Criteria

Text:
Content:
Display:

Results

Viewing 91 to 120 of 2410
2017-01-24
WIP Standard
AIR7999
This SAE Aerospace Information Report (AIR) presents metrics for assessing the performance of diagnostic and prognostic algorithms applied to Engine Health Management (EHM) functions. This document consolidates and expands upon the metric information previously contained in AIR4985 and AIR5909. The emphasis is entirely on metrics and as such is intended to provide an extension and complement to such documents as ARP4176, which provides insight into how to create a cost benefit analysis to determine the justification for implementing an EHM system.
CURRENT
2017-01-10
Standard
AS4775B
This document covers the general requirements for hydraulic aircraft jacks. It can be applied to tripod, unipod, and axle jacks that may be used on open ramp areas as well as in the aircraft hangar. Throughout this Aerospace Standard, the minimum essential criteria are identified by the key word “shall”. Recommended criteria are identified by use of the key word “should”. Deviation from recommended criteria should only occur after careful consideration and thorough service evaluation have shown alternate methods to provide an equivalent level of safety. The term “vertical load” throughout this Aerospace Standard is defined as the force imposed on the aircraft jack at the airframe jack point.
2017-01-06
WIP Standard
AS6285A
This document establishes the minimum requirements for ground based aircraft deicing/anti-icing methods and procedures to ensure the safe operation of aircraft during icing conditions on the ground. This document does not specify the requirements for particular aircraft models. NOTE: Refer to particular aircraft operator or aircraft manufacturers’ published manuals and procedures. The application of the procedures specified in this document are intended to effectively remove and/or prevent the accumulation of frost, snow, slush or ice contamination which can seriously affect the aerodynamic performance and/or the controllability of an aircraft. The principal method of treatment employed is the use of fluids qualified to AMS1424 and AMS1428 (Type I, II, III, and IV fluids). All guidelines referred to herein are applicable only in conjunction with the applicable documents.
CURRENT
2017-01-04
Standard
AIR1839D
This Aerospace Information Report (AIR) is a general overview of typical airborne engine vibration monitoring (EVM) systems applicable to fixed or rotary wing aircraft applications, with an emphasis on system design considerations. It describes EVM systems currently in use and future trends in EVM development. The broader scope of Health and Usage Monitoring Systems, (HUMS ) is covered in SAE documents AS5391, AS5392, AS5393, AS5394, AS5395, AIR4174.
CURRENT
2017-01-04
Standard
AS4786B
This SAE Aerospace Standard (AS) covers variable speed, reversible battery powered drills with removable, rechargeable battery pack and either 3/8 inch or ½ inch chuck used for general maintenance and construction where a battery powered tool is required. This document also satisfies EMI requirements for driver drills, where EMI suppression is required by the purchaser. This document may involve hazardous materials, operations, or equipment and does not purport to address all of the safety considerations associated. It is the responsibility of the user of a piece of equipment to establish appropriate safety and health practices and to determine the applicability of regulatory limitations prior to its use. Users are cautioned to read all manufacturer’s instructions prior to use.
CURRENT
2017-01-03
Standard
ARP6852B
This document describes methods that are known to have been used by aircraft manufacturers to evaluate aircraft aerodynamic performance and handling effects following application of aircraft ground deicing/anti-icing fluids (“fluids”), as well as methods under development. Guidance and insight based upon those experiences are provided, including: Similarity analyses Icing wind tunnel tests Flight tests Computational fluid dynamics and other numerical analyses This document also describes: The history of evaluation of the aerodynamic effects of fluids The effects of fluids on aircraft aerodynamics The testing for aerodynamic acceptability of fluids for SAE and regulatory qualification performed in accordance with AS5900 Additionally, Appendices A to E present individual aircraft manufacturers’ histories and methodologies which substantially contributed to the improvement of knowledge and processes for the evaluation of fluid aerodynamic effects.
2017-01-03
WIP Standard
AS6294/2
This standard documents and establishes common industry practices, and screening and qualification testing, of Plastic Encapsulated Microcircuits (PEMs) for use in military and avionics application environments.
2016-12-29
WIP Standard
ARP5718B
This document describes: a. the preparatory steps to test experimental Type II, III, and IV fluids according to AMS1428; b. the recommendations for the preparation of samples for endurance time testing according to ARP5485; c. a short description of the recommended field spray test; d. the protocol to generate draft holdover time guidelines from endurance time data obtained from ARP5485; e. the protocol for inclusion of Type II, III, and IV fluids on the FAA and Transport Canada lists of fluids and the protocol for updating the lists of fluids; f. the role of the SAE G-12 Aircraft Deicing Fluids Committee; g. the role of the SAE G-12 Holdover Time Committee; h. the process for the publication of Type II, III, and IV holdover time guidelines. This document does not describe laboratory testing procedures. This document does not include the qualification process for AMS1424 Type I fluids.
2016-12-24
WIP Standard
TAHB0009A
This handbook provides "how to" guidance to industry and government for the reliability Activities and Methods contained in ANSI/GEIA-STD-0009 for developing reliable products and systems, successfully demonstrating them during test and evaluation, and sustaining them throughout the system/product life cycle. ANSI/GEIA-STD-0009 requires the developers and customer/users working as a team to plan and implement a reliability program that provides systems/products that satisfy the user's requirements and expectations using a systems engineering approach. The four Objectives of ANSI/GEIA-STD-0009 are listed below: Objective 1: Understand Customer/User Requirements and constraints. The team (developer, customer, and user), includes the Activities necessary to ensure that the user's requirements and product needs are fully understood and defined, so that a comprehensive design specification and Reliability Program Plan are generated. Objective 2: Design and redesign for reliability.
2016-12-21
WIP Standard
ARP6915
This Aerospace Recommended Practice (ARP) offers best practice regarding the implementation of IVHM systems taking into account Human Factors, both the vehicle crew and the maintenance staff. The document will include considerations regarding both military and civil fixed wing aircraft. Safety implications will also be addressed.
CURRENT
2016-12-13
Standard
AIR6212
This document collates the ways and means that existing sensors can identify the platform’s exposure to volcanic ash. The capabilities include real-time detection and estimation, and post flight determinations of exposure and intensity. The document includes results of initiatives with the Federal Aviation Administration (FAA), the European Aviation Safety Agency (EASA), the International Civil Aviation Organization (ICAO), Transport Canada, various research organizations, Industry and other subject matter experts. The document illustrates the ways that an aircraft can use existing sensors to act as health monitoring tools so as to assess the operational and maintenance effects related to volcanic ash incidents and possibly help determine what remedial action to take after encountering a volcanic ash (VA) event.
CURRENT
2016-12-13
Standard
J2012DA_201612
The J2012 Digital Annex of Diagnostic Trouble Code Definitions Spreadsheet provides DTC information in an excel format for use in your organization's work processes. The column headings include the same information as contained in the J2012 standard. Information in the excel spreadsheet will be updated several times annually, and the spreadsheet includes a column heading denoting which DTC have been updated in the current version.
CURRENT
2016-12-13
Standard
J2012_201612
This document supersedes SAE J2012 DEC2007, and is technically equivalent to ISO 15031-6:2010 with the exceptions described in 1.2. This document is intended to define the standardized Diagnostic Trouble Codes (DTC) that On-Board Diagnostic (OBD) systems in vehicles are required to report when malfunctions are detected. SAE J2012 may also be used for decoding of enhanced diagnostic DTCs and specifies the ranges reserved for vehicle manufacturer specific usage. This document includes: Diagnostic Trouble Code format. A description of the standardized set of Diagnostic Trouble Codes and descriptions contained in SAE J2012DA. The two most significant bytes of a DTC may be decoded according to two different lists; DTC Format Identifier 0x00 and 0x04. A description of the standardized set of Diagnostic Trouble Codes subtypes known as Failure Types contained in SAE J2012-DA (applies only when three byte DTCs are used).
2016-12-08
WIP Standard
AS6294/1
1. Review existing standards for PEM qualification & screening  NASA: PEM-INST-001, MSFC-STD-3012  QML Class N, Class Y (non-hermetic microcircuits)  QML Class F, Class L (non-hermetic hybrids)  etc. 2. Provide recommendations for unification  Address concerns for Space & terrestrial applications  Address possible holes in current documents  Make recommendations to improve QML Class N and Class Y 3. Be resource to industry when questions come up that are not being addressed by current PEM flows
2016-12-07
WIP Standard
J983
This SAE Recommended Practice applies to mobile, construction type, crane and cable excavator hand and foot controls. It should not be construed to limit the use of, or to apply to combination controls, automatic controls, or any other special operating control requirements.
CURRENT
2016-12-06
Standard
AS6286/3
This document shall be used in conjunction with:
CURRENT
2016-12-05
Standard
AS6286/6
This document shall be used in conjunction with: AS6286, Training and Qualification Program for Deicing/Anti-icing of Aircraft on the Ground AS6286/1, Processes Including Methods AS6286/2, Equipment AS6286/3, Fluids AS6286/4, Weather AS6286/5, Health, Safety and First Aid
CURRENT
2016-12-02
Standard
J2911_201612
This SAE Standard provides manufacturers, testing facilities and providers of technician training with a procedure for certifying compliance with the applicable standard. Manufacturers or seller who advertise their products as Certified to an SAE J standard shall follow this procedure. Certification of a product is voluntary; however, this certification process is mandatory for those advertising meeting SAE Standard(s) requirements. Only certifying to this standard allows those claiming compliance to advertise that their product (unit), component, or service technician training meets all requirements of the applicable SAE standard. Certification of compliance to this and the appropriate standard and use of the SAE label on the product shall only be permitted after all the required information has been submitted to SAE International and it has been posted on the SAE web site.
CURRENT
2016-11-29
Standard
AIR1873A
This Aerospace Information Report (AIR) describes a Limited Engine Monitoring System that can be used by the flight crew or the maintenance staff, or both, to monitor the health of gas turbine engines in aircraft. This AIR considers monitoring of gas path performance and mechanical parameters, and systems such as low cycle fatigue counters and engine history recorders. It also considers typical measurement system accuracies and their impact. This AIR is intended as a technical guide. It is not intended to be used as a legal document or standard. AIR 1873 supplements ARP 1587, Aircraft Gas Turbine Engine Monitoring System Guide.
CURRENT
2016-11-29
Standard
AS5877B
This SAE Aerospace Standard (AS) prescribes requirements for the various types of nozzles that are used for the refueling and defueling of aircraft fitted with pressure fuel servicing systems. It is to be used as a replacement for MIL-N-5877, MS29520 and for all commercial applications.
CURRENT
2016-11-29
Standard
AS6286
This document establishes the minimum training and qualification requirements for ground based aircraft deicing/anti-icing methods and procedures. All guidelines referred to herein are applicable only in conjunction with the applicable documents. Due to aerodynamic and other concerns, the application of deicing/anti-icing fluids shall be carried out in compliance with engine and aircraft manufacturers’ recommendations. The scope of training should be adjusted according to local demands. There are a wide variety of winter seasons and differences of the involvement between deicing operators and the level and length of training should therefore be adjusted accordingly. However, the minimum level of training shall be covered in all cases. As a rule of thumb, each hour of classroom training should at least equal the same amount (or include more) of practical training wherever this is relevant. Both basic and recurrent practical training shall be performed and documented periodically.
2016-11-28
WIP Standard
ARP6914
The scope of these standards will relate to single-axis moment scales only. Topics covered include dimensional characteristics of single-axis moment scale interfaces, general tooling requirements, scale and tooling accuracy, and display instrument accuracy requirements. Additionally, general guidelines for qualification of equipment and tooling are included, as are general requirements for single-axis blade distribution software.
CURRENT
2016-11-22
Standard
AS6286/2
This document shall be used in conjunction with: AS6286, Training and Qualification Program for Deicing/Anti-icing of Aircraft on the Ground AS6286/1, Methods AS6286/3, Fluids AS6286/4, Weather AS6286/5, Health, Safety and First Aid AS6286/6, Aircraft Deicing/Anti-icing Diagrams, No-Spray-Zones
CURRENT
2016-11-18
Standard
J2258_201611
This SAE Standard defines requirements relating to the elements of design, operation, and maintenance of light utility vehicles. The safety specifications in this document apply to any self-propelled, operator-controlled, off-highway vehicle 1829 mm (72 in) or less in overall width, exclusive of added accessories and attachments, operable on three or more wheels or tracks, primarily intended to transport material loads or people, with a gross vehicle weight of 2500 kg (5500 lb) or less, and a maximum design speed less than or equal to 40.23 km/h (25 mph). This document is not intended to cover Go-Karts (ASTM F2007-07a), Fun-Karts (ASTM F2011-02e1), Dune Buggies, and all terrain vehicles (ATVs) complying with ANSI/SVIA 1.
2016-11-14
WIP Standard
ARP5305A
This SAE Aerospace Recommended Practice (ARP) is written for individuals associated with the ground-level testing of large and small gas turbine engines and particularly for those who might be interested in constructing new or adding to existing engine test cell facilities.
CURRENT
2016-11-12
Standard
AIR4175B
An effective GSS is vital to the successful implementation of an EMS and is a fundamental part of the total monitoring system design, including asset management. Unlike the on-board part of the EMS which principally uses real time data to indicate when engine maintenance is required, a GSS can offer much greater processing power to comprehensively analyze and manipulate EMS data for both maintenance and logistics purposes. This document reviews the main EMS functions and discusses the operating requirements used to determine the basis design of a GSS, including the interfaces with other maintenance or logistic systems. A brief discussion is also included on some of the more recent advances in GSS technology that have been specifically developed to provide more effective diagnostic capabilities for gas turbine engines.
CURRENT
2016-11-12
Standard
AIR5120A
For Engine Monitoring Systems to meet their potential for improved safety and reduced operation and support costs, significant attention must be focused on their reliability and validity throughout the life cycle. This AIR will provide program managers, designers, developers and customers a concise reference of the activities, approaches and considerations for the development and verification of a highly reliable engine monitoring system. When applying the guidelines of this AIR it should be noted that engine monitoring systems physically or functionally integrated with the engine control system and/or performing functions that affect engine safety or are used to effect continued operation or return to service decisions shall be subject to the Type Investigation of the product in which they'll be incorporated and have to show compliance with the applicable airworthiness requirements as defined by the responsible Aviation Authority.
CURRENT
2016-11-12
Standard
AIR4061C
SAE Aerospace Information Report (AIR) 4061 provides best practice guidelines for the integration of Engine Health Management (EHM) system functions within aircraft systems to include both its main engine(s) and any Auxiliary Power Unit(s) (APU). This document provides an overview of some of the functions EHM typically integrates, offers some system variations encountered with different aircraft, and suggests general considerations involved with integration. It presents a sample EHM parameter coverage matrix to show the types of parameters with which a typical EHM system might interface, offers insight into signal and data processing and retrieval, and offers a view of typical EHM parameter requirements by function. Where practical, this document delineates between military and commercial practices.
Viewing 91 to 120 of 2410