Display:

Results

Viewing 211 to 240 of 7639
2015-06-15
Technical Paper
2015-01-2137
Daniel R. Adriaansen, Paul Prestopnik, George McCabe, Marcia Politovich
Abstract Advancements in numerical weather prediction (NWP) models continue to enhance the quality of in-flight icing forecasts and diagnoses. When diagnosing current in-flight icing conditions, observational datasets are combined with NWP model output to form a more accurate representation of those conditions. Surface observations are heavily relied upon to identify cloud coverage and cloud base height above observing stations. One of the major challenges of using these point-based or otherwise limited observations of cloud properties is extending the influence of the observation to nearby points on the model grid. An alternate solution to the current method for incorporating these point-based observations into the in-flight icing diagnoses was developed. The basis for the new method is rooted in a concept borrowed from signal and image processing known as dithering.
2015-06-15
Technical Paper
2015-01-2135
Martin Schulz, Michael Sinapius
Abstract A designer of a new mechanical ice protection system for airplanes needs to know how much and in which way he has to deform the surface to break off the ice. The ice adhesion strength is often used as a design value. Several methods have been published to measure the adhesive strength of ice. This paper analyzes the interface stresses created by those methods and discusses the way the adhesion strength is derived. A finite element method tool is used to provide insight into the stress state for different load cases. The implication of these illustrations is that equations which use only ultimate force and total interfacial area to calculate adhesion strength miss local stress concentrations and crack nucleation. Hence, the derived adhesion strength may not be comparable within different testing methods, because each testing procedure neglects different parameters like specimen size, substrate thickness and stiffness.
2015-06-15
Technical Paper
2015-01-2160
Alidad Amirfazli
Abstract The surfaces that shed drops helps with mitigation of icing. Shedding of drop depends on surface hydrophobicity, which becomes affected when exposed to water and/or UV. The hydrophobicity degradation of six (Spray SHS, Etched Al SHS, Hydrobead, Neverwet, Waterbeader, and WX2100) different super-hydrophobic surfaces (SHS), exposed to water or UV, were studied from the drop shedding perspective. Two methods were adopted for the hydrophobicity analysis. Among them, one is to study the contact angles (CA) and contact angle hysteresis (CAH) change at static state (i.e., no airflow) compared to the untreated surface. The other one is to analyze the change in critical air velocity (Uc) for a given drop exposed to airflow, on water/UV treated surfaces at room temperature (22 °C) and icing conditions (−1 and −7 °C).
2015-06-15
Technical Paper
2015-01-2093
Maxime Henno
Abstract Advanced sizing of the thermal wing ice protection system (WIPS) requires an improved and a robust manner to simulate the system operation in unsteady phases and particularly in de-icing operations. A two dimensional numerical tool has been developed to enable the simulation of unsteady anti-icing and de-icing operations. For example, the WIPS may be activated with delay after entering into the icing conditions. In this case, ice starts to accrete on the leading edge before the WIPS heats up the skin. Another example is the ground activation of the WIPS for several seconds to check its functionality: low external cooling may cause high thermal constraints that must be estimated with accuracy to avoid adverse effects on the structure. Thermal de-icing WIPS integrated in composite structures intrinsically have unsteady behaviors; the tool enables the computation of the skin temperature evolution with the time.
2015-06-15
Technical Paper
2015-01-2158
Tatsuma Hyugaji, Shigeo Kimura, Haruka Endo, Mitsugu Hasegawa, Hirotaka Sakaue, Katsuaki Morita, Yoichi Yamagishi, Nadine Rehfeld, Benoit Berton, Francesc Diaz, Tarou Tanaka
Coating has been recently considered as having good potential for use in preventing in-cloud icing on the leading edge of the lifting surfaces of an aircraft in cold climates. In terms of wettability, a coat may exhibit hydrophobicity or hydrophilicity depending on its specific properties. The same applies to the ice adhesion strength, which may be either high or low. It is thus necessary to determine which type of anti-icing or de-icing coat would be appropriate for a particular application in order to fully utilize its specific properties. Notwithstanding, a coat is incapable of preventing ice accretion by itself, and a perfect icephobic coat is yet to be developed. Coating is also sometimes applied to the surfaces of electrical heaters and load-applying machines to enable them to function more effectively and use less energy. The coating used for an electric heater, for instance, should be hydrophobic because of the need for rapid removal of molten water from the surface.
2015-06-15
Technical Paper
2015-01-2157
Mengyao Leng, Shinan Chang, Yuanyuan Zhao
Abstract Aircraft icing causes a great threaten to flight safety. With the development of anti-icing or de-icing systems for aircraft, some attention has been paid on coating strategies for an efficient way to prevent water remaining on the surface. By application of hydrophobic or super-hydrophobic coatings, characterized by low surface adhesion, shedding of liquid from the surface can be enhanced. The motivation behind this work is to identify the way that wettability affects the motion of runback water, and establish an empirical formula of critical departure diameter. The surface property is characterized by the equilibrium contact angle and the hysteresis angle. The relationship between the air speed and the droplet shedding diameter is studied, corresponding to different surfaces.
2015-06-15
Technical Paper
2015-01-2149
Caroline Laforte, Caroline Blackburn, Jean Perron
Abstract This paper depicts icephobic coating performances of 274 different coatings, including 11 grease-type coatings, which were tested over the past 10 years in various research projects at the Anti-Icing Materials International Laboratory (AMIL). Icephobic performance is evaluated using two comparative test methods. The first method, the ice Centrifuge Adhesion Test (CAT), measures the force required to separate the accreted ice from the coating (e.g. adhesive failure). The test involves simultaneously icing, under supercooled precipitation, the extremity of bare reference and freshly coated aluminum samples. The ice adhesion shear stress is calculated from the ice detachment rotation speed. The results are reported as Adhesion Reduction Factor (ARF), which is the ice adhesion stress on the bare aluminum reference samples divided by the ice adhesion stress on the coated samples.
2015-06-15
Technical Paper
2015-01-2159
Philipp Grimmer, Swarupini Ganesan, Michael Haupt, Jakob Barz, Christian Oehr, Thomas Hirth
Abstract As known de-icing methods use a high amount of energy or environmentally harmful chemicals, research has focused lately on passive de-icing by functional surfaces with an improved removal of ice (de-icing) or a reduced formation of it (anti-icing). Inspired by the Lotus plant leaf, a “superhydrophobic” surface can be produced by the combination of a hierarchical micro/nanoscale roughness and a hydrophobic surface coating. By a hot stamping process we have generated differently shaped microstructures (cylinders, ellipses) on polyurethane (PU) films which were afterwards coated by a plasma enhanced chemical vapor deposition (PECVD) process with thin, hydrophobic fluorocarbon films. This combination of methods could be a process for the production of large area functionalized films. PU films are suitable for outdoor use, because they are resistant against erosion and UV radiation. The films can be glued to different geometries and can easily be exchanged if damaged.
2015-06-12
Standard
AIR6258
This document is intended to describe technologies available, application needs, and operational requirements relating to the use of fiber optic sensing systems on aerospace platforms: a. To define standard terminology used in describing fiber optic sensing systems and their performance. b. To identify current interfaces used for fiber optic sensing systems. c. To define environmental, reliability, and maintainability capabilities of fiber optic sensing system components. d. To describe the fiber optic sensor and instrumentation technologies that forms the current state of the art. e. To describe current and future unmet needs of the aerospace industry for measurements using fiber optic sensors.
2015-06-08
Standard
AIR1558B
This Aerospace Information Report (AIR) discusses damage to aircraft caused by ground equipment contact and suggests methods of protecting against that damage.
2015-05-20
Book
This is the electronic format of the Journal.
2015-05-07
WIP Standard
ARP1202B
This Aerospace Recommenced Practice (ARP) defines a series of ball bearings which are specifically designed to support the rotor in a dynamic balancing machine. By establishing certain bearing sizes the number of required balancing machine support adapters will be reduced. The intent is that each size bearing identified by its outside diameter and width will be capable of accommodating any bore diameter within the specified range of that size. This ARP specifies both the nominal dimensions and the tolerances for a series of ball bearings with semifinished inside diameters which are suitable for supporting gas turbine rotating components in dynamic balancing machines.
2015-05-07
WIP Standard
ARP1340B
This document specifies those requirements and procedures for periodic tests to insure maintenance of balance machine capabilities for balancing jet engine components.
2015-05-07
Standard
J2842_201505
The intent of this standard is to establish a framework to assure that all evaporators for R-744, R-1234yf, and R-445A mobile air conditioning (MAC) systems meet appropriate testing and labeling requirements. SAE J639 requires vehicle manufacturers to perform assessments to minimize reasonable risks in production MAC systems. The evaporator (as designed and manufactured) shall be part of that risk assessment and it is the responsibility of the vehicle manufacturer to assure all relevant aspects of the evaporator are included. It is the responsibility of all vehicle or evaporator manufacturers to comply with the standards of this document at a minimum. (Substitution of specific test procedures by vehicle manufactures that correlate well to field return data is acceptable.) As appropriate, this standard can be used as a guide to support risk assessments.
2015-05-06
WIP Standard
AMS1385B
This specification covers a solvent-based compound in the form of a liquid. This compound has been used typically for removal of carbonaceous soils and paint from aircraft turbine engine parts by immersion in liquid at elevated temperature, but usage is not limited to such applications. This compound should not be used on steel parts having hardness of 40 HRC or over.
2015-05-06
WIP Standard
AMS2631E
This specification covers the procedure for ultrasonic inspection of wrought titanium and titanium alloy products 0.25 inch (6.4 mm) and over in cross-section (thickness) or diameter.
2015-05-01
WIP Standard
AIR4827B
This SAE Aerospace Information Report (AIR) has been written for individuals associated with ground level testing of turbofan and turbojet engines and particularly for those who might be interested in investigating the performance characteristics of a new test cell design or of proposed modifications to an existing test cell by means of a scale model test.
2015-04-28
WIP Standard
AIR6892
This SAE Aerospace Information Report (AIR) is applicable to rotorcraft structural health monitoring (SHM) applications, both commercial and military, where end users are seeking guidance on the definition, development, integration, qualification, and certification of SHM technologies to achieve enhanced safety and reduced maintenance burden based on the lessons learned from existing Health and Usage Monitoring Systems (HUMS). While guidance on SHM business case analysis would be useful to the community, such guidance is beyond the scope of this AIR. For the purpose of this document, SHM is defined as “the process of acquiring and analyzing data from on-board sensors to evaluate the health of a structure.” The suite of on-board sensors could include any presently installed aircraft sensors as well as new sensors to be defined in the future. Interrogation of the sensors could be done onboard during flight or using ground support equipment.
2015-04-19
WIP Standard
J1115
Historically SAE has been concerned with nomenclature as an integral part of the standards development process. Guidelines for automotive nomenclature were written in 1916, were last revised in 1941, and were included in the SAE Handbook until 1962. The present diversity of groups working on nomenclature in the various ground vehicle committees led to the organization of the Nomenclature Advisory Committee under SAE Automotive Council.
2015-04-19
WIP Standard
J2740
This Technical Information Report defines the General Motors UART Serial Data Communications Bus, commonly referred to as GM UART. This document should be used in conjunction with SAE J2534-2 in order to fully implement GM UART in an SAE J2534 interface. SAE J2534-1 includes requirements for an interface that can be used to program certain emission-related Electronic Control Units (ECU) as required by U.S. regulations, and SAE J2534-2 defines enhanced functionality required to program additional ECUs not mandated by current U.S. regulations. The purpose of this document is to specify the requirements necessary to implement GM UART in an aftermarket SAE J2534 interface intended for use by independent automotive service facilities to program GM UART ECUs in General Motors vehicles.
2015-04-16
Book
Robert J. Flemming
The effects of inflight atmospheric icing can be devastating to aircraft. Universities and industry have been hard at work to respond to the challenge of maintaining flight safety in all weather conditions. Proposed changes in the regulations for operation in icing conditions are sure to keep this type of research and development at its highest level. This is especially true for the effects of ice crystals in the atmosphere, and for the threat associated with supercooled large drop (SLD) icing. This collection of ten SAE International technical papers brings together vital contributions to the subject. Icing on aircraft surfaces would not be a problem if a material were discovered that prevented the freezing and accretion of supercooled drops. Many options that appeared to have promising icephobic properties have had serious shortfalls in durability.
2015-04-15
Book
“Spotlight on Design” features video interviews and case study segments, focusing on the latest technology breakthroughs. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. In the episode “Diagnostics and Prognostics: Proactive Maintenance and Failure Prevention” (21:04), Delphi engineers explain how they leverage the growing number of sensors and computing power in vehicles to diagnose and proactively solve emerging mechanical or electronic problems, before a breakdown occurs. This video also looks at the next generation of automotive telematics, with HEM Data demonstrating how in-vehicle data acquisition is used to monitor the inner workings of vehicles.
2015-04-15
Book
“Spotlight on Design: Insight” features an in-depth look at the latest technology breakthroughs impacting mobility. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. Telematics, the convergence of telecommunications and informatics, uses electronic and computer technology built in to the vehicle to provide vehicle tracking, satellite navigation, wireless technology, and diagnostic information. In the episode “Diagnostics and Prognostics: Telematics Deep Dive” (8:09), an engineer from Delphi’s Telematics program discusses the advantages and challenges of telematics devices for the automotive industry, demonstrates the installation of an aftermarket telematics device, and shows how telematics can enhance diagnostics and preventative maintenance.
2015-04-14
Collection
Model Validation and Verification invite papers that deal with the theoretical and/or applied aspects of one or more of the following representative topics: model development, model correlation/calibration, model verification, model validation, uncertainty quantification, uncertainty propagation, validation metrics, predictive capability assessment, etc.
2015-04-14
Technical Paper
2015-01-0439
Daniel B. Kosinski
Abstract The current reliability growth planning model used by the US Army, the Planning Model for Projection Methodology (PM2), is insufficient for the needs of the Army. This paper will detail the limitations of PM2 that cause Army programs to develop reliability growth plans that incorporate unrealistic assumptions and often demand that infeasible levels of reliability be achieved. In addition to this, another reliability growth planning model being developed to address some of these limitations, the Bayesian Continuous Planning Model (BCPM), will be discussed along with its own limitations. This paper will also cover a third reliability growth planning model that is being developed which incorporates the advantageous features of PM2 and BCPM but replaces the unrealistic assumptions with more realistic and customizable ones.
2015-04-14
Technical Paper
2015-01-0487
Lev Klyatis
Abstract This paper will discuss the problem with successful predicting of product performance (reliability, quality, durability, safety, recalls, profit, life cycle cost, and other interconnected technical and economic components of performance). The best component for analysing the performance situation during service life, including predicting, is recalls, because, first, recall accumulates the safety, reliability, durability, quality, profit, and total economic situation. And second, there is open official and objective information about the number of recalls from Government (National Highway Trafic Safety Administration and others), as well as companies-producers. Therefore, for analyzing the situation with the product performance, including predicting, this paper considers the situation with recalls.
2015-04-14
Technical Paper
2015-01-0486
Jamshid Mohammadi, Mehdi Modares
Abstract Performance data offers a powerful tool for system condition assessment and health monitoring. In most applications, a host of various types of sensors is employed and data on key parameters (describing the system performance) is compiled for further analysis and evaluation. In ensuring the adequacy of the data acquisition process, two important questions arise: (1) is the complied data robust and reasonable in representing the system parameters; and (2) is the duration of data acquisition adequate to capture a favorable percentage (say for example 90%) of the critical values of a given system parameter? The issue related to the robustness and reasonableness of data can be addressed through known values for key parameters of the system. This is the information that is not often available.
2015-04-14
Technical Paper
2015-01-0498
Matt Gynn, Jamie Steele
Abstract This study explores the process changes and challenges encountered during the transition from physical to virtual automotive maintenance and service operations. The confirmation process was reworked significantly, while the final evaluation and reporting process was able to be maintained. Problems were encountered with the organization of the digital part data, the increase in workload of virtual simulations over physical checks, and the limitations of current simulation and virtual reality (VR) technologies. Ideas for future enhancements of product lifecycle management (PLM) and simulation systems are explored.
2015-04-14
Technical Paper
2015-01-0926
Tianyun Li, Min Xu, David Hung, Shengqi Wu, Siqi Cheng
Abstract Comparing with port-fuel-injection (PFI) engine, the fuel sprays in spark-ignition direct-injection (SIDI) engines play more important roles since they significantly influence the combustion stability, engine efficiency as well as emission formations. In order to design higher efficiency and cleaner engines, further research is needed to understand and optimize the fuel spray atomization and vaporization. This paper investigates the atomization and evaporation of n-pentane, gasoline and surrogate fuels sprays under realistic SIDI engine conditions. An optical diagnostic technique combining high-speed Mie scattering and Schlieren imaging has been applied to study the characteristics of liquid and vapor phases inside a constant volume chamber under various operating conditions. The effects of ambient temperature, fuel temperature, and fuel type on spray atomization and vaporization are analyzed by quantitative comparisons of spray characteristics.
Viewing 211 to 240 of 7639

Filter