels usually composed of several molded parts (trim, armrest, etc.) connected to each other also have structural function as support closing loads, protect occupants of door internal mechanisms, energy absorption in side impacts and resist misuse conditions. Therefore, these trims usually made of polymeric materials must to present good structural integrity, demanding appropriate connections between components to have good load distribution. The connections between parts can be made using bolts, interference fits (like self-locking), welding tubular plastic towers (heat stakes), or clips (such as snap fits) and last two are the most common due to be cheap and with good retention.
2017-11-05
Technical Paper
2017-32-0076
Adyati Yudison, Driejana, Iman K. Reksowardojo, Aminudin Sulaeman
Motorcycles account for almost 80% of private vehicles in Indonesia, with an annual growth rate of 12% per year. This paper aims to investigate the emission profiles of CO2, CO, HC and NOx based on typical fuel and motorcycle types in Indonesia. Questionnaire surveys were undertaken to gather fuel type, engine technology and capacity representing the motorcycle population in Bandung City, Indonesia. Emissions were measured based on six-speed variations on a chassis dynamometer. Questionnaire surveys from 290 respondent show that EURO II and EURO III technology with engine capacity less than 150cc is the most utilized type of motorcycle in Bandung. Most of the users’ chose RON 90 and RON 92 gasoline. Based on the results, four groups of 5 motorcycle of EUROII-RON90, EUROII-RON92, EUROIII-RON90, and EUROIII-RON92 were tested. Emission data showed that the higher the speed, the lower the emission, except for CO and NOx which have a different pattern.
2017-11-05
Technical Paper
2017-32-0110
Daisuke Kagawa, Tomoaki Kodama, Yasuhiro Honda
The main purpose of Student Formula Japan competition (hereafter called “SFJ”) is to let students learn the basic ability necessary for engineers through design, fabrication and test projects. In this study the authors decided to adopt Honda BC-PC37E which was an engine for motor cycles. Then the engine have strength enough for the light weight, downsizing design. As the course of the competition consists of short straights and many corners for running within equal to or less than middle speed range, the engine must have excellent acceleration performance to reduce the lap times in the corners. The effective engine performance is necessary for the flat torque in all of engine speed range, especially in low engine speed range. As the regulation allows that a turbocharger is fitted to an engine, its introduction is effective for getting high torque in the low engine speed range.
2017-10-25
White Paper
WP-0002
The environmental impact of hydrocarbon-burning aircraft, both from the perspective of gas emissions and that of noise, is one of the main motivations for the move to electric propulsion. The added benefit from this shift to electric propulsion is that it has resulted in lowering the costs of electrical components such as motors, power electronic (PE) circuits, and batteries that are essential to this technology. This white paper seeks to explore the history, architecture, electrical components, and future trends of electric flight technology.
2017-10-08
Technical Paper
2017-01-2282
Gen Chen, Wenxin Cai, Jianguang Zhou, Christian Spanner, Heribert Fuchs, Werner Schrei, Karl Weihrauch
Abstract A TGDI (turbocharged gasoline direct injection) engine is developed to realize both excellent fuel economy and high dynamic performance to guarantee fun-to-drive. In order to achieve this target, it is of great importance to develop a superior combustion system for the target engine. In this study, CFD simulation analysis, steady flow test and transparent engine test investigation are extensively conducted to ensure efficient and effective design. One dimensional thermodynamic simulation is firstly conducted to optimize controlling parameters for each representative engine operating condition, and the results serve as the input and boundary condition for the subsequent Three-dimensional CFD simulation. 3D CFD simulation is carried out to guide intake port design, which is then measured and verified on steady flow test bench.
2017-10-08
Technical Paper
2017-01-2198
Zhihong Li, Guoxiu Li, Lan Wang, Hongmeng Li, Jie Wang, Haizhou Guo, Shuangyi He
Abstract The electromagnetic valve driving mechanism is the significant equipment, which plays a vital role in the unit pump injection system; therefore, the performance of the electromagnetic valve directly influences the function of the control system. Based on the operation conditions of the unit pump injection system, a steady electromagnetic valve model was modified to study the influence factors of electromagnetic force and the best combination to get the maximum electromagnetic force. The validation model was verified by experiment. The effects of some crucial parameters upon the electromagnetic force were investigated in the present paper, (including working airspace, magnetic pole’s cross-sectional area, coil position, coil turn, the armature thickness). The results show that the electromagnetic force of the solenoid valve enhanced with the increase of driving current and with the decrease of working airspace.
2017-10-08
Technical Paper
2017-01-2184
Vincenzo De Bellis, Fabio Bozza, Daniela Tufano
Abstract Nowadays, the development of a new engine is becoming more and more complex due to conflicting factors regarding technical, environmental and economic issues. The experimental activity has to comply with the above complexities, resulting in increasing cost and duration of engine development. For this reason, the simulation is becoming even more prominent, thanks to its lower financial burden, together with the need of an improved predictive capability. Among the other numerical approaches, the 1D models represent a proper compromise between reliability and computational effort, especially if the engine behavior has to be investigated over a number of operating conditions. The combustion model has a key role in this contest and the research of consistent approaches is still on going. In this paper, two well-assessed combustion models for Spark Ignition (SI) engines are described and compared: the eddy burn-up theory and the fractal approach.
2017-10-08
Technical Paper
2017-01-2401
Elana Chapman, Pat Geng, Yaowei Zhao, Susan Zhang, JunJun Ma, Jianqiang Gong
Abstract The impact of gasoline composition on vehicle particulate emissions response has been widely investigated and documented. Correlation equations between fuel composition and particulate emissions have also been documented, e.g. Particulate Matter Index (PMI) and Particulate Evaluation Index (PEI). Vehicle PM/PN emissions correlate very well with these indices. In a previous paper, global assessment with PEI on fuel sooting tendency was presented [1]. This paper will continue the previous theme by the authors, and cover China gasoline in more detail. With air pollution an increasing concern, along with more stringent emission requirements in China, both OEMs and oil industries are facing new challenges. Emissions controls require a systematic approach on both fuels and vehicles. Chinese production vehicle particulate emissions for a range of PEI fuels are also presented.
2017-10-08
Technical Paper
2017-01-2414
Dongsheng Zhang, Qilong Lu, Michael Kocsis, Ian Gilbert, Marc Megel, Xihao Liu, Jiaxin Gu, Qingyan Liu, Yanming He
Abstract The new Beijing Automotive Industry Corporation (BAIC) engine, an evolution of the 2.3L 4-cylinder turbocharged gasoline engine from Saab, was designed, built, and tested with close collaboration between BAIC Motor Powertrain Co., Ltd. and Southwest Research Institute (SwRI®). The upgraded engine was intended to achieve low fuel consumption and a good balance of high performance and compliance with Euro 6 emissions regulations. Low fuel consumption was achieved primarily through utilizing cooled low pressure loop exhaust gas recirculation (LPL-EGR) and dual independent cam phasers. Cooled LPL-EGR helped suppress engine knock and consequently allowed for increased compression ratio and improved thermal efficiency of the new engine. Dual independent cam phasers reduced engine pumping losses and helped increase low-speed torque. Additionally, the intake and exhaust systems were improved along with optimization of the combustion chamber design.
2017-10-08
Technical Paper
2017-01-2413
Peter King
Abstract A four-chamber Otto cycle rotary engine, the Szorenyi Rotary Engine, has been invented and developed by the Rotary Engine Development Agency (REDA) in Melbourne, Australia. The engine concept has been awarded a U.S. Patent (Number 6,718,938 B2). A prototype engine has been constructed and a successful proof-of-concept engine test was achieved in 2008. The stator of the Szorenyi engine is a similar shape to a Wankel engine. However, the geometric shape of the engine rotor is a rhombus, which deforms as it rotates inside the contour of the mathematically defined stator. This geometry translates to a rotary engine with four combustion chambers. Each revolution of the crankshaft produces one revolution of the rotor; a complete engine cycle in each of the four chambers; and therefore four power strokes. In contrast, the Wankel engine produces one power stroke per crankshaft revolution.
2017-10-08
Technical Paper
2017-01-2425
Ramit Verma, Ramdas R Ugale
Abstract On two wheelers, magneto/alternator generates either single/three phase AC power and Regulator Rectifier Unit (RRU) does regulated rectification to charge the battery. In order to face the requirements of 2-wheeler engine with respect to upcoming stringent regulations like electronic fuel injection (EFI), anti-lock braking system (ABS), automatic headlamp on (AHO) in emerging markets like India; vehicles demand more electrical power from batteries. This demands higher power from alternator and consequently from RRU. Requirement of higher output power presents challenges on regulator rectifier unit in terms of size, power dissipation management and reliability. In this paper, improved performance of MOSFET based RRU is discussed in comparison to Silicon Controlled Rectifier (SCR) based RRU. The motivation/benefits of MOSFET based design is described along with the thermal behavior and temperature coefficient performance of RRU with test results.
2017-10-08
Journal Article
2017-01-2434
Srinivasan Paulraj, Saravanan Muthiah
Abstract Traditionally driveline ratios are selected based on trial and error method of proto vehicle testing. This consumes lot of time and increases overall vehicle development effort. Over last few decades, simulation-based design approach has been extensively used to alleviate this problem. This paper describes torque converter and final drive ratio (FDR) selection at concept phase for new Automatic Transmission (AT) vehicle development. Most of the critical data required for simulating vehicle performance and fuel economy (FE) targets were not available (e.g. shift map, clutch slip map, pedal map, dynamic torque, coast down, etc.) at an initial stage of the project. Hence, the risk for assuming right inputs and properly selecting FDR/Torque converter was particularly high. Therefore, a validated AVL Cruise simulation model based on an existing AT vehicle was used as a base for new AT vehicle development to mitigate the risk due to non-availability of inputs.
2017-10-08
Technical Paper
2017-01-2352
Gongde Liu, Li Wang, Runxiang Zhang, Chao Yang, Tengfei Shao
Abstract Fuel economy, Emission regulation and extended oil drain intervals (ODI) are the three key driving forces for engine oil development. More and more attentions have been focused on long ODI diesel engine oil both from the domestic OEMs and oil suppliers, and the ODI was being periodically improved from a normal mileage of about 1×104 kilometers to 6/8/10×104 km or even 12×104 km just within several years on China market. Lots and lots of factors may affect the oil life including oil properties, engine technologies, after-treatment devices and engine working conditions and so on. While from the oil side, the main factors contribute to the oil drain intervals may be the oil nitration and oxidation, soot contamination, base number deterioration and sludge accumulation and etc. There are two strategies to extend the oil longevity applied currently.
Viewing 1 to 30 of 10366