Display:

Results

Viewing 1 to 30 of 466
2016-04-05
Technical Paper
2016-01-0271
David A. Warren
The objective of the paper is to outline the steps taken to change the reliability and maintenance environment of a plant from completely reactive to proactive. The main systems addressed are maintenance function fulfillment with existing staffing; work order management, planning, and scheduling; preventive maintenance (PM) definition and frequency establishment; predictive maintenance (PdM) scheduling and method definition; and shutdown planning and execution. The work order management methods were evaluated and modified to provide planning and scheduling of work orders on a weekly basis. The computerized maintenance and management system (CMMS) was updated to automatically insert work orders into the backlog of work for completion. A failure modes and effects analysis (FMEA) was performed and the results of the FMEA led to implementation of the following PM and PdM activities: vibration analysis, thermal imaging, and temperature monitoring.
2016-04-05
Technical Paper
2016-01-0076
Mostafa Anwar Taie, Eman Magdy Moawad, Mohammed Diab, Mohamed ElHelw
New challenges and complexities are continuously increasing in advanced driver assistance systems (ADAS) development (e.g. active safety, driver assistant and autonomous vehicle systems). Therefore, the health management of ADAS’ components needs special improvements. Since software contribution in ADAS’ development is increasing significantly, remote diagnosis and maintenance for ADAS become more important. Furthermore, it is highly recommended to predict the remaining useful life (RUL) for the prognosis of ADAS’ safety critical components; e.g. (Ultrasonic, Cameras, Radar, Lidar). This paper presents a remote diagnosis, maintenance and prognosis (RDMP) framework for ADAS, which can be used during development phase and mainly after production. An overview of RDMP framework’s elements is explained to demonstrate how/when this framework is connected to database servers and remote analysis servers.
2016-02-09
Standard
AMS3054C
This specification covers a petroleum-base lubricating oil.
2016-02-09
WIP Standard
J1939/73
SAE J1939-73 Diagnostics Application Layer defines the SAE J1939 messages to accomplish diagnostic services and identifies the diagnostic connector to be used for the vehicle service tool interface. Diagnostic messages (DMs) provide the utility needed when the vehicle is being repaired. Diagnostic messages are also used during vehicle operation by the networked electronic control modules to allow them to report diagnostic information and self-compensate as appropriate, based on information received. Diagnostic messages include services such as periodically broadcasting active diagnostic trouble codes, identifying operator diagnostic lamp status, reading or clearing diagnostic trouble codes, reading or writing control module memory, providing a security function, stopping/starting message broadcasts, reporting diagnostic readiness, monitoring engine parametric data, etc.
2016-02-03
Standard
J1555_201602
This SAE Recommended Practice applies to all portions of the vehicle, but design efforts should focus on components and systems with the highest contribution to the overall average repair cost (see 3.7). The costs to be minimized include not only insurance premiums, but also out-of-pocket costs incurred by the owner. Damageability, repairability, serviceability and diagnostics are inter-related. Some repairability, serviceability and diagnostics operations may be required for collision or comprehensive loss-related causes only. Some operations may be for non-collision-related causes only (warranty, scheduled maintenance, non-scheduled maintenance, etc.). Some may be required for both causes. The scope of this document deals with only those operations that involve collision and comprehensive insurance loss repairs.
2016-01-22
Standard
J1939/73_201601
SAE J1939-73 Diagnostics Application Layer defines the SAE J1939 messages to accomplish diagnostic services and identifies the diagnostic connector to be used for the vehicle service tool interface. Diagnostic messages (DMs) provide the utility needed when the vehicle is being repaired. Diagnostic messages are also used during vehicle operation by the networked electronic control modules to allow them to report diagnostic information and self-compensate as appropriate, based on information received. Diagnostic messages include services such as periodically broadcasting active diagnostic trouble codes, identifying operator diagnostic lamp status, reading or clearing diagnostic trouble codes, reading or writing control module memory, providing a security function, stopping/starting message broadcasts, reporting diagnostic readiness, monitoring engine parametric data, etc.
2016-01-06
Magazine
Time to get personal Industry engineers are combining apps, voice, the cloud, and other technologies such as artificial intelligence to enable drivers to customize their vehicles and anticipate their needs. Technology report GM and TARDEC co-developing fuel cell powered Chevrolet Colorado for military evaluation vehicles and anticipate their needs. Global vehicles Sports cars take center stage in Tokyo
2016-01-03
WIP Standard
AIR6900
This AIR will address the need for a strategy to achieve aircraft operating certificate holder maintenance efficiencies within the existing regulatory environment as well as the need for regulation, policy, and guidance changes in the long-term to accommodate more complex IVHM solutions. This document will analyse which IVHM solutions can be incorporated within existing maintenance procedures and which also comply with regulations, policy, and guidance. One of the AIR’s objectives is to define best practices for aircraft operating certificate holders to engage with regulators to get approval for simpler IVHM applications leading to maintenance efficiencies. Additionally, this document will analyse the barriers that existing regulations, policy, and guidance present to the implementation of more advanced IVHM solutions. The result is a set of recommendations to certify and implement end-to-end IVHM solutions for the purpose of gaining maintenance efficiencies.
2015-09-29
Technical Paper
2015-01-2728
Paul C. Cain
Abstract OEM benefit: Vehicle manufacturers desire continuous feedback in monitoring key safety related sub-assemblies. In this application, engineers are calculating the remaining brake pad life by continuously monitoring the current thickness of the brake pad friction material. This information is used in scheduling preventative maintenance activities and avoiding safety incidents. Unplanned machine down time and field repair expenses in earthmoving equipment are cost prohibitive. Today, this technology allows OEM's to have high confidence, continuous feedback on this critical vehicle safety feature, avoiding expensive, unplanned repairs and to improve field “up time” performance. Application challenge: to develop a reliable linear position sensor that is suitable for continuous monitoring of brake pad material thickness in a high pressure, high temperature, high vibration and contaminated environment typical of large construction (earthmoving) vehicles.
2015-09-17
WIP Standard
J3110
This SAE standard applies to any and all Flushing Methods intended for use to internally clean, decontaminate, and recondition components and sections of the refrigerant circuit within a vehicle air conditioning system. This standard provides testing and acceptance criteria for determining the minimum performance of a Flushing Method, intended for use in the servicing and repair process of vehicle air conditioning system. This standard will only specify the Flushing Method performance criteria. Specifications for air conditioning Flushing Fluids are outlined in SAE J3091.
2015-09-15
Technical Paper
2015-01-2473
Alessandro Ceruti, Alfredo Liverani, Piergiovanni Marzocca
Abstract Traditional User/Maintenance Manuals provide useful information when dealing with simple machines. However, when dealing with complex systems of systems and highly miniaturized technologies, like UAVs, or with machines with millions of parts, a commercial aircraft is a case in point, new technologies taking advantage of Augmented Reality can rapidly and effectively support the maintenance operations. This paper presents a User/Maintenance Manual based on Augmented Reality to help the operator in the detection of parts and in the sequence to be followed to assemble/disassemble systems and subsystems. The proposed system includes a handheld device and/or an head mounted display or special goggles, to be used by on-site operators, with software management providing data fusion and overlaying traditional 2D user/maintenance manual information with an augmented reality software and appropriate interface.
2015-09-15
Technical Paper
2015-01-2486
Greg Kilchenstein, F. Matthew Juarez
Abstract The USAF T56 engine Program Office has adopted a unique maintenance approach which utilizes the concept of complete system reliability in order to optimize their cost of workscoping aircraft gas turbine engines. While classical Reliability Centered Maintenance (RCM) focuses on the actual reliability and failure modes representative of a particular system, its benefits are limited since it only describes individual system components9. The workscope cost optimization program provides the user with recommended optimal repair workscopes based on the underlying reliability and cost of repair options. This maintenance concept is based upon the methodology documented in SAE Aerospace Recommended Practice (ARP) JA6097, which is a “Best Practices Guide” established to provide direction in objectively determining which other maintenance to perform on a system when that system requires corrective action, with the goal of improving overall system reliability at the lowest possible cost.
2015-09-15
Technical Paper
2015-01-2589
Julien Feau, Philippe Chantal, Jayant Sen Gupta
Abstract Modern aircraft, such as A380 or A350 for Airbus, are very well connected in flight to ground stations through wireless communications. For maintenance and operations purpose, the aircraft is programmed to send regularly information such as flight reports based on the BITE messages (Built-In Test Equipment) or standard reports based on the value of physical parameters. Moreover, Airbus is capable of sending requests (called uplinks) to the aircraft to retrieve the value of different parameters in almost real-time. This ability, associated with adequate process, improves significantly the reaction time of the diagnostic and prognostic solutions that Airbus can provide to its customers. Traditionally Health Monitoring is considered useful when the Potential to Functional failure (P-F) interval is greater than one flight cycle.
2015-08-28
Standard
J2064_201508
The Scope of SAE J2064 covers coupled hose assemblies intended for containing and circulating lubricant, liquid and gaseous R134a and/or R-1234yf refrigerant in automotive air-conditioning systems. Historically, requirements for the hose used in coupled automotive refrigerant air conditioning assemblies was included in SAE J2064. SAE J2064 has been changed to establish the requirements for factory and field coupled hose assemblies. SAE J3062 has been issued to define requirements for the hose used in these assemblies into its own standard. SAE J2064 also provides the necessary values used in SAE J2727 Mobile Air Conditioning System Refrigerant Emission charts for R-134a and R-1234yf. The certified coupling of MAC hose assemblies is required in meeting certain regulatory requirements. A hose which has met the requirements of SAE J3062 and certified in J2911 must be used as part of the coupled assembly.
2015-08-28
Standard
J1939/73_201508
SAE J1939-73 Diagnostics Application Layer defines the SAE J1939 messages to accomplish diagnostic services and identifies the diagnostic connector to be used for the vehicle service tool interface. Diagnostic messages (DMs) provide the utility needed when the vehicle is being repaired. Diagnostic messages are also used during vehicle operation by the networked electronic control modules to allow them to report diagnostic information and self-compensate as appropriate, based on information received. Diagnostic messages include services such as periodically broadcasting active diagnostic trouble codes, identifying operator diagnostic lamp status, reading or clearing diagnostic trouble codes, reading or writing control module memory, providing a security function, stopping/starting message broadcasts, reporting diagnostic readiness, monitoring engine parametric data, etc.
2015-08-25
Standard
AIR6326
The objective of this document is to define basic terms and definitions and to provide general guidance for M&S of aircraft EPS.
2015-08-10
Standard
AS5282A
This SAE Aerospace Standard (AS) establishes requirements for the manufacture and certification of tool steel rings for magnetic particle inspection.
2015-08-01
WIP Standard
ARP4462A
This recommended practice covers the procedures and method for establishing acceptance criteria when performing Barkhausen noise testing of surface-hardened steel components to detect grinding burns (metallurgical damage caused by over-heating) in bare or chromium-plated parts. Primarily for nondestructive testing of heat treated, high strength low-alloy steel parts which have been ground, in accordance with MIL-STD-866 or commercial standard, before or after chromium plating. This test method may be used as an independent test or to confirm grinding damage detected in accordance with AMS 2440 or MIL-STD-867 in bare or chromium plated components.
2015-07-22
Standard
J2442_201507
This SAE Recommended Practice applies to road vehicles except motorcycles. It describes the commonalities of installation requirements for lighting and light signaling devices contained in the regulatory requirements and industry standards of North America, Japan, and the widely-adopted UNECE ("European") Regulations. It does not apply to installation of lighting and light signaling devices specific to special purpose vehicles, including but not limited to police, medical and other emergency or public service vehicles. This document does not carry force of law and does not replace regulatory requirements in effect at the time of application. It is subject to change to reflect additional experience, technical advances, and especially changes in government and industry documents used as references. Users of this document are advised to mind the applicable legal requirements in effect where their vehicles will be sold and registered.
2015-07-13
Standard
AMS1453A
This specification covers a general purpose disinfectant in the form of a concentrated liquid to be used diluted in accordance with label instructions.
2015-07-08
Standard
J3030_201507
The purpose of this SAE Standard is to establish the specific minimum equipment requirements for recovery/recycling/recharge equipment intended for use with both R-1234yf and R-134a in a common refrigerant circuit that has been directly removed from, and is intended for reuse in, mobile air-conditioning (A/C) systems. This document does not apply to equipment used for R-1234yf and R-134a having a common enclosure with separate circuits for each refrigerant, although some amount of separate circuitry for each refrigerant could be used.
2015-05-07
Standard
J2842_201505
The intent of this standard is to establish a framework to assure that all evaporators for R-744, R-1234yf, and R-445A mobile air conditioning (MAC) systems meet appropriate testing and labeling requirements. SAE J639 requires vehicle manufacturers to perform assessments to minimize reasonable risks in production MAC systems. The evaporator (as designed and manufactured) shall be part of that risk assessment and it is the responsibility of the vehicle manufacturer to assure all relevant aspects of the evaporator are included. It is the responsibility of all vehicle or evaporator manufacturers to comply with the standards of this document at a minimum. (Substitution of specific test procedures by vehicle manufactures that correlate well to field return data is acceptable.) As appropriate, this standard can be used as a guide to support risk assessments.
2015-05-06
WIP Standard
AMS1385B
This specification covers a solvent-based compound in the form of a liquid. This compound has been used typically for removal of carbonaceous soils and paint from aircraft turbine engine parts by immersion in liquid at elevated temperature, but usage is not limited to such applications. This compound should not be used on steel parts having hardness of 40 HRC or over.
2015-05-06
WIP Standard
AMS2631E
This specification covers the procedure for ultrasonic inspection of wrought titanium and titanium alloy products 0.25 inch (6.4 mm) and over in cross-section (thickness) or diameter.
2015-04-28
WIP Standard
AIR6892
This SAE Aerospace Information Report (AIR) is applicable to rotorcraft structural health monitoring (SHM) applications, both commercial and military, where end users are seeking guidance on the definition, development, integration, qualification, and certification of SHM technologies to achieve enhanced safety and reduced maintenance burden based on the lessons learned from existing Health and Usage Monitoring Systems (HUMS). While guidance on SHM business case analysis would be useful to the community, such guidance is beyond the scope of this AIR. For the purpose of this document, SHM is defined as “the process of acquiring and analyzing data from on-board sensors to evaluate the health of a structure.” The suite of on-board sensors could include any presently installed aircraft sensors as well as new sensors to be defined in the future. Interrogation of the sensors could be done onboard during flight or using ground support equipment.
2015-04-14
Technical Paper
2015-01-0498
Matt Gynn, Jamie Steele
Abstract This study explores the process changes and challenges encountered during the transition from physical to virtual automotive maintenance and service operations. The confirmation process was reworked significantly, while the final evaluation and reporting process was able to be maintained. Problems were encountered with the organization of the digital part data, the increase in workload of virtual simulations over physical checks, and the limitations of current simulation and virtual reality (VR) technologies. Ideas for future enhancements of product lifecycle management (PLM) and simulation systems are explored.
2015-04-14
WIP Standard
J2892
This document establishes standard graphical symbols and color conventions for use in either still (static) or animated graphics used for communicating service information. This document’s purpose is to communicate conventions for using those symbols and colors to accurately and consistently communicate intended information via graphics-based documentation. These practices are intended for use in service procedures, assembly instructions, training materials, and similar applications when trying to minimize the amount of human natural language text used within the document. The still and animated graphical conventions referenced should support effective communication via paper and “traditional” electronic media. The conventions can also extend to documenting via additional electronic delivery paradigms such as Augmented Reality (AR).
2015-04-07
WIP Standard
AIR4938B
This is a general curriculum that has been developed to identify the minimum knowledge and skill requirements of a composite and/or metal bond repair technician/specialist. This revision changes the document from an all-inclusive curriculum into a modular set of curricula. Teaching levels have been assigned to the curriculum to define the knowledge, skills and abilities graduates will need to make composite repairs. Minimum hours of instruction have been provided to ensure adequate coverage of all subject matter - lecture and laboratory. These minimums may be exceeded, and may include an increase in the total number of training hours and/or increases in the teaching levels.
2015-03-29
Standard
AIR4176A
The purpose of this SAE Aerospace Information Report (AIR) is to provide information that would be useful to potential users/operators and decision makers for evaluating and quantifying the benefits of an Engine Monitoring Systems (EMS) versus its cost of implementation. This document presents excerpts from reports developed to analyze "actual aircraft cost/benefits results". These are presented as follows: a. First, to outline the benefits and cost elements pertaining to EMS that may be used in performing a cost versus benefits analysis. b. Second, to present considerations for use in conducting the analysis. c. Third, to provide examples of analyses and results as they relate to the user/operator and decision-maker community. The document encompasses helicopters and fixed wing aircraft and distinguishes between civilian and military considerations.
2015-03-17
Standard
J2970_201503
This standard provides the testing and functional requirements guidance necessary for a leak detection device that uses any non-A/C refrigerant tracer gas, such as helium or a nitrogen-hydrogen blend, to provide functional performance equivalent to a refrigerant electronic leak detector. It explains how a non- refrigerant leak detector’s calibration can be established to provide levels of detection equal to electronic leak detectors that meet SAE J2791 for R-134a and SAE J2913 for R-1234yf.
Viewing 1 to 30 of 466

Filter