Display:

Results

Viewing 1 to 30 of 7369
Book
2014-10-27
Ian K. Jennions
Integrated Vehicle Health Management: Implementation and Lessons Learned is the fourth title in the IVHM series published by SAE International. This new book introduces a variety of case studies, lessons learned, and insights on what it really means to develop, implement, or manage an integrated system of systems. Integrated Vehicle Health Management: Implementation and Lessons Learned brings to the reader a wide set of hands-on stories, made possible by the contribution of twenty-three authors, who agreed to share their experience and wisdom on how new technologies are developed and put to work. This effort was again coordinated by Dr. Ian K. Jennions, Director of the IVHM Centre at Cranfield University (UK), and editor of the previous books in the series. Integrated Vehicle Health Management: Implementation and Lessons Learned, with seventeen, fully illustrated chapters, covers diverse areas of expertise such as the impact of trust, human factors, and evidential integrity in system development.
Technical Paper
2014-10-13
Chunshan Li, Guoying Chen, Changfu Zong
This paper presents a fault-tolerant control (FTC) approach for four-wheel independently driven and steered (4WID/4WIS) electric vehicles. An adaptive control-based passive fault-tolerant controller is designed to improve vehicle safety, performance and maneuverability when an actuator fault happens. The proposed fault tolerant control method consists of the following three parts: 1) a fault detection and diagnosis (FDD) module that monitors vehicle driving condition, detects and diagnoses actuator failures with the inequality constraints ; 2) a motion controller that computes the generalized forces/moments to track the desired vehicle motion using Model Predictive Control (MPC); 3) a reconfigurable control allocator that redistributes the generalized forces/moments to four wheels with equality constrained optimization. The FTC approach is based on the reconfigurable control allocation which reallocates the generalized forces/moments among healthy actuators once the actuator failures is detected.
Technical Paper
2014-09-30
Giorgio Malaguti, Carlo Ferraresi, Luca Dariz, Massimiliano Ruggeri
Abstract Alongside with the increasing vehicle complexity, the functionalities related to the safety, diagnosis and maintainability have become critical. The operators of special machines such as agricultural, mining, construction vehicles might be overwhelmed by this increased complexity and, as a result, operations for the recovery or maintenance of their vehicles become difficult. The Augmented Reality (AR) seems to be a very promising technology both if applied to traditional smart-phones or to the upcoming glasses, that has been just presented to the market by several manufacturers. This paper reviews some use cases of applications created in Institute for Agricultural and Earthmoving Machines (IMAMOTER) of the National research Council of Italy (CNR) engineers laboratories, which propose a novel approach for assisted maintenance, recovery or training. These take advantage of the use of AR, providing an efficient method for user fast learning of simple procedures as well as a support for fault recovery and maintenance in hazardous environments or work places.
WIP Standard
2014-09-17
This SAE Standard applies to dyes intended to be introduced into a mobile air-conditioning system refrigerant circuit for the purpose of allowing the application of ultraviolet leak detection. In order to label any product(s) they shall meet SAE J2297, and the certification process as described in SAE J2911 must be followed and the documentation described in the appendix shall be submitted to SAE.
Technical Paper
2014-09-16
Prashant Vadgaonkar, Ullas Janardhan, Adishesha Sivaramasastry
Abstract Performance of Avionics systems is dictated by the timely availability and usage of critical health parameters. Various sensors are extensively used to acquire and communicate the desired parameters. In today's scenario, sensors are hardwired. The number of sensors is growing due to automation which increases the accuracy of intended Aircraft functions. Sensors are distributed all over the Aircraft and they are connected through wired network for signal processing and communication. LRUs (Line Replaceable Unit) which are integrating various sensors also use a wired approach for communication. The use of a wired network approach poses challenges in terms of cable routing, stray capacitances, noise, mechanical structure and added weight to the structure. The weight of cables contributes significantly to the overall weight of the aircraft. As the weight of Aircraft increases, the required fuel quantity also increases. The Key driver for Airline operational cost is fuel. Fuel quantity is a direct function of weight.
Technical Paper
2014-09-16
Marco Amrhein, Jason Wells, Eric Walters, Seana McNeal, Brett Jordan, Peter Lamm
Abstract Transient operating conditions in electrical systems not only have significant impact on the operating behavior of individual components but indirectly affect system and component reliability and life. Specifically, transient loads can cause additional loss in the electrical conduction path consisting of windings, power electronic devices, distribution wires, etc., particularly when loads introduce high peak vs. average power ratios. The additional loss increases the operating temperatures and thermal cycling in the components, which is known to reduce their life and reliability. Further, mechanical stress caused by dynamic loading, which includes load torque cycling and high peak torque loading, increases material fatigue and thus reduces expected service life, particularly on rotating components (shaft, bearings). This article investigates the aforementioned stress mechanisms and provides analysis techniques and metrics to quantify the impact of transient operating conditions onto system and component reliability and life.
Technical Paper
2014-09-16
Srikanth Gururajan, Mario Luca Fravolini, Matthew Rhudy, Antonio Moschitta, Marcello Napolitano
Abstract Recent catastrophic air crashes have shown that physical redundancy is not a foolproof option for failures on Air Data Systems (ADS) on an aircraft providing airspeed measurements. Since all the redundant sensors are subjected to the same environmental conditions in flight, a failure on one sensor could occur on the other sensors under certain conditions such as extreme weather; this class of failure is known in the literature as “common mode” failure. In this paper, different approaches to the problem of detection, identification and accommodation of failures on the Air Data System (ADS) of an aircraft are evaluated. This task can be divided into component tasks of equal criticality as Sensor Failure Detection and Identification (SFDI) and Sensor Failure Accommodation (SFA). Data from flight test experiments conducted using the WVU YF-22 unmanned research aircraft are used. Analytical redundancy is provided through a least squares modeling based approach and an extended Kalman filter approach to handle the Sensor Failure Accommodation (SFA) task.
Technical Paper
2014-09-16
Alireza R. Behbahani, Alex Von Moll, Robert Zeller, James Ordo
Abstract Modern propulsion system designers face challenges that require that aircraft and engine manufacturers improve performance as well as reduce the life-cycle cost (LCC). These improvements will require a more efficient, more reliable, and more advanced propulsion system. The concept of smart components is built around actively controlling the engine and the aircraft to operate optimally. Usage of smart components intelligently increases efficiency and system safety throughout the flight envelope, all while meeting environmental challenges. This approach requires an integration and optimization, both at the local level and the system level, to reduce cost. Interactions between the various subsystems must be understood through the use of modeling and simulation. This is accomplished by starting with individual subsystem models and combining them into a complete system model. Hierarchical, decentralized control reduces cost and risk by enabling integration and modularity. This process involves defining, developing, and validating against requirements for key integrated propulsion, power, and thermal management system capabilities.
Standard
2014-09-05
This equipment specification covers requirements for Multi-Tasking Equipment (MTE) for airfield snow removal purposes. The unit shall include a combination of a carrier vehicle, snow plow, rotary broom and high velocity air blast system. This vehicle as a unit shall be an integrated snow plow, rotary broom and high velocity air blast. Primary application is for the high-speed plowing, sweeping and cleaning of ice and snow from airfield operational areas such as runways, taxiways and ramp aprons. The term carrier vehicle represents the various self-propelled prime movers that provide the motive power necessary to move snow and ice control equipment during winter operations. The airport operator may require this specified piece of equipment in order to maintain the airfield during large and small snow events. When necessary, the MTE shall be a central and critical element in the winter pavement maintenance fleet in the effort to accomplish the airport’s published snow plan. This ARP defines the minimum functionality for a vehicle to be classified as an MTE, specifically as an integrated snow and ice removal system capable of performing multiple and simultaneous functions requiring no more than one operator.
Standard
2014-09-05
This specification covers natural sand in granular form. This sand has been used typically to improve the frictional properties of runway, taxiway, and ramp surfaces for aircraft braking purposes, but usage is not limited to such applications.
WIP Standard
2014-08-18
This SAE Standard is intended to be used as a guide for manufacturers and users of general purpose industrial machines to provide a reasonable degree of protection for personnel during normal operation and servicing. This document excludes skid steers which are covered by SAE J1388. Avoidance of accidents also depends upon the care exercised by such persons (see SAE J153). Inclusion of this standard instate, federal, or any laws or regulations where flexibility of revision is lacking is discouraged.
Standard
2014-08-11
SAE J1979 / ISO 15031-5 set includes the communication between the vehicle's OBD systems and test equipment implemented across vehicles within the scope of the legislated emissions-related OBD.
WIP Standard
2014-08-06
This standard provides the testing and functional requirements guidance necessary for a leak detection device that uses any non-A/C refrigerant tracer gas, such as helium or a nitrogen-hydrogen blend, to provide functional performance equivalent to a refrigerant electronic leak detector. It explains how a non- refrigerant leak detector’s calibration can be established to provide levels of detection equal to electronic leak detectors that meet SAE J2791 for R-134a and SAE J2913 for R-1234yf.
Standard
2014-08-05
This Digital Annex (DA) contains the current, full-PDF version of ARP5149B, Training Program Guidelines for Deicing/Anti-Icing of Aircraft on Ground, as well as .jpeg format files of Appendix D, Application Guidelines Configuration, Critical Component, and Spray Area Diagrams for Aircraft. The .jpeg diagram files may be used by purchasers in accordance with the terms of the included license agreement.
WIP Standard
2014-08-01
This document outlines a standard practice for conducting system safety. The system safety practice as defined herein provides a consistent means of evaluating identified risks. Mishap risk must be identified, evaluated, and mitigated to a level as low as reasonably practicable. The mishap risk must be accepted by the appropriate authority and comply with federal (and state, where applicable) laws and regulations, executive orders, treaties, and agreements. Program trade studies associated with mitigating mishap risk must consider total life cycle cost in any decision.

This document is intended for use as one of the elements of project solicitation for complex systems requiring a systematic evaluation of safety hazards and mitigating measures. The Managing authority may identify, in the solicitation and system specification, specific system safety engineering requirements to be met by the Developer. These may include risk assessment and acceptance criteria, unique classifications and certifications, or mishap reduction needs unique to their program.

Standard
2014-07-29
This SAE Aerospace Information Report (AIR) describes the design approaches used for current applications of aircraft Brake-by-Wire (BBW) control systems. The document also discusses the experience gained during service, and covers system, ergonomic, hardware, and development aspects. The document includes the lessons that have been learned during application of the technology. Although there are a variety of approaches that have been used in the design of BBW systems, the main focus of this document is on the current state of the art systems.
Standard
2014-07-24
This SAE Recommended Practice applies to the use of generally available leak detection methods to service motor vehicle passenger compartment air conditioning systems.
WIP Standard
2014-07-22
A program, which ensures quality with the relevant standards shall be introduced for all on-line Stations where de-icing/anti-icing of aircraft on the ground is either normally carried out, or where local conditions may periodically lead to a requirement for airplcraft to be de-iced/anti-iced. Deficiencies, in regard to a Station's local de-icing/anti-icing procedures, shall be identified and subsequently actioned through this program, thereby ensuring that the required safety standards are maintained.
Standard
2014-07-22
This AS describes a standard method for viscosity measurements of thickened (AMS1428) anti-icing fluids. Fluid manufacturers may publish alternate methods for their fluids. In case of conflicting results between the two methods, the manufacturer method takes precedence. To compare viscosities, exactly the same measurement elements (including spindle and container size) must have been used to obtain those viscosities.
WIP Standard
2014-07-22
This standard defines the requirements for fully replacing undesirable surface finishes using solder dip. Requirements for qualifying and testing the refinished piece parts are also included. This standard covers the replacement of pure tin and Pb-free tin alloy finishes with SnPb finishes. This dipping is different from dipping to within some distance of the body for the purposes of solderability; solder dipping for purposes other than full replacement of pure tin and other Pb-free tin alloy finishes are beyond the scope of this document. It covers process and testing requirements for robotic and semi-automatic dipping process but does not cover purely manual dipping processes, due to the lack of understanding of the appropriate requirements for hand-dipping for tin whisker mitigation at this time. This standard does not apply to piece-part manufacturers who build piece parts with a hot solder dip finish. It applies to refinishing performed by any other group, including a third party supplier, production facilities at the supplier and other organizations, whenever the intent of the dipping is to have full coverage and replacement of Pb-free tin.
Standard
2014-07-11
This specification covers minimum design and test requirements for aircraft tire inflation-deflation equipment for use on all types of aircraft. It shall be the responsibility of the airframe manufacturer to determine the compatibility of the requirement with the applicable aircraft and to specify requirements in excess of these minimums as necessary.
Standard
2014-07-07
This ARP provides insights on how to perform a cost benefit analysis (CBA) to determine the return on investment that would result from implementing an integrated Health Management (HM) system on an air vehicle. The word “integrated” refers to the combination or “roll up” of sub-systems health management tools to create a platform centric system. The document describes the complexity of features that can be considered in the analysis, the different tools and approaches for conducting a CBA and differentiates between military and commercial applications. This document is intended to help those who might not necessarily have a deep technical understanding or familiarity with HM systems but want to either quantify or understand the economic benefits (i.e., the value proposition) that a HM system could provide. Prognostics is a capability within some HM systems that provides an estimation of remaining useful life (RUL) or time to failure and so Prognostic Health Management (PHM) is used where this predictive element exists.
Standard
2014-07-07
This SAE Aerospace Information Report (AIR) is intended to be used as a process verification guide for evaluating implementation of key factors in repair of metal bond parts or assemblies in a repair shop environment. This guide is to be used in conjunction with a regulatory approved and substantiated repair, and is intended to promote consistency and reliability.
WIP Standard
2014-07-01
The federal government and industry have moved to concurrent acquisition and development processes using integrated process teams (IPTs). These processes are supported by timely, accurate, cross functional access to data within an integrated data environment (IDE) enabled by advances in information technology (IT). Since the advent of acquisition reform in 1994, Data Management (DM) practices have evolved from being directed by a prescriptive set of standards and procedures to use of the guidance in a principles-based standard -- ANSI/EIA 859.

GEIA Handbook 859 provides implementation guidance for ANSI/EIA 859, with discussions of applications of the standard's principles, tools, examples, and case studies. Handbook 859 is organized according to the lifecycle of data management and covers activities from the pre-RFP stage through records disposition. It also provides annexes on topics which apply at multiple stages in the lifecycle, such as protection of data, continuous improvement and knowledge management.

Standard
2014-06-26
This SAE Recommended Practice defines, for vehicle manufacturers and collision information and equipment providers, the types of vehicle dimensional data needed by the collision repair industry and aftermarket equipment modifiers to properly perform high-quality repairs to damaged vehicles. Both bodyframe and unitized vehicles, including passenger cars and light trucks, are addressed.
WIP Standard
2014-06-26
On-Board Diagnostic (OBD) regulations require passenger cars, and light and medium duty trucks, to support communication of a minimum set of diagnostic information to off-board “generic” test equipment. This document specifies the diagnostic data which may be required to be supported by motor vehicles and external test equipment for diagnostic purposes which pertain to motor vehicle emission-related data. SAE J1979 was originally developed to meet U.S. OBD requirements for 1996 and later model year vehicles. ISO 15031 5 was based on SAE J1979 and was intended to combine the U.S. requirements with European OBD requirements for 2000 and later model year vehicles.
Standard
2014-06-24
This SAE Aerospace Standard (AS) provides requirements for design and installation of aircraft jacking pad adapters and the mating jack socket interface to permit use of standard jacking equipment to be used in civil and military transport aircraft. The adapter defined herein shall be the key interface between the aircraft and the aircraft jack(s).
Standard
2014-06-24
This document establishes the minimum requirements for an environmental test chamber, and test procedures to carry out anti-icing performance tests according to the current materials specification for aircraft deicing/anti-icing fluids. The primary purpose for such a test method is to determine the anti icing endurance under controlled laboratory conditions of AMS1424 Type I and AMS1428 Type II, III, and IV fluids.
WIP Standard
2014-06-24
This document discusses, in broad general terms, typical present instrumentation practice for post-overhaul gas turbine engine testing. Production engine testing and engine development work are outside the scope of this document as they will typically use many more channels of instrumentation, and in most cases will have requirements for measurements that are never made in post-overhaul testing, such as fan airflow measurements, or strain measurements on compressor blades. The specifications for each parameter to be measured, in terms of measurement range and measurement accuracy, are established by the engine manufacturers. Each test cell instrument system should meet or exceed those requirements. Furthermore, each instrument system should be recalibrated regularly, to ensure that it is still performing correctly.
Viewing 1 to 30 of 7369

Filter

  • Article
    171
  • Book
    46
  • Collection
    14
  • Magazine
    309
  • Technical Paper
    4638
  • Standard
    2191
  • Article
    2191