Display:

Results

Viewing 1 to 30 of 937
2016-06-06
Standard
AIR1589B
Only those incidents where a piece of ground support equipment directly associated with the "turnaround" servicing of an aircraft was involved are reviewed. Specifically excluded are those incidents that occurred during heavy maintenance, overhaul activity, or aircraft taxiing.
2016-05-20
Standard
AIR4730A
This document provides information on the preparation and use of video for operational and maintenance training of qualified personnel associated with GSE.
2016-05-17
WIP Standard
AIR6245
This document is applicable to military aircraft where stakeholders are seeking guidance on the development and approval of Structural Health Monitoring (SHM) technologies and on the integration of these technologies into encompassing maintenance and operational support systems. The document will refer to those guidelines prepared under SAE ARP6461 that are relevant and applicable to military applications.
2016-05-17
WIP Standard
JA6268
This Aerospace Recommended Practice (ARP) was created to help industry deal with existing barriers to the successful implementation of Integrated Vehicle Health Management (IVHM) technology in the aerospace and automotive sectors. That is,given the common barriers that exist, this ARP can be applied not only to aerospace but also to the automotive, commercial and military vehicle sectors. Original Equipment Manufacturers (OEMs) in all of these sectors are heavily dependant upon a large number of component suppliers in order to design and build their products. The advent of IVHM technology has accentuated the need for improved coordination and communication between the OEM and its suppliers –to ensure that suppliers design health ready capabilities into their particular components.
2016-05-04
WIP Standard
AIR5120A
This document has been declared "CANCELLED" by the E32 committee as of April 2016 and has been superseded by ARP5120. By this action, this document will remain listed in the Numerical Section of the Aerospace Standards Index noting that it is superseded by ARP5120. Cancelled specifications are available from SAE.
2016-04-22
WIP Standard
ARP6904
In order to realize the benefits of Integrated Vehicle Health Management (IVHM) within the aerospace and defense industry there is a need to address five critical elements of data interoperability within and across the aircraft maintenance ecosystem, namely • Approach • Trust • Context • Value • Security In Integrated Vehicle Health Management (IVHM) data interoperability is the ability of different authorized components, systems, IT, software, applications and organizations to securely communicate, exchange data, interpret data, use the information and derive consistent insight from the data that has been exchanged to derive value.
2016-04-21
WIP Standard
J2913
This SAE Standard provides testing and functional requirements to meet specified minimum performance criteria for electronic probe-type leak detectors. The equipment specified here will identify smaller refrigerant leaks when servicing motor vehicle air conditioning systems, including those engineered with improved sealing and smaller refrigerant charges to address environmental concerns and increase system efficiency. This document does not address any safety issues concerning the equipment design or use beyond that of sampling a flammable refrigerant save those described in 3.1 and 3.2 of this document. All requirements of this standard shall be verified in SAE J2911.
2016-04-05
Journal Article
2016-01-0076
Mostafa Anwar Taie, Eman Magdy Moawad, Mohammed Diab, Mohamed ElHelw
Abstract New challenges and complexities are continuously increasing in advanced driver assistance systems (ADAS) development (e.g. active safety, driver assistant and autonomous vehicle systems). Therefore, the health management of ADAS’ components needs special improvements. Since software contribution in ADAS’ development is increasing significantly, remote diagnosis and maintenance for ADAS become more important. Furthermore, it is highly recommended to predict the remaining useful life (RUL) for the prognosis of ADAS’ safety critical components; e.g. (Ultrasonic, Cameras, Radar, LIDAR). This paper presents a remote diagnosis, maintenance and prognosis (RDMP) framework for ADAS, which can be used during development phase and mainly after production. An overview of RDMP framework’s elements is explained to demonstrate how/when this framework is connected to database servers and remote analysis servers.
2016-04-05
Technical Paper
2016-01-0271
David A. Warren
Abstract The objective of the paper is to outline the steps taken to change the reliability and maintenance environment of a plant from completely reactive to proactive. The main systems addressed are maintenance function fulfillment with existing staffing; work order management, planning, and scheduling; preventive maintenance (PM) definition and frequency establishment; predictive maintenance (PdM) scheduling and method definition; and shutdown planning and execution. The work order management methods were evaluated and modified to provide planning and scheduling of work orders on a weekly basis. The computerized maintenance and management system (CMMS) was updated to automatically insert work orders into the backlog of work for completion. A failure modes and effects analysis (FMEA) was performed and the results of the FMEA led to implementation of the following PM and PdM activities: vibration analysis, thermal imaging, and temperature monitoring.
2016-03-31
WIP Standard
AMS1547B
This specification covers an electrolytic alkaline cleaner in the form of a water soluble powder.
2016-03-16
Standard
ARP6803
This SAE Aerospace Recommended Practice (ARP) examines a comprehensive construct of an Integrated Vehicle Health Management (IVHM) capability. This document provides a top-level view of the concepts, technology, and implementation practices associated with IVHM. This keystone document of the SAE HM-1 Committee is not intended as a legal document and does not provide detailed implementation steps, but does address general implementation concerns and potential benefits.
2016-03-11
Standard
J2810_201603
The purpose of this SAE Standard is to provide minimum performance and operating feature requirements for the recovery of HFC-134a (R-134a) refrigerant to be returned to a refrigerant reclamation facility that will process it to the appropriate AHRI 700 Standard or allow for on-site recycling of the recovered refrigerant to SAE J2788 specifications by using SAE J2788 or SAE J3030 -certified equipment. It is not acceptable that the refrigerant removed from a mobile air-conditioning (A/C) system with this equipment be directly returned to a mobile A/C system. An identifier certified to SAE J2912 is to be used to identify the contents of the system prior to recovery of the refrigerant.
2016-03-09
WIP Standard
ARP5021B
This document provides guidance for oxygen cylinder installation on commercial aircraft based on rules and methods practiced in aerospace industry and applicable in other associations. It covers considerations for oxygen systems from beginning of project phase up to production, maintenance, and servicing. The document is focused on requirements regarding DOT approved oxygen cylinders. However, its basic rules may also be applicable to new development pertaining to use of such equipment in an oxygen environment. For information regarding oxygen cylinders itself, reference should be made to AIR825/12 also.
2016-03-05
Standard
ARP5120
ARP5120 provides recommended best practices, procedures, and technology to guide the physical and functional design, development, integration, verification, and validation of highly reliable Engine Health Management (EHM) systems for aircraft engines and Auxiliary Power Units (APUs). This SAE Aerospace Recommended Practice (ARP) also serves as a concise reference of considerations, approaches, activities, and requirements for producing the end-to-end engine health management system comprised of both on and off-board subsystems for the sensing, acquisition, analysis, detection, and data handling functions for EHM. These functions may also be used to effect continued operation or return to service decisions when demonstrated as compliant with the applicable airworthiness requirements defined by the responsible Aviation Authority. Where practical, this document delineates between military and commercial practices.
2016-03-01
WIP Standard
AMS1535D
This specification covers a cleaner for plastics in the form of a liquid. This cleaner has been used typically for removing soils, contaminants, and residues from interior and exterior surfaces of aircraft windows by manual application, but usage is not limited to such applications.
2016-02-26
Standard
AIR5909
This SAE Aerospace Information Report (AIR) presents metrics for assessing the performance of prognostic algorithms applied for Engine Health Management (EHM) functions. The emphasis is entirely on prognostics and as such is intended to provide an extension and complement to such documents as AIR5871, which offers information and guidance on general prognostic approaches relevant to gas turbines, and AIR4985 which offers general metrics for evaluating diagnostic systems and their impact on engine health management activities.
2016-02-25
WIP Standard
AIR6902
This guidebook will assist in the design and integration of composite commercial aircraft structures that exhibit improved durability, maintainability and repairability. For international use by composite aircraft component designers, this book identifies problems that have occurred with various composite components and provides potential problem-solving recommendations. Written primarily for composite design engineers, Design of Durable, Repairable, and Maintainable Aircraft Composites should also prove valuable to those in structural engineering, materials and processing, product support, advanced product development, systems engineering, technical services, and maintenance operations.
2016-02-11
WIP Standard
AIR1839D
This Aerospace Information Report (AIR) is a general overview of typical airborne engine vibration monitoring (EVM) systems applicable to fixed or rotary wing aircraft applications, with an emphasis on system design considerations. It describes EVM systems currently in use and future trends in EVM development. The broader scope of Health and Usage Monitoring Systems, (HUMS ) is covered in SAE documents AS5391, AS5392, AS5393, AS5394, AS5395, AIR4174.
2016-02-09
WIP Standard
J1939/73
SAE J1939-73 Diagnostics Application Layer defines the SAE J1939 messages to accomplish diagnostic services and identifies the diagnostic connector to be used for the vehicle service tool interface. Diagnostic messages (DMs) provide the utility needed when the vehicle is being repaired. Diagnostic messages are also used during vehicle operation by the networked electronic control modules to allow them to report diagnostic information and self-compensate as appropriate, based on information received. Diagnostic messages include services such as periodically broadcasting active diagnostic trouble codes, identifying operator diagnostic lamp status, reading or clearing diagnostic trouble codes, reading or writing control module memory, providing a security function, stopping/starting message broadcasts, reporting diagnostic readiness, monitoring engine parametric data, etc.
2016-02-03
Standard
J1555_201602
This SAE Recommended Practice applies to all portions of the vehicle, but design efforts should focus on components and systems with the highest contribution to the overall average repair cost (see 3.7). The costs to be minimized include not only insurance premiums, but also out-of-pocket costs incurred by the owner. Damageability, repairability, serviceability and diagnostics are inter-related. Some repairability, serviceability and diagnostics operations may be required for collision or comprehensive loss-related causes only. Some operations may be for non-collision-related causes only (warranty, scheduled maintenance, non-scheduled maintenance, etc.). Some may be required for both causes. The scope of this document deals with only those operations that involve collision and comprehensive insurance loss repairs.
2016-01-22
Standard
J1939/73_201601
SAE J1939-73 Diagnostics Application Layer defines the SAE J1939 messages to accomplish diagnostic services and identifies the diagnostic connector to be used for the vehicle service tool interface. Diagnostic messages (DMs) provide the utility needed when the vehicle is being repaired. Diagnostic messages are also used during vehicle operation by the networked electronic control modules to allow them to report diagnostic information and self-compensate as appropriate, based on information received. Diagnostic messages include services such as periodically broadcasting active diagnostic trouble codes, identifying operator diagnostic lamp status, reading or clearing diagnostic trouble codes, reading or writing control module memory, providing a security function, stopping/starting message broadcasts, reporting diagnostic readiness, monitoring engine parametric data, etc.
2016-01-06
Magazine
Time to get personal Industry engineers are combining apps, voice, the cloud, and other technologies such as artificial intelligence to enable drivers to customize their vehicles and anticipate their needs. Technology report GM and TARDEC co-developing fuel cell powered Chevrolet Colorado for military evaluation vehicles and anticipate their needs. Global vehicles Sports cars take center stage in Tokyo
2016-01-03
WIP Standard
AIR6900
This AIR will address the need for a strategy to achieve aircraft operating certificate holder maintenance efficiencies within the existing regulatory environment as well as the need for regulation, policy, and guidance changes in the long-term to accommodate more complex IVHM solutions. This document will analyse which IVHM solutions can be incorporated within existing maintenance procedures and which also comply with regulations, policy, and guidance. One of the AIR’s objectives is to define best practices for aircraft operating certificate holders to engage with regulators to get approval for simpler IVHM applications leading to maintenance efficiencies. Additionally, this document will analyse the barriers that existing regulations, policy, and guidance present to the implementation of more advanced IVHM solutions. The result is a set of recommendations to certify and implement end-to-end IVHM solutions for the purpose of gaining maintenance efficiencies.
2015-09-29
Technical Paper
2015-01-2728
Paul C. Cain
Abstract OEM benefit: Vehicle manufacturers desire continuous feedback in monitoring key safety related sub-assemblies. In this application, engineers are calculating the remaining brake pad life by continuously monitoring the current thickness of the brake pad friction material. This information is used in scheduling preventative maintenance activities and avoiding safety incidents. Unplanned machine down time and field repair expenses in earthmoving equipment are cost prohibitive. Today, this technology allows OEM's to have high confidence, continuous feedback on this critical vehicle safety feature, avoiding expensive, unplanned repairs and to improve field “up time” performance. Application challenge: to develop a reliable linear position sensor that is suitable for continuous monitoring of brake pad material thickness in a high pressure, high temperature, high vibration and contaminated environment typical of large construction (earthmoving) vehicles.
2015-09-17
WIP Standard
J3110
This SAE standard applies to any and all Flushing Methods intended for use to internally clean, decontaminate, and recondition components and sections of the refrigerant circuit within a vehicle air conditioning system. This standard provides testing and acceptance criteria for determining the minimum performance of a Flushing Method, intended for use in the servicing and repair process of vehicle air conditioning system. This standard will only specify the Flushing Method performance criteria. Specifications for air conditioning Flushing Fluids are outlined in SAE J3091.
2015-09-15
Technical Paper
2015-01-2473
Alessandro Ceruti, Alfredo Liverani, Piergiovanni Marzocca
Abstract Traditional User/Maintenance Manuals provide useful information when dealing with simple machines. However, when dealing with complex systems of systems and highly miniaturized technologies, like UAVs, or with machines with millions of parts, a commercial aircraft is a case in point, new technologies taking advantage of Augmented Reality can rapidly and effectively support the maintenance operations. This paper presents a User/Maintenance Manual based on Augmented Reality to help the operator in the detection of parts and in the sequence to be followed to assemble/disassemble systems and subsystems. The proposed system includes a handheld device and/or an head mounted display or special goggles, to be used by on-site operators, with software management providing data fusion and overlaying traditional 2D user/maintenance manual information with an augmented reality software and appropriate interface.
2015-09-15
Technical Paper
2015-01-2486
Greg Kilchenstein, F. Matthew Juarez
Abstract The USAF T56 engine Program Office has adopted a unique maintenance approach which utilizes the concept of complete system reliability in order to optimize their cost of workscoping aircraft gas turbine engines. While classical Reliability Centered Maintenance (RCM) focuses on the actual reliability and failure modes representative of a particular system, its benefits are limited since it only describes individual system components9. The workscope cost optimization program provides the user with recommended optimal repair workscopes based on the underlying reliability and cost of repair options. This maintenance concept is based upon the methodology documented in SAE Aerospace Recommended Practice (ARP) JA6097, which is a “Best Practices Guide” established to provide direction in objectively determining which other maintenance to perform on a system when that system requires corrective action, with the goal of improving overall system reliability at the lowest possible cost.
2015-09-15
Technical Paper
2015-01-2589
Julien Feau, Philippe Chantal, Jayant Sen Gupta
Abstract Modern aircraft, such as A380 or A350 for Airbus, are very well connected in flight to ground stations through wireless communications. For maintenance and operations purpose, the aircraft is programmed to send regularly information such as flight reports based on the BITE messages (Built-In Test Equipment) or standard reports based on the value of physical parameters. Moreover, Airbus is capable of sending requests (called uplinks) to the aircraft to retrieve the value of different parameters in almost real-time. This ability, associated with adequate process, improves significantly the reaction time of the diagnostic and prognostic solutions that Airbus can provide to its customers. Traditionally Health Monitoring is considered useful when the Potential to Functional failure (P-F) interval is greater than one flight cycle.
2015-08-28
Standard
J1939/73_201508
SAE J1939-73 Diagnostics Application Layer defines the SAE J1939 messages to accomplish diagnostic services and identifies the diagnostic connector to be used for the vehicle service tool interface. Diagnostic messages (DMs) provide the utility needed when the vehicle is being repaired. Diagnostic messages are also used during vehicle operation by the networked electronic control modules to allow them to report diagnostic information and self-compensate as appropriate, based on information received. Diagnostic messages include services such as periodically broadcasting active diagnostic trouble codes, identifying operator diagnostic lamp status, reading or clearing diagnostic trouble codes, reading or writing control module memory, providing a security function, stopping/starting message broadcasts, reporting diagnostic readiness, monitoring engine parametric data, etc.
2015-08-28
Standard
J2064_201508
The Scope of SAE J2064 covers coupled hose assemblies intended for containing and circulating lubricant, liquid and gaseous R134a and/or R-1234yf refrigerant in automotive air-conditioning systems. Historically, requirements for the hose used in coupled automotive refrigerant air conditioning assemblies was included in SAE J2064. SAE J2064 has been changed to establish the requirements for factory and field coupled hose assemblies. SAE J3062 has been issued to define requirements for the hose used in these assemblies into its own standard. SAE J2064 also provides the necessary values used in SAE J2727 Mobile Air Conditioning System Refrigerant Emission charts for R-134a and R-1234yf. The certified coupling of MAC hose assemblies is required in meeting certain regulatory requirements. A hose which has met the requirements of SAE J3062 and certified in J2911 must be used as part of the coupled assembly.
Viewing 1 to 30 of 937

Filter