Criteria

Display:

Results

Viewing 121 to 150 of 4781
2015-04-14
Technical Paper
2015-01-0498
Matt Gynn, Jamie Steele
Abstract This study explores the process changes and challenges encountered during the transition from physical to virtual automotive maintenance and service operations. The confirmation process was reworked significantly, while the final evaluation and reporting process was able to be maintained. Problems were encountered with the organization of the digital part data, the increase in workload of virtual simulations over physical checks, and the limitations of current simulation and virtual reality (VR) technologies. Ideas for future enhancements of product lifecycle management (PLM) and simulation systems are explored.
2015-04-14
Technical Paper
2015-01-1405
Guanjun Zhang, Feng Yu, Zhigao OuYang, Huiqin Chen, Zhonghao Bai, Libo Cao
Abstract The combination of passive and active vehicle safety technologies can effectively improve vehicle safety. Most of them predict vehicle crashes using radar or video, but they can't be applied extensively currently due to the high cost. Another collision forecasting method is more economic which is based on the driver behavior and vehicle status, such as the acceleration, angular velocity of the brake pedal and so on. However, the acceleration and angular velocity of the brake pedal will change with the driver and the vehicle type. In order to study the effect of different drivers and vehicle types on the braking acceleration and angular velocity of the brake pedal, six volunteers were asked to drive five vehicles for simulating the working conditions of emergency braking, normal braking, inching braking and passing barricades under different velocities. All the tests were conducted on asphalt road, and comprehensive experimental design was used to arrange tests.
2015-04-14
Technical Paper
2015-01-0204
Biswajit Panja, Lars Wolleschensky
Abstract In this paper we propose a secure wireless sensor network system for vehicle health monitoring (VHM). We discuss the architecture of the proposed model, and it's implementation in vehicles. Modified AES-CCM is used to provide confidentiality in the network. In the proposed scheme combination of interactive and non-interactive methods are used for reliable message delivery.
2015-04-14
Journal Article
2015-01-0918
Daniel Duke, Andrew Swantek, Alan Kastengren, Kamel Fezzaa, Christopher Powell
Abstract Cavitation plays an important role in fuel injection systems. It alters the nozzle's internal flow structure and discharge coefficient, and also contributes to injector wear. Quantitatively measuring and mapping the cavitation vapor distribution in a fuel injector is difficult, as cavitation occurs on very short time and length scales. Optical measurements of transparent model nozzles can indicate the morphology of large-scale cavitation, but are generally limited by the substantial amount of scattering that occurs between vapor and liquid phases. These limitations can be overcome with x-ray diagnostics, as x-rays refract, scatter and absorb much more weakly from phase interfaces. Here, we present an overview of some recent developments in quantitative x-ray diagnostics for cavitating flows. Measurements were conducted at the Advanced Photon Source at Argonne National Laboratory, using a submerged plastic test nozzle.
2015-04-14
Technical Paper
2015-01-0267
Ryoichi Inada, Teppei Hirotsu, Yasushi Morita, Takahiro Hata
Abstract The ISO 26262 is a functional safety standard for road vehicles. The standard requires manufacturers to conduct quantitative assessment of the diagnostic coverage (DC) of products. The DC is defined as the percentage of failure probability covered by safety mechanisms. However, DC evaluation methods for drift faults, in which the change in element values is not constant, have not been discussed. In this paper, we propose a DC evaluation method for analog circuits with drift faults. With this method, we first parameterize the effect of drift faults onto a bounded region then split the region into safe fault, hazardous detectable fault, and hazardous undetectable fault regions. We evaluate the classification rate distribution by the area ratios of these regions.
2015-01-14
Technical Paper
2015-26-0013
Ashwini S. Athreya, Sreenath K R, Deepak Sharma
Abstract In the era where governmental agencies are perennially pushing automobile OEMs for reducing harmful emissions and customers looking for vehicles with better fuel economy values, it is imperative on the manufacturers to implement new technologies to appease them. Of the many new technologies, the most promising ones are the new control strategies/algorithms which predictively access the road condition, weather, traffic situations and help automobile to function in the most efficient mode. These control strategies/algorithms are termed as “Predictive technologies”. The most common way to assess the benefit of such new technologies is to simulate the vehicle behavior in conjunction with the existing complex control strategies of Hybrid vehicles in simulation environment.
2015-01-14
Technical Paper
2015-26-0239
Azeez Ahmed, Gopalakrishna Deshpande, Varghese Manu Varghese, Ramakrishnan Rangaswamy, Prakash Prashanth Ravi
Abstract The engine research and development has a significant contribution to meet the stringent emission norms and the changing global market demands. Leveraging the available virtual engineering methods to improve performance, velocity, quality and diminish the lead time is the key for any global brand to stay in the competition. It is the key element to reduce the research and development costs substantially by virtually developing the idea as it is conceived. Engine development test cells consist of expensive test and measurement systems which demand skilled labor and advanced equipment. Effective utilization of the test cells is essential to meet the scheduled project deadlines and cost targets. Engine Design process and tools when used effectively can increase the efficiency and lower the test cell operation costs substantially. This paper discusses the examples for this application in the area of engine installation, sensitive instrumentation/assembly.
2015-01-14
Journal Article
2015-26-0090
Federico Stola, Matteo De Cesare, Luca Lacchini, Nicolò Cavina, Sandeep Sohal
Abstract The Selective Catalytic Reduction (SCR) system installed on the exhaust line is currently widely used on Diesel heavy-duty trucks and it is considered a promising technique for light and medium duty trucks, large passenger cars and off-highway vehicles, to fulfill future emission legislation. Some vehicles of these last categories, equipped with SCR, have been already put on the market, not only in the US, where the emission legislation on Diesel vehicles is more restrictive, but also in Europe, demonstrating to be already compliant with the upcoming Euro 6. Moreover, new and more stringent emission regulations and homologation cycles are being proposed all over the world, with a consequent rapidly increasing interest for this technology. As a matter of fact, a physical model of the Diesel Exhaust Fluid (DEF) supply system is very useful, not only during the product development phase, but also for the implementation of the on-board real-time controller.
2015-01-14
Technical Paper
2015-26-0043
Rajesh Kashyap, Vamsidhar Sunkari, Prakash Verma
Abstract Regular service of the vehicle is to be done with high precision service equipment, to ensure the factory performance of the vehicle over the entire life of product usage. However, complex nature of the physical processes involved in the service of the vehicle subsystems makes it costly for optimizing the service equipment performance for entire range of operation. Air-conditioning service (ACS) equipment is one such product in the diagnostics domain which deals with compressible, transient and two phase flow in open loop systems. Development of control system for the service equipment to perform optimally over the entire operational range requires accurate mathematical model of the system under study. Application of mathematical model based approach requires calculation of geometrical details, environment information and fluid properties during the process for estimating the process behavior.
2014-11-11
Technical Paper
2014-32-0036
Jan Czerwinski, Markus Kurzwart, Andreas Mayer, Pierre Comte
Abstract The progressing exhaust gas legislation for on- and off-road vehicles includes gradually the nanoparticle count limits. The invisible nanoparticles from different emission sources penetrate like a gas into the living organisms and may cause several health hazards. The present paper shows some results of a modern chain saw with & without oxidation catalyst, with Alkylate fuel and with different lube oils. The measurements focused specially on particulate emissions. Particulates were analysed by means of gravimetry (PM) and granulometry SMPS (PN). In this way the reduction potentials with application of the best materials (fuel, lube oil, ox-cat.) were indicated. It has been shown that the particle mass (PM) and the particle numbers (PN), which both consisting almost exclusively of unburned lube-oil, can attain quite high values, but can be influenced by the lube oil quality and can be considerably reduced with an oxidation catalyst.
2014-11-11
Technical Paper
2014-32-0111
Brian Mason, Keith Lawes
Abstract For handheld power tools, a four-stroke engine allows compliance with exhaust emissions regulations although four-stroke engines available tend to have unfavorable power to weight. The requirement for a low cost diecast block compromises valve sizes and port flow. While dynamic valve train limitations restrict maximum engine speeds. The use of a rotary valve as opposed to poppet valves avoids these issues and results in an engine with competitive performance. The engine block can be diecast and the engine can operate up to 14,000 rpm without valve related issues. This paper describes the evolution of a rotary valve concept and its application to two 35cc handheld development engines. The HRCV35 is based on a belt driven rotary valve horizontally mounted parallel to the crankshaft axis. The VRCV35 is based on a gear driven rotary valve vertically mounted on the cylinder axis. In both configurations, the rotary valve exposes inlet and exhaust ports providing unrestricted flow.
2014-11-11
Technical Paper
2014-32-0115
Mikael Bergman, Magnus Bergwall, Thomas Elm, Sascha Louring, Lars Nielsen
Abstract Present two stroke engines used for hand held power tools must confirm to prevailing emission legislation. A fact is that today the engines have to be run at leaner air fuel setting resulting in less amount of lubrication oil passing through the engine. This lean mixture combined with high mixture trapping efficiency also affects the combustion, raising the overall working temperature of the engine. So to gain more robustness out of these air-cooled power heads one viable route is to use different coatings to take control of tribology and heat management within the two stroke power head. In this paper a first discussion and description of the different coatings and their merits to the air cooled two stroke engine is conducted. Furthermore engine data for the test engine, in this case a 70cc professional chainsaw are presented. The outcome of engine dyno testing of the different coatings are presented and analyzed for further discussion.
2014-11-11
Journal Article
2014-32-0009
Alexander Trattner, Helmut Grassberger, Oliver Schoegl, Stephan Schmidt, Roland Kirchberger, Helmut Eichlseder, Armin Kölmel, Stephan Meyer, Tim Gegg
Abstract One of the most significant current discussions worldwide is the anthropogenic climate change accompanying fossil fuel consumption. Sustainable development in all fields of combustion engines is required with the principal objective to enhance efficiency. This certainly concerns the field of hand-held power tools as well. Today, two-stroke SI engines equipped with a carburetor are the most widely used propulsion technology in hand-held power tools like chain saws and grass trimmers. To date, research tended to focus on two-stroke engines with rich mixture setting. In this paper the advantages and challenges of leaner and/or lean operation are discussed. Experimental investigations regarding the influence of equivalence ratio on emissions, fuel consumption and power have been performed. Accompanying 3D-CFD simulations support the experiments in order to gain insight into these complex processes. The investigations concentrate on two different mixture formation processes, i.e.
2014-10-13
Technical Paper
2014-01-2589
Chunshan Li, Guoying Chen, Changfu Zong
Abstract The passive fault-tolerant approach for four-wheel independently driven and steered (4WID/4WIS) electric vehicles has been investigated in this study. An adaptive control based passive fault-tolerant controller is designed to improve vehicle safety, performance and maneuverability when an actuator fault happens. The proposed fault tolerant control method consists of the following three parts: 1) a fault detection and diagnosis (FDD) module that monitors vehicle driving condition, detects and diagnoses actuator failures with the inequality constraints; 2) a motion controller that computes the generalized forces/moments to track the desired vehicle motion using Model Predictive Control (MPC); 3) a reconfigurable control allocator that redistributes the generalized forces/moments to four wheels with equality constrained optimization.
2014-09-30
Technical Paper
2014-01-2427
Giorgio Malaguti, Carlo Ferraresi, Luca Dariz, Massimiliano Ruggeri
Abstract Alongside with the increasing vehicle complexity, the functionalities related to the safety, diagnosis and maintainability have become critical. The operators of special machines such as agricultural, mining, construction vehicles might be overwhelmed by this increased complexity and, as a result, operations for the recovery or maintenance of their vehicles become difficult. The Augmented Reality (AR) seems to be a very promising technology both if applied to traditional smart-phones or to the upcoming glasses, that has been just presented to the market by several manufacturers. This paper reviews some use cases of applications created in Institute for Agricultural and Earthmoving Machines (IMAMOTER) of the National research Council of Italy (CNR) engineers laboratories, which propose a novel approach for assisted maintenance, recovery or training.
2014-09-30
Technical Paper
2014-36-0146
Tiago Stival, Claudia Regina de Andrade
Abstract Nowadays, the most common technologies used in the aircraft ice protection systems use indirect methods that identify atmospheric conditions prone to ice accretion, and not in fact the ice accretion over the surfaces, not measuring this accreted ice. On top of that, the ice protection systems are designed based on a certain flight phase considered the most critical for the system and its operation does not depend on the severity of the ice condition. Using direct methods for detecting the ice accretion on the protected areas and a control system based on the feedback of these sensors, it is possible to reduce the energetic consumption and measuring the ice accreted, optimize it, reducing the penalties for the propulsion system and the aircraft design.
2014-09-30
Technical Paper
2014-36-0244
Israel João Cancino Junior, Douglas Fazzolari
Abstract Normally the automaker uses a specific Engineering criteria for serviceability with minimum clearance specification. Due to Front Over Hang reduction (Figure 1) regarding to Emerging Markets countries and technology inside in the hood compartment, the H4 bulb serviceability is affected. This paper shows a solution that provides an easy service procedure reducing package and complete sealed connector system for an H4 head lamp bulb. Figure 1 Front over Hang Reduction.
2014-09-30
Technical Paper
2014-36-0230
Marcelo Vandresen, Diovani C. Lencina, Carolina P. Fernandes, Luana N. Silva, Lucas D. P. Feliciano, Humberto R. Cazangi
Abstract The compression springs of the valves of automotive engines are key elements in the dynamic behavior of the engine. Its wear is slow, gradual and progressive; so the driver of the vehicle eventually get used to the decrease in the engine performance. The compressive force losses cause the valves to close slower than expected and, consequently, the engines lose their efficiency. Professionals in the area of automotive maintenance apply empirical tests with varying criteria to evaluate and to determine the life cycle end at which the springs must be replaced. This article describes the development of a workbench for compression springs based on existing models on the market and the main premise is the low cost. Correspondent loads involved were determined and the components were modeled in CAD, allowing to develop a robust device able to handle the loads generated by the compression spring.
2014-09-30
Technical Paper
2014-36-0166
Carla K. Mauerberg Gerulaitis, Cleber Willian Gomes, Paulo Carpenito
Abstract This paper describes the strategy of lubricant oil service interval for commercial truck based on new engine technology (PROCONVE P7), the fleet owner's needs, vehicle typical application route, operational costs related to oil change, design of oil pan to adequate the oil volume and lubricant oil available technology. In result, this analysis shows the best annual operational cost for customer in terms of oil change.
2014-09-16
Technical Paper
2014-01-2161
Alireza R. Behbahani, Alex Von Moll, Robert Zeller, James Ordo
Abstract Modern propulsion system designers face challenges that require that aircraft and engine manufacturers improve performance as well as reduce the life-cycle cost (LCC). These improvements will require a more efficient, more reliable, and more advanced propulsion system. The concept of smart components is built around actively controlling the engine and the aircraft to operate optimally. Usage of smart components intelligently increases efficiency and system safety throughout the flight envelope, all while meeting environmental challenges. This approach requires an integration and optimization, both at the local level and the system level, to reduce cost. Interactions between the various subsystems must be understood through the use of modeling and simulation. This is accomplished by starting with individual subsystem models and combining them into a complete system model. Hierarchical, decentralized control reduces cost and risk by enabling integration and modularity.
2014-09-16
Technical Paper
2014-01-2132
Prashant Vadgaonkar, Ullas Janardhan, Adishesha Sivaramasastry
Abstract Performance of Avionics systems is dictated by the timely availability and usage of critical health parameters. Various sensors are extensively used to acquire and communicate the desired parameters. In today's scenario, sensors are hardwired. The number of sensors is growing due to automation which increases the accuracy of intended Aircraft functions. Sensors are distributed all over the Aircraft and they are connected through wired network for signal processing and communication. LRUs (Line Replaceable Unit) which are integrating various sensors also use a wired approach for communication. The use of a wired network approach poses challenges in terms of cable routing, stray capacitances, noise, mechanical structure and added weight to the structure. The weight of cables contributes significantly to the overall weight of the aircraft. As the weight of Aircraft increases, the required fuel quantity also increases. The Key driver for Airline operational cost is fuel.
2014-09-16
Technical Paper
2014-01-2164
Srikanth Gururajan, Mario Luca Fravolini, Matthew Rhudy, Antonio Moschitta, Marcello Napolitano
Abstract Recent catastrophic air crashes have shown that physical redundancy is not a foolproof option for failures on Air Data Systems (ADS) on an aircraft providing airspeed measurements. Since all the redundant sensors are subjected to the same environmental conditions in flight, a failure on one sensor could occur on the other sensors under certain conditions such as extreme weather; this class of failure is known in the literature as “common mode” failure. In this paper, different approaches to the problem of detection, identification and accommodation of failures on the Air Data System (ADS) of an aircraft are evaluated. This task can be divided into component tasks of equal criticality as Sensor Failure Detection and Identification (SFDI) and Sensor Failure Accommodation (SFA). Data from flight test experiments conducted using the WVU YF-22 unmanned research aircraft are used.
2014-09-16
Journal Article
2014-01-2144
Marco Amrhein, Jason Wells, Eric Walters, Seana McNeal, Brett Jordan, Peter Lamm
Abstract Transient operating conditions in electrical systems not only have significant impact on the operating behavior of individual components but indirectly affect system and component reliability and life. Specifically, transient loads can cause additional loss in the electrical conduction path consisting of windings, power electronic devices, distribution wires, etc., particularly when loads introduce high peak vs. average power ratios. The additional loss increases the operating temperatures and thermal cycling in the components, which is known to reduce their life and reliability. Further, mechanical stress caused by dynamic loading, which includes load torque cycling and high peak torque loading, increases material fatigue and thus reduces expected service life, particularly on rotating components (shaft, bearings).
2014-05-10
Journal Article
2014-01-9121
Robert E Smith, Edward Lumsdaine
Since transient vehicle HVAC computational fluids (CFD) simulations take too long to solve in a production environment, the goal of this project is to automatically create a lumped-parameter flow network from a steady-state CFD that solves nearly instantaneously. The data mining algorithm k-means is implemented to automatically discover flow features and form the network (a reduced order model). The lumped-parameter network is implemented in the commercial thermal solver MuSES to then run as a fully transient simulation. Using this network a “localized heat transfer coefficient” is shown to be an improvement over existing techniques. Also, it was found that the use of the clustering created a new flow visualization technique. Finally, fixing clusters near equipment newly demonstrates a capability to track localized temperatures near specific objects (such as equipment in vehicles).
2014-05-09
Journal Article
2014-01-9025
John O. Manyala
The emergence of tougher environmental legislations and ever increasing demand for increased ride comfort, fuel efficiency, and low emissions have triggered exploration and advances towards more efficient vehicle gearbox technologies. The growing complexity and spatial distribution of such a mechatronic gearbox demands precise timing and coordination of the embedded electronics, integrated sensors and actuators as well as excellent overall reliability. The increased gearbox distributed systems have seen an increased dependence on sensors for feedback control, predominantly relying on hardware redundancy for faults diagnosis. However, the conventional hardware redundancy has disadvantages due to increased costs, weight, volume, power requirements and failure rates. This paper presents a virtual position sensor-based Fault Detection, Isolation and Accommodation (FDIA), which generates an analytical redundancy for comparison against the actual sensor output.
2014-05-09
Journal Article
2014-01-9022
John O. Manyala, Todd W. Fritz
Electro-hydraulic actuated systems are widely used in industrial applications due to high torque density, higher speeds and wide bandwidth operation. However, the complexities and the parametric uncertainties of the hydraulic actuated systems pose challenges in establishing analytical mathematical models. Unlike electro-mechanical and pneumatic systems, the nonlinear dynamics due to dead band, hysteresis, nonlinear pressure flow relations, leakages and friction affects the pressure sensitivity and flow gain by altering the system's transient response, which can introduce asymmetric oscillatory behavior and a lag in the system response. The parametric uncertainties make it imperative to have condition monitoring with in-built diagnostics capability. Timely faults detection and isolation can help mitigate catastrophic failures. This paper presents a signal-based fault diagnostic scheme for a gearbox hydraulic actuator leakage detection using the wavelet transform.
2014-04-28
Technical Paper
2014-28-0011
Santosh Bhoomaraddi
Abstract The influence of embedded optical fibre on the strength and stiffness of flexurally loaded composite laminate is studied in this paper. In a given structure, different loads create a complex state of stresses in the structure. In-situ structural health monitoring of composite structures could be achieved by using embedded optical fiber as sensors. Modern OFS (Optical Fibre Sensors) are suitable for the measurement of temperature, pressure, strain, angular rotation, speed, acceleration, curvature, flow, refractive index, and many other parameters. The strength and fracture behaviour of the structure could be significantly affected by improper alignment and placement of optical fibres in the laminate. The utilization of embedded optical fibres for damage detection is accurate and reliable if the interaction between the optical fibre and the delamination is known.
2014-04-01
Technical Paper
2014-01-0291
Gopal Athani, Prasad Yerraguntla, Anand Gajaraj, Kapil Dongare
Abstract Micro Hybrid Systems are a premier approach for improving fuel efficiency and reducing emissions, by improving the efficiency of electrical energy generation, storage, distribution and consumption, yet with lower costs associated with development and implementation. However, significant efforts are required while implementing micro hybrid systems, arising out of components like Intelligent Battery Sensor (IBS). IBS provides battery measurements and battery status, and in addition mission critical diagnostic data on a communication line to micro hybrid controller. However, this set of data from IBS is not available instantly after its initialization, as it enters into a lengthy learning phase, where it learns the battery parameters, before it gives the required data on the communication line. This learning period spans from 3 to 8 hours, until the IBS is fully functional and is capable of supporting the system functionalities.
2014-04-01
Journal Article
2014-01-1479
Antonino La Rocca, Gianluca Di Liberto, Paul Shayler, Christopher Parmenter, Mike Fay
The determination of size distribution of soot particles and agglomerates in oil samples using a Nanosight LM14 to perform Nanoparticle Tracking Analysis (NTA) is described. This is the first application of the technique to sizing soot-in-oil agglomerates and offers the advantages of relatively high rates of sample analysis and low cost compared to Transmission Electron Microscopy (TEM). Lubricating oil samples were drawn from the sump of automotive diesel engines run under a mix of light duty operating conditions. The oil samples were diluted with heptane before analysing. Results from NTA analysis were compared with the outputs of a more conventional analysis based on Dynamic Light Scattering (DLS). This work shows that soot-in-oil exists as agglomerates with average size of 115 nm. This is also in good agreement with TEM analysis carried out in a previous work. NTA can measure soot particles in polydisperse oil solutions and report the size distribution of soot-in-oil aggregates.
2014-04-01
Technical Paper
2014-01-0278
Olof Lindgarde, Rune Prytz
Abstract This paper presents an approach to fault detection and isolation that is based on off-board 1D simulation tools such as GT-power or AVL Boost. The proposed method enables engineers to develop diagnostic functions early on in a development project. The proposed algorithm is evaluated based on measurements from the air path system of the new Volvo FH truck. The results are encouraging. The paper discusses pros and cons of the method and concludes that it has clear potential to be used for on-board diagnostics.
Viewing 121 to 150 of 4781