Criteria

Display:

Results

Viewing 271 to 15 of 15
2011-04-12
Technical Paper
2011-01-0521
Landon Onyebueke, Akindeji Ojetola, Edward Winkler
This paper presents a PC based mathematical and rapid prototyping technique for anthropometric accommodation in a maintenance environment using the principle of simulation based design. The developed technique is capable of analyzing anthropometric data using multivariate (Principal component Analysis) approach to describe the body size variability of any given population. A number of body size representative cases are established which, when used properly within the constraints of the maintenance environments, will ensure the accommodation of a desired percentage of a population. This technique evaluates the percentage accommodation of a given population for the environment using the specific manikin cases as boundary conditions. In the case where any member of a maintenance crew cannot be accommodated, the technique has the capability of informing the designer of the environment why the member(s) is/are not accommodated.
2011-04-12
Technical Paper
2011-01-0749
Kallappa Pattada, Satnam Singh, Pulak Bandyopadhyay
This paper presents an interactive, fault model-based prototype diagnostic tool that will assist service technicians in isolating the root cause of vehicle problems and performing corrective repairs. Current automotive service procedures are driven primarily by static service manuals that inform technicians on the service steps in case a specific diagnostic trouble code (DTC) is set in a vehicle. Although comprehensive, these service procedures usually require technicians to gather and integrate diagnostic information from several sources, such as DTCs, customer complaints and manual test results. This can lead to increased repair time and labor costs. The fault model-based interactive service procedure tool discussed in this paper will guide the technician to isolate the fault and provide him/her with recommendations for the correct repair actions. The tool uses a fault model, built using service procedures information, historical repair data and engineering inputs.
2011-04-12
Technical Paper
2011-01-0750
John Cardillo
Most people still remember the introduction of the IBM PC in 1981 and the first Microsoft Windows operating system in 1985. These were the pioneering technologies that started a revolution in automotive test equipment in the service bay. What was once a purely mechanical garage environment where information was published annually in large paper manuals has evolved into a highly technical computing environment. Today vehicle networks link onboard vehicle control systems with diagnostic systems and updated service information is published daily over the Internet. A lot has changed over the last twenty years, and manufacturers of diagnostic test equipment are learning to deal with the constantly evolving computing platforms and host operating systems. This paper traces the history of automotive diagnostic equipment at Ford Motor Company and shares some of the hard lessons learned from the early systems.
2011-04-12
Technical Paper
2011-01-0747
Sergey Kirillov, Aleksander Kirillov Sr, Olga Kirillova
This paper introduces architecture of an integrated system of preventive diagnostics and mathematical and computational methods, based on which such a system is being developed. The present work aims to: describe the methods of preventive diagnostics based on mathematical models and computing algorithms, allowing to detect the hidden harbingers of engine dysfunctions and future failures; describe the architecture of the system of preventive diagnostics, its further evolution; describe the process of integration of preventive diagnostics system to the car engine. A necessary condition for the development system of preventive diagnosis is the condition of their economic efficiency, including the requirement of low cost sensors and computing systems of diagnostics.
2011-04-12
Journal Article
2011-01-0728
Amandeep Singh, Zissimos Mourelatos, Efstratios Nikolaidis
Reliability is an important engineering requirement for consistently delivering acceptable product performance through time. As time progresses, the product may fail due to time-dependent operating conditions and material properties, component degradation, etc. The reliability degradation with time may increase the lifecycle cost due to potential warranty costs, repairs and loss of market share. Reliability is the probability that the system will perform its intended function successfully for a specified time interval. In this work, we consider the first-passage reliability which accounts for the first time failure of non-repairable systems. Methods are available in the literature, which provide an upper bound to the true reliability which may overestimate the true value considerably. Monte-Carlo simulations are accurate but computationally expensive.
2011-04-12
Journal Article
2011-01-0725
Zissimos Mourelatos, Jing Li, Vijitashwa Pandey, Amandeep Singh, Matthew Castanier, David A. Lamb
Understanding reliability is critical in design, maintenance and durability analysis of engineering systems. A reliability simulation methodology is presented in this paper for vehicle fleets using limited data. The method can be used to estimate the reliability of non-repairable as well as repairable systems. It can optimally allocate, based on a target system reliability, individual component reliabilities using a multi-objective optimization algorithm. The algorithm establishes a Pareto front that can be used for optimal tradeoff between reliability and the associated cost. The method uses Monte Carlo simulation to estimate the system failure rate and reliability as a function of time. The probability density functions (PDF) of the time between failures for all components of the system are estimated using either limited data or a user-supplied MTBF (mean time between failures) and its coefficient of variation.
2011-04-12
Journal Article
2011-01-0726
Dan Ghiocel, Dan Negrut, David A. Lamb, David Gorsich
This research paper addresses the ground vehicle reliability prediction process based on a new integrated reliability prediction framework. The integrated stochastic framework combines the computational physics-based predictions with experimental testing information for assessing vehicle reliability. The integrated reliability prediction approach incorporates the following computational steps: i) simulation of stochastic operational environment, ii) vehicle multi-body dynamics analysis, iii) stress prediction in subsystems and components, iv) stochastic progressive damage analysis, and v) component life prediction, including the effects of maintenance and, finally, iv) reliability prediction at component and system level. To solve efficiently and accurately the challenges coming from large-size computational mechanics models and high-dimensional stochastic spaces, a HPC simulation-based approach to the reliability problem was implemented.
2011-04-12
Journal Article
2011-01-0965
Mandar Hazare, Paul J Th Venhovens
The U.S. NHTSA has established the FMVSS 126 standard that requires all vehicles sold in the U.S. to include an ESC system as standard equipment after September 1 st , 2011. There is growing concern among aftermarket suppliers specialized in development and installation of vehicle performance parts that chassis modifications may cause the ESC systems to be inoperative or can create unforeseen issues with stability and safety systems. This industry is in need of a process to support the development and validation of chassis modification. The authors propose the implementation of SIL and HIL simulations as a solution to the problem statement. Based on the results of a sensitivity analysis, guidelines for safe aftermarket modifications will be presented.
2011-04-12
Technical Paper
2011-01-0008
Sunghyun Kim, Hyungil Kim, Dongseok Kim, Youngjn Cho
The insurance rating has been differentiated in grades according to cost of repair for damaged vehicles and has been an important consideration point for customers when buying a new vehicle. The RCAR (Research Council for Automobile Repairs) has evaluated low speed damageability and reparability of cars. Vehicle manufacturers have tried to reduce the repair cost by designing vehicles with the intent to minimize damage sustained in low speed crash. Repair costs can be reduced by isolating damage through energy absorption structures or damaged structures and components repair or replace easily, quickly and cost effectively. This paper demonstrates an idea to achieve a reduction in repair cost and improve damageability and reparability of the structure and components.
2010-10-25
Technical Paper
2010-01-2246
Kevin R. Sholes, Kiyotaka Shouji, Tomohiro Chaya, Jay B. Jeffries, Jason M. Porter, Sung Hyun Pyun, Ronald K. Hanson
Simultaneous crank-angle-resolved measurements of gasoline vapor concentration, gas temperature, and liquid fuel droplet scattering were made with three-color infrared absorption in a direct-injection spark-ignition engine with premium gasoline. The infrared light was coupled into and out of the cylinder using fiber optics incorporated into a modified spark plug, allowing measurement at a location adjacent to the spark plug electrode. Two mid-infrared (mid-IR) laser wavelengths were simultaneously produced by difference-frequency-generation in periodically poled lithium niobate (PPLN) using one signal and two pump lasers operating in the near-infrared (near-IR). A portion of the near-IR signal laser residual provided a simultaneous third, non-resonant, wavelength for liquid droplet detection. This non-resonant signal was used to subtract the influence of droplet scattering from the resonant mid-IR signals to obtain vapor absorption signals in the presence of droplet extinction.
2010-10-25
Journal Article
2010-01-2254
Russell P. Fitzgerald, Richard R. Steeper
An infrared laser absorption technique has been developed to measure in-cylinder concentrations of CO in an optical, automotive HCCI engine. The diagnostic employs a distributed-feedback, tunable diode laser selected to emit light at the R15 line of the first overtone of CO near 2.3 μm. The collimated laser beam makes multiple passes through the cylinder to increase its path length and its sampling volume. High-frequency modulation of the laser output (wavelength modulation spectroscopy) further enhances the signal-to-noise ratio and detection limits of CO. The diagnostic has been tested in the motored and fired engine, exhibiting better than 200-ppm sensitivity for 50-cycle ensemble-average values of CO concentration with 1-ms time resolution. Fired results demonstrate the ability of the diagnostic to quantify CO production during negative valve overlap (NVO) for a range of fueling conditions.
2010-10-25
Journal Article
2010-01-2251
Jay B. Jeffries, Jason M. Porter, Sung Hung Pyun, Ronald K. Hanson, Kevin R. Sholes, Kiyotaka Shouji, Tomohiro Chaya
Simultaneous crank-angle-resolved measurements of gasoline concentration and gas temperature were made with two-color mid-infrared (mid-IR) laser absorption in a production spark-ignition engine (Nissan MR20DE, 2.0L, 4 cyl, MPI with premium gasoline). The mid-IR light was coupled into and out of the cylinder using fiber optics incorporated into a modified spark plug. The absorption line-of-sight was a 5.3 mm optical path located closely adjacent to the ignition spark providing spatially resolved absorption. Two sensor wavelengths were selected in the strong bands associated with the carbon-hydrogen (C-H) stretching vibration near 3.4 μm, which have an absorption ratio that is strongly temperature dependent. Fuel concentration and temperature were determined simultaneously from the absorption at these two wavelengths.
2010-10-25
Technical Paper
2010-01-2262
Cinzia Tornatore, Simona Merola, Paolo Sementa
Nowadays an elevated number of two, three and four wheels vehicles circulating in the world-wide urban areas is equipped with Port Fuel Injection Spark Ignition (PFI SI) engines. Their technological level is high, but a further optimization is still possible, especially at low engine speed and high load. To this purpose, the scientific community is now focused on deepening the understanding of thermo fluid dynamic phenomena that takes place in this kind of engine: the final purpose is to find key points for the reduction in engine specific fuel consumption and exhaust emissions without a decrease in performance. In this work, the combustion process was investigated in an optically accessible single cylinder PFI SI engine. It was equipped with the head, injection device and exhaust line of a commercial small engine for two-wheel vehicles, it had the same geometrical characteristics in terms of bore, stroke and compression ratio.
2010-10-25
Journal Article
2010-01-2253
Rik Baert, Arno Klaassen, Erik Doosje
Existing gasoline DI injection equipment has been modified to generate single hole pulsed gas jets. Injection experiments have been performed at combinations of 3 different pressure ratios (2 of which supercritical) respectively 3 different hole geometries (i.e. length to diameter ratios). Injection was into a pressure chamber with optical access. Injection pressures and injector hole geometry were selected to be representative of current and near-future DI natural gas engines. Each injector hole design has been characterized by measuring its discharge coefficient for different Re-levels. Transient jets produced by these injectors have been visualized using planar laser sheet Mie scattering (PLMS). For this the injected gas was seeded with small oil droplets. The corresponding flow field was measured using particle image velocimetry (PIV) laser diagnostics.
2010-10-19
Technical Paper
2010-01-2314
Niall T. Berkery
Abstract Connectivity, software and services are the key elements that will define the next-generation vehicle experience. Drivers are being provided new innovative solutions that seamlessly integrate their online digital lifestyle into their vehicle environment, enabling automakers increased opportunity for brand differentiation, while giving drivers the ability to personalize their vehicles down to an individual level. This will be accomplished through “virtual accessorization” - where drivers will personalize their connected vehicle experience by choosing applications and services that best suit their individual needs. After selecting applications from an online automotive apps exchange, the apps are sent wirelessly to the car or the driver's smartphone for immediate use. The in-vehicle apps can also be configured based on who is driving, so that preferences and personal functionality moves with each driver.
2010-10-06
Technical Paper
2010-36-0346
Cleber Willian Gomes, Armando A. M. Lagana, Gustavo Oioli de Campos, Carlos Alberto Moraes
Internal combustion engine calibration teaching by Stand Alone System. This paper illustrates a teaching methodology for technical students of internal combustion engine calibration, by stand alone engine control unit with variable ignition and fuel injection time. Using a system named HIS (Stand alone Electronic Control Unit), to change the engine parameters, as fuel injection time and ignition time, the students can optimize fuel consumption, performance and exhaust emission. The tests are developed using the DOE (design of experiments) technique of artificial intelligence.
2010-10-06
Technical Paper
2010-36-0307
Joel da Concei\acao Junior, Sergio Luis da Silva
Product development process (PDP) is a strategic element for organization's success, linking the market to the company. In spite of this, manufacturing can be considered as PDP's first customer, with requirements and constraints in order to maximize new product fabrication efficiency. In a wide range of manufacturing elements, production systems availability is critical for operation performance. To this end, companies have invested resources on Total Productive Maintenance (TPM) implementation, in which its main purpose consists in policies, practices and activities to improve efficiency through manufacturing system life cycle management approach. However, some TPM concepts have not been investigated accurately yet, one of them is to explore how to integrate TPM into PDP through a structured method.
2010-10-05
Technical Paper
2010-01-2016
Mohamed Khalil
In this paper the study is directed to a condition-based predictive maintenance concept as an alternative policy to determine a fleet's health, for increasing the fleet availability and to reduce the operating cost. The concept is based on predicting the system degradation by using an expert system. Therefore, the decision-maker can calculate the remaining lifetime for any mechanical system. These calculations help the decision-maker in making a repair or replacement decision in a suitable time. An application is presented herein on the cylinder kit components (piston, piston rings and liner) to illustrate the effectiveness of this technique. The results indicate that knowing the wear between the cylinder kit components in automotive engines is very important to plan the maintenance for making the repair or replacement decision in a suitable time.
2010-10-05
Technical Paper
2010-01-2011
Carsten John
Geometric product representations are of gaining importance in product manufacturing industries. Several case studies yield that the utilization of three-dimensional digital product data in the product development chain has given many manufacturing companies a big advantage in business competition. The field of application for 3D technology is versatile and its further implementation still proceeds along product delivery processes. Leveraging 3D graphics in service information creation processes like the creation of manual illustrations or service instruction imagery is currently a big topic at many companies. E. g. the utilization of animated 3D product representations for explanation of service tasks becomes possible due to the recent advances in computer hardware more and more popular.
2010-10-05
Technical Paper
2010-01-2015
Saurabh Singh, Narayan Jadhav, Kamaljeet Nandkeolyar, Shirish Pandav, Pankaj Sali
The automotive sector is going through a phase of stiff competition among various Original Equipment Manufacturers for increasing their profitability while ensuring highest levels of customer satisfaction. The biggest challenge for such companies lies in minimizing their overall cost involving investments in Research and Development, manufacturing, after sales service and warranty costs. Higher warranty costs not only affect the net profit but in turn it also affects the brand image of the company to a large extent in the long run. An effort is made here to target such warranty costs due to frequent tail pinion and hub seal leakages on single reduction/hub reduction axles of Heavy Commercial Vehicles in the field. A preliminary study involving the severity analysis of such failures is followed by a step by step investigation of these failures.
2010-10-05
Technical Paper
2010-01-2014
Chris Merkle, Lisa Kennedy
Manufacturers have engineered high voltage batteries and highly efficient electric motors that have been combined with an internal combustion engine (ICE) or in some cases, replaced the engine altogether. While this advancement is beneficial in many ways, service technicians are faced with new challenges in servicing high voltage vehicle systems. Although highly trained in many areas, today's automotive and commercial vehicle service technicians traditionally have not been trained to work with high voltage (HV). To ensure proper and safe HV service, information and training is critical. This paper will highlight some typical safety precautions and service procedures directed by manufacturers, such as the use of high voltage insulation gloves, proper tools needed and the practices of performing HV disabling procedures including zero voltage checks.
2010-10-05
Technical Paper
2010-01-2013
Marius-Dorin Surcel, Jan Michaelsen, Jean-Sebastien Foisy
The experience with the implementation of IV-ITS (In-vehicle Intelligent Transportation Systems, also know as EOBR or electronic onboard recorders) type tools and services in previous projects showed that there is an opportunity to standardize an infrastructure that would increase a project's rate of success. As such, a project that defined, streamlined and standardized a tech transfer approach to IV-ITS products and services was initiated. Therefore, the objective of the project was to develop a standard procedure based on technology transfer best practices and defining the steps and actions required to increase the rate of success and the optimization of the implementation of IV-ITS products and services. A literature review was conducted to identify technology transfer and implementation best practices and to assist in defining a survey for measuring the success of the implementation of participants in IV-ITS implementation projects.
2010-10-05
Technical Paper
2010-01-2012
Arnold Taube, Matthew Cappel, Vincent Boens
Light-weight, tessellated surface models are increasingly used in marketing websites and electronic documents as well as in electronic training materials and service information documents. While these models are effective in developing consumer interest and communicating information, without implementing adequate Intellectual Property Protection (IPP) they also provide valuable geometry to miscreants wanting to reverse engineer a product and/or its component parts. Geometry Distortion is an excellent component of a layered IPP Plan for implementation when publishing 3-D models. However, how much distortion is needed to provide adequate IPP? Too much distortion detracts from their appearance while too little does not sufficiently complicate reverse engineering analysis. This paper describes a practical process for determining rational geometry distortion values that provide adequate IPP.
2010-05-05
Technical Paper
2010-01-1508
Romain Demory, Cyril Crua, Morgan Heikal
The research presented here aims at providing a deeper understanding of the formation of nitric oxide in diesel combustion. To this end, in-cylinder distributions of nitric oxide (NO) were acquired by laser-induced fluorescence (LIF) in a rapid compression machine at conditions representative of a modern diesel passenger vehicle. In particular, the effects of injection and in-cylinder pressure on NO formation were investigated temporally and spatially to offer new insight into the formation of NO. Excitation and collection strategies were notably fine-tuned to avoid the collection of spurious signal due to oxygen (O₂) fluorescence. NO fluorescence was first recorded slightly after the onset of the diffusion flame and until late in the expansion stroke. The early low levels of NO were located on the lean side of the high density of hydroxyl radicals (OH).
2010-04-12
Journal Article
2010-01-0343
Russell P. Fitzgerald, Richard Steeper, Jordan Snyder, Ronald Hanson, Randy Hessel
Fuel injection during negative valve overlap offers a promising method of controlling HCCI combustion, but sorting out the thermal and chemical effects of NVO fueling requires knowledge of temperatures throughout the cycle. Computing bulk temperatures throughout closed portions of the cycle is relatively straightforward using an equation of state, once a temperature at one crank angle is established. Unfortunately, computing charge temperatures at intake valve closing for NVO operation is complicated by a large, unknown fraction of residual gases at unknown temperature. To address the problem, we model blowdown and recompression during exhaust valve opening and closing events, allowing us to estimate in-cylinder charge temperatures based on exhaust-port measurements. This algorithm permits subsequent calculation of crank-angle-resolved bulk temperatures and residual gas fraction over a wide range of NVO operation.
2010-04-12
Technical Paper
2010-01-0344
Xiao Ma, Xu He, Jian-Xin Wang, Shi-Jin Shuai
A method to design a feasible multi-component fuel for fuel concentration measurements by using PLIF was developed based on thermal gravity (TG) analysis and vapor-liquid equilibrium (VLE) calculations. Acetone, toluene, and 1,2,4-trimethylbenzene were respectively chosen as tracers for the light, medium, and heavy components of gasoline. A five-component test fuel was designed for LIF measurement, which contains n -pentane (light), isooctane, n -octane (medium), n -nonane and n -decane (heavy). The TG analysis and VLE calculation were used to ensure that the fuel had volatility similar to real gasoline and that all the tracers had a good coevaporation ratio. The fully optimized results of the six-component fuel and the disadvantages of this case are discussed. The results indicated that optimization based on the six-component fuel, which included C4 compounds such as n -butane, controlled acetone's coevaporation ratio.
2010-04-12
Journal Article
2010-01-0342
Louis-Marie Malbec, Gilles Bruneaux
The air entrainment of multi-hole diesel injection is investigated by high speed Particle Image Velocimetry (PIV) using a multi-hole common rail injector with an injection pressure of 100 MPa. The sprays are observed in a high pressure, high temperature cell that reproduces the thermodynamic conditions which exist in the combustion chamber of a diesel engine during injection. Typical ambient temperature of 800K and ambient density of 25 kg/m3 are chosen. The air entrainment is studied with the PIV technique, giving access to the velocity fields in the surrounding air and/or in the interior of two neighboring jets. High acquisition rate of 5000 Hz, corresponding to 200 μs between two consecutive image pairs is obtained by a high-speed camera coupled with a high-speed Nd:YLF laser. The effect of neighboring jets interaction is studied by comparing four injectors with different numbers of holes (4, 6, 8 and 12) with similar static mass flow rate per hole.
2010-04-12
Technical Paper
2010-01-0169
Mark N. Subramaniam, Henning Kleeberg, Anamitra Bhattacharyya, Nick Chomic, Dean Tomazic
In a gasoline engine, the cycle-by-cycle fresh trapped charge, and corresponding unswept residual gas fraction (RGF) are critical parameters of interest for maintaining the desired air-fuel ratio (AFR). Accurate fueling is a key precursor to improved engine fuel economy, and reduced engine out emissions. Asymmetric flow paths to cylinders in certain engines can cause differences in the gas exchange process, which in turn cause imbalances in trapped fresh charge and RGF. Variable cam timing (VCT) can make the gas exchange process even more complex. Due to the reasons stated above, simplified models can result in significant estimation errors for fresh trapped charge and RGF if they are not gas dynamics-based or detailed enough to handle features such as variable valve timing, duration, or lift. In this paper, a new air flow and RGF measurement tool is introduced.
2010-04-12
Technical Paper
2010-01-0168
Ornella Chiavola, Giancarlo Chiatti, Luigi Arnone, Stefano Manelli
This paper presents the results of an experimental analysis on a multi-cylinder diesel engine, in which in-cylinder pressure and accelerometer transducers are used with the purpose of developing and setting up a methodology able to monitor and optimize the combustion behavior by means of non-intrusive measurements. Previously published results have demonstrated the direct relationship existing between in-cylinder pressure and engine block vibration signals, as well as the sensitivity of the engine surface vibration to variation of injection parameters when the accelerometer is placed in sensitive location of the engine block. Moreover, the accelerometer trace has revealed to be able to locate in the crank-angle domain important phenomena characterizing the combustion process (the start of pre-mixed combustion, the crank angle value corresponding to the beginning of diffusive combustion and to the in-cylinder pressure maximum value).
2010-04-12
Technical Paper
2010-01-0167
Gerard W. Malaczynski, Robert Van der Poel
Certain harmonics of angular crankshaft velocity are indicative of engine imbalance induced by cylinder misfire. Application of the Digital Fourier Transformation (DFT) facilitates the production-feasible calculation of a singular index in the frequency domain indicative either of smooth engine operation or misfire. The phase of that particular index with proper interpretation directly points to a misfiring cylinder. The identification of a misfiring pair, either opposing or a non-opposing in the cylinder bank, requires a bit more sophisticated approach since the phase response of the characteristic index in the frequency domain becomes more complex. The method demonstrated here was successfully applied in real time in four-, six-, and eight-cylinder engines, both SI and Diesel, for the On-Board Diagnostic application with reliability exceeding relevant regulatory requirements.
Viewing 271 to 15 of 15