Display:

Results

Viewing 1 to 30 of 7782
2017-09-19
Technical Paper
2017-01-2123
Violet Leavers
The need to maintain aircraft in remote, harsh environments poses significant challenges for on-site condition monitoring. For example, in desert assignments or on-board ships, frequent rotation of staff with variable levels of skill requires condition monitoring equipment that is not only robust and portable but also user friendly and requiring a minimum of training to set up and use correctly. The mainstays of any on-site aerospace maintenance program are various fluid and particulate condition monitoring tests that convey information about the current mechanical state of the system. In the front line of these is the collection and analysis of wear debris particles retrieved from a component’s lubricating or power transmission fluid or from magnetic plugs. It is standard practice within the specialist laboratory environment to view and image wear debris using a microscope.
2017-09-19
Technical Paper
2017-01-2127
Joao Pedro Malere
The cost-benefit analysis is one of the key decision aspects regarding the investment on IVHM systems especially for aerospace applications where the evaluation of the impacts of such systems on costs, safety and weight are critical for the vehicle operation during its lifecycle. This paper presents the application of linear programming to select and to quantify how many components an IVHM system should consider in order to maximize the total value that it delivers. This approach advantage is that it provides an exact solution. The formulation shows how the technical value of an IVHM solution can be evaluated taking into account key aspects for aerospace platforms such as weight, reliability and bus capacity restrictions through a linear integer programming model solved using the branch-and-bound method. The results show that the method selects the equipment and quantify the amount of components that need to be monitored in order to maximize the cost-benefit relationship.
2017-09-19
Technical Paper
2017-01-2125
Mohammad Barkat, Vivek Karan, Pradeep N
The exponential increase in the number of aircrafts and air travellers has triggered new innovations which aim to make airline services more reliable and consumer friendly. Quick and efficient maintenance actions with minimum downtime are the need of the hour. Areas that have a large potential for improvement in this regard are the real time use of diagnostic data, filtering/elimination of nuisance faults and machine learning capabilities with respect to maintenance actions. Although, numerous LRUs installed on the aircraft generate massive amounts of diagnostic data to detect any possible issue or LRU failure, it is seldom used in real time. The turnaround time for LRU maintenance can be greatly reduced if the results of the diagnostics conducted during LRU normal operation is relayed to ground stations in real-time. This enables the maintenance engineers to plan ahead and initiate maintenance actions well before the aircraft lands and becomes available for maintenance.
2017-09-19
Technical Paper
2017-01-2025
Eugenio Rodriguez
One of the most important activities associated with the Aerospace and Defense industry is maintenance. Maintainability procedures have a direct impact of safety and operational availability of the system. The processes or procedures used during maintenance activities, whether removing and replacing a component of a system, or even conducting troubleshooting, are generally discrete by design, and in most cases, a maintainer, or a field service representative (FSR), will follow a sequence of steps as part of a maintenance work package or work instruction. Depending on the system, those maintenance activities could be complex, requiring many steps to complete. In order to successfully accomplish complex tasks, generally, one of two possibilities need to exist, either the maintainer is well trained and experienced, or the maintenance work instructions are extremely detailed and precise; both of options can be time consuming and expensive to achieve.
2017-09-19
Technical Paper
2017-01-2155
Michal Salacinski, Piotr Broda, Piotr Samoraj
Polish Armed Forces are currently operating hundred helicopters belonging to Mi family. Metal fuselage is usually resistant to the battle and the human factor. Unfortunately, metal rotor blades of Mi helicopters are sensitive to operating conditions. Single blade is made from monolithic aluminum spar and mutually separated trailing sections, which are bonded to the spar. The sections are constructed of metal sandwich panels. During aggressive military operating conditions blades sections are often damaged by debonding from the spar, fatigue cracks of section skin, dents and perforations as well as erosion. The manufacturer assumed that structurally damaged sections should be exchanged. Provided repair technologies are applied only to cosmetic damages. Unfortunately, there is a limit to number repairs which prevents replacement of two neighboring sections due to the high temperature of curing cycle during the section replacement.
2017-09-04
Technical Paper
2017-24-0044
Jeremy Rochussen, Jeff Son, Jeff Yeo, Mahdiar Khosravi, Patrick Kirchen, Gordon McTaggart-Cowan
Alternative fuel injection systems and advanced in-cylinder diagnostics are two important tools for engine development; however, the rapid and simultaneous achievement of these goals is often limited by the space available in the cylinder head. Here, a research-oriented cylinder head is developed for use on a single cylinder 2-litre engine, and permits three simultaneous in-cylinder combustion diagnostic tools (cylinder pressure measurement, infrared (IR) absorption, and multi-color pyrometry). In addition, a modular injector mounting system enables the use of a variety of direct fuel injectors for both gaseous and liquid fuels. The design of the all-new cylinder head was derived from a production cylinder head, which was sectioned and laser scanned to create a parametric model.
CURRENT
2017-07-19
Standard
AIR4174A
The purpose of this SAE Aerospace Information Report (AIR) is to provide management, designers, and operators with information to assist them to decide what type of power train monitoring they desire. This document is to provide assistance in optimizing system complexity, performance and cost effectiveness. This document covers all power train elements from the point at which the gas generator energy is transferred to mechanical energy for propulsion purposes. The document covers engine power train components, their interfaces, transmissions, gearboxes, hanger bearings, shafting and associated rotating accessories, propellers and rotor systems as shown in Figure 1. This document addresses application for rotorcraft, turboprop, and propfan drive trains for both commercial and military aircraft. Information is provided to assist in; a. Defining technology maturity and application risk b. Cost benefit analysis (Value analysis) c. Selection of system components d.
2017-07-18
Article
The SmartCap telematics device can be used to monitor new and existing Perkins mechanical and electronic engines, sending data directly to the Perkins My Engine App.
2017-07-13
WIP Standard
AIR4938C
This is a general curriculum that has been developed to identify the minimum knowledge and skill requirements of a composite and/or metal bond repair technician/specialist. This revision changes the document from an all-inclusive curriculum into a modular set of curricula. Teaching levels have been assigned to the curriculum to define the knowledge, skills and abilities graduates will need to make composite repairs. Minimum hours of instruction have been provided to ensure adequate coverage of all subject matter - lecture and laboratory. These minimums may be exceeded, and may include an increase in the total number of training hours and/or increases in the teaching levels.
2017-07-12
WIP Standard
J2927
This SAE standard applies to refrigerant identification equipment to be used for identifying an acceptable level of R-1234yf purity in a refrigerant tank or vehicle MAC system labeled as containing R-1234yf, and not misidentify other refrigerants, per 5.7.
2017-07-06
WIP Standard
SAE1001
The purpose of the "Integrated Project Processes for Engineering a System(IPPES)" Standard is to provide an integrated set of fundamental technical processes to aid a project in the engineering or reengineering of a system over the full life cycle. Covers systems that can be any combination of people (humans); product (hardware or software); or process (service). Applicable to any type of system: commercial or non-commercial; small or large, simple or complex, precedented or unprecedented; new or legacy or any combination of these characteristics.
2017-06-30
WIP Standard
ARP8615A
This document describes the requirements for air vehicle fuel, vent, and propulsion fuel system functional components.
CURRENT
2017-06-27
Standard
AIR6027A
The information presented in this AIR is intended to provide designers of armed unmanned systems with guidelines that may be applied to ensure safe integration and operation of weapons on unmanned platforms. The guidelines have been developed from experiences gained in the design and operation of weapons on manned aircraft that have been accepted by relevant safety authorities in the USA and Europe and proven effective over many years. Whilst the guidelines have been developed from experience with aircraft operations, the concepts are considered equally applicable to non-aircraft systems, such as those used on the surface or undersea environments.
2017-06-27
WIP Standard
ARP6955
This SAE Aerospace Recommended Practice (ARP) document covers the requirements for a Snowcompressor with carrier vehicle used to clear snow from airport operational areas by compressing the volume of collected snow into smaller volumes for loading into a hauling/dump truck or for depositing reduced-volume windrows for snow banking. The term carrier vehicle represents the various self-propelled prime movers that provide the power necessary to move snow and ice control equipment during winter operations. For two-stage rotary plows that primarily are used to cast heavy concentrations of snow away from airport operational areas such as runways and taxiways, see ARP5539.
CURRENT
2017-06-20
Standard
AIR4844C
The following terminology has been generated by the ATA/IATA/SAE Commercial Aircraft Composite Repair Committee (CACRC) and provides terminology for design, fabrication, and repair of composite and bonded metal structures. The purpose of this AIR is to provide terminology that should be used when developing CACRC repair documents or repair documents produced by airlines or airframe and engine manufacturers. It is intended to develop this AIR into an AS.
2017-06-17
Journal Article
2017-01-9078
Dong Gao, MiaoHua Huang, Jiangang Xie
In order to solve the environmental pollution and energy crisis, Electric Vehicles (EVs) have been developed rapidly. Lithium-ion (Li-ion) battery is the key power supply equipment for EVs, and the scientific and accurate prediction of its Remaining Useful Life (RUL) has become a hot topic in the field of new energy research. The internal resistance and capacity are often used to characterize the Li-ion battery State of Health (SOH) from which RUL is obtained. However, in practical applications, it is difficult to obtain internal resistance and capacity information by using the non-intrusive measurement method. Therefore, it is necessary to extract the measurable parameters to characterize the degradation of Li-ion battery. At present, the methods of extracting health indicators based on measurable parameters have gained preliminary results, but most of them are derived from the Li-ion battery discharging data.
2017-06-12
WIP Standard
ARP6954
This SAE Aerospace Resource Document (ARD) document covers the requirements for a self-propelled GRV, intended for use at airports to collect spent aircraft de-icing fluid (ADF) from the surface of de-icing areas. This unit will recover de-icing fluid from the surface, which will be stored in a containment unit on the vehicle. The GRV must be capable of night and day operations in all weather conditions, as required.
CURRENT
2017-06-09
Standard
ARP4912C
This SAE Aerospace Recommended Practice (ARP) provides recommendations on cavity design, the installation of elastomer type spare seals in these cavities, and information surrounding elastomer material properties after contact with typical shock absorber hydraulic fluid(s) or grease. This ARP is primarily concerned with the use of spare seals on shock absorbers where only a single dynamic seal is fitted and in contact with the slider/shock absorber piston at any one time. These shock absorbers typically have a spare (dynamic) seal gland located on the outer diameter of the lower seal carrier. This spare seal gland is intended to house a spare elastomer contact seal. Split Polytetrafluoroethylene (PTFE) backup rings can also be installed in the spare seal cavity. During operation, if the fitted dynamic shock absorber standard seal begins to fail/leak, then the aircraft can be jacked up, allowing the lower gland nut of the shock absorber to be dropped down.
CURRENT
2017-06-09
Standard
ARP1804B
This SAE Aerospace Recommended Practice (ARP) outlines the design and performance requirements for a battery-powered electric tow tractor for the handling of baggage or cargo trailers in airline service. The use of “shall” in this document indicates a mandatory requirement. The use of “should” indicates a recommendation or that which is advised but not required.
CURRENT
2017-06-09
Standard
AMS1424N
This foundation specification (AMS1424N) and its associated category specifications (AMS1424/1 and AMS1424/2) cover a deicing/anti-icing material in the form of a fluid.
CURRENT
2017-06-09
Standard
J1706_201706
This SAE Recommended Practice is intended to provide basic recommended practices for aid in the development and use of safe and efficient practices for all operations involving the production, handling, and dispensing of SAE J1703 Motor Vehicle Brake Fluids and SAE J1704 Borate Ester Based Brake Fluids.
2017-06-07
WIP Standard
GEIASTD0005_2B
This Standard establishes processes for documenting the mitigating steps taken to reduce the harmful effects of Pb-free tin finishes in electronic systems. This Standard is applicable to Aerospace, Defense, and High Performance (ADHP) electronic applications which procure equipment that may contain Pb-free tin finishes.
2017-06-05
Technical Paper
2017-01-1868
Rod Morris-Kirby, Evan Harry
Abstract The authors previously presented at SAE 2015, the use of acoustic diagnostic network algorithms (Acoustic DNA) for the measurement and analysis of noise paths in motor vehicles. To further the understanding of the huge amount of data created in this method, especially by the end user or customer, a secure web based application platform has been engineered. The current paper presents operating aspects of the web based approach, including cyber security, multi device accessibility and intuitive user interface together with an innovative optimization toolbox from which both noise sources and vehicle body systems can be modified to be target compliant.
CURRENT
2017-06-05
Standard
AIR4938B
This is a general curriculum that has been developed to identify the minimum knowledge and skill requirements of a composite and/or metal bond repair technician/specialist. This revision changes the document from an all-inclusive curriculum into a modular set of curricula. Teaching levels have been assigned to the curriculum to define the knowledge, skills and abilities graduates will need to make composite repairs. Minimum hours of instruction have been provided to ensure adequate coverage of all subject matter - lecture and laboratory. These minimums may be exceeded, and may include an increase in the total number of training hours and/or increases in the teaching levels.
CURRENT
2017-06-01
Standard
AMS1548B
This specification covers a solvent-emulsion cleaner in the form of a solvent-base liquid concentrate.
2017-05-26
WIP Standard
ARP4977A
This SAE Aerospace Recommended Practice (ARP) describes standard methods for drying commercial aircraft composite structures prior to repair and gives general guidelines on use and applicability. It addresses the removal of liquids that have collected inside the structures through open damage, microcracks, or porosity and the removal of absorbed moisture from the composite material. The methods described in this document shall only be used when specified in an approved repair document or with the agreement of the original equipment manufacturer (OEM) or regulatory authority. If this document is used for the drying of materials other than thermosetting composite materials, the fitness for this purpose must be determined by the user. The purpose of this document is to provide a set of standard drying methods that may be referenced in repair documents produced by airlines or airframe and engine manufacturers.
CURRENT
2017-05-25
Standard
AS20708/131B
Scope is unavailable.
CURRENT
2017-05-22
Standard
AS20708/139B
SCOPE IS UNAVAILABLE.
CURRENT
2017-05-22
Standard
AS20708/500B
Scope is unavailable.
Viewing 1 to 30 of 7782

Filter