Criteria

Display:

Results

Viewing 1 to 30 of 4756
2016-09-27
Technical Paper
2016-01-2091
Raul Cano, Oscar Ibanez de Garayo, Miguel Angel Castillo, Ricardo Marin, Hector Ascorbe, Jose Ramon de los Santos
In the last years, Aeronautical Industry has made a significant effort for the automation of different manufacturing tasks. One of the most important is the drilling process of material stacks prior to the installation of rivets, due the great advantages of progressing from manual to automatic operation. In particular, the robotic drilling for manufacturing medium-size subassemblies allows not only to improve productivity and efficiency of the process, but also to reduce repetitive tasks for the operator, usually performed under poorly ergonomic conditions. For this purpose, some solutions based on industrial robots with highly sensorized end-effectors have been already explored. Nevertheless, these proposals are frequently lack of technological maturity or imply an investment difficult to recover.
2016-09-27
Technical Paper
2016-01-2101
Burak Deger, Fazli Melemez, Aykut Kibar lng
A hybrid drilling process of multi material stacks with one shot drilling recently emerge as an economical and time efficient method in aerospace industry. Even though the comprehensive experience and knowledge is available for the cutting parameters of composites and metals alone, significant gap exist for the hybrid drilling parameters. Determination of these parameters such as feed rate, spindle speed and pecking depth has vital importance so as to provide a robust and optimal process to ensure dimensionally high quality, burr and delamination free holes. Main challenge of hybrid drilling operation is to obtain required hole diameter with adequate homogeneity and repeatability. In this study, effect of cutting parameters on dimensional hole quality was investigated. In addition to the hole diameter tolerances, CFRP hole enlargement phenomena which is encountered as a specific drawback of metal-exit stack configurations is also addressed within the scope of this study.
2016-09-27
Technical Paper
2016-01-2102
André Baumann
Broetje-Automation has developed a new production organization for the A320neo Pylon assembly. The main goal of this turnkey solution was to reduce the lead time of the assembly phase and the use of lean principles. The assembly line consist of several manual working stations as well as a fully automated drilling cell. The different processes, machines and tools are directly connected to a comprehensive overhead conveyor and a line management system.
2016-09-27
Technical Paper
2016-01-2104
Robert Flynn, Kevin Payton-Stewart, Patrick Brewer, Ryan W. Davidge
The customer’s assembly philosophy demanded a fully integrated flexible pulse line for their Final Assembly Line to assemble their new business jets. Major challenges included the material handling system, developing capable positioners and implementing an automated metrology system. Crane based material handling presents certain collision and handover risks and also present a logistics challenge as cranes become overworked. Automated guided vehicles can be used to move large parts such as wings, but the resulting sweep path becomes a major operational limitation. The customer did not like the trade-offs for either of these approaches. A unique lifting system (ATLAS) based on in-floor rails was developed to offer a solution that provides highly controlled, low risk and accurate moves that allow workers and tools to remain in the assembly area.
2016-09-27
Technical Paper
2016-01-2077
Fatih Burak Sahin, Hans-Juergen Borchers, Cagatay Ucar
Owing to high strength to weight ratio CFRP composite materials has been widely use in aerospace industries. However drilling CFRP laminates is difficult owing to the highly abrasive nature of the carbon fibers and low thermal conductivity of CFRP. Therefore for the manufacturers it is a challenge to drill CFRP materials without causing any delamination within the high quality requirements while also considering the costs of the process. This paper will discuss the process of drilling CFRP-Al stack ups within tight tolerances using a seven axis drilling robot. All components required for drilling are integrated in the drill end-effector. The pressure foot is extended in order to clamp the work piece, and then holes are drilled. The drilling process has four steps as moving to fast approach level, controlled drill feed, countersink depth reached and lift the drill. This paper will discuss the process of drilling CFRP-Al stack ups within tight tolerances using a Robot.
2016-09-27
Technical Paper
2016-01-2082
Ralf Schomaker, Björn Knickrehm, Juergen Langediers
In a commercial aircraft there are in general two pressurised zones: the cabin and the cargo hold. In the event of rapid decompression in one zone, air pressure equilibrium must be realised quickly in order to prevent severe structural damage since the airframe is typically not designed to sustain pressure difference loads across these zones and may collapse. The state of the art response to this problem in the commercial aircraft world are so called blow-in/blow-out panels in the cargo hold ceiling and partition walls to ensure the equalisation of air pressure between passenger and cargo area in case of abovementioned event. However, there are a number of drawbacks with this design such as manufacturing complexity, weight and cost of the panels and cargo & cabin substructure. In the frame of incremental product improvement, AIRBUS has developed and implemented a new innovative decompression concept that can be acquired by Airliners.
2016-09-27
Technical Paper
2016-01-2093
Rainer Mueller, Matthias Vette, Ortwin Mailahn
Many assembly processes, particularly in the manufacture of aircraft components, are still carried out by humans manually. In addition to rationalization aspects, high quality requirements, non-ergonomic activities, the lack of well-qualified workers etc. may require the use of automation technology. Through novel possibilities of human-robot-cooperation these challenges can be met through a skills-based division of labor. Tasks are assigned to humans and robots in a way that the respective strengths can be used most efficiently. This article presents, how assembly processes can get empowered for human-robot-cooperation, using a specific work description for humans and robots, an assembly priority chart and suitable robot programs, to prepare for a skills-based task assignment. In the area of formerly exclusively manual assembly, the operations for the assembly of the product must first be described in detail.
2016-09-27
Technical Paper
2016-01-2106
Dan R.W. Vaughan, Otto J. Bakker, David Branson, Svetan Ratchev
Aircraft manufacturers desire to increase production to keep up with anticipated demand. To achieve this, the aerospace industry requires a significant increase in the manufacturing and assembly performance to reach the required output levels. This work therefore introduces the Variation Aware Assembly (VAA) concept and identifies its suitability for implementation into aircraft wing assembly processes. The VAA system concept focuses on achieving assemblies towards the nominal dimensions, as opposed to traditional tooling methods that aim to achieve assemblies anywhere within the tolerance band. It enables control of the variation found in Key Characteristics (KC), which will allow for an increase in the assembly quality and product performance. The concept consists of utilizing metrology data from sources both before and during the assembly process, to precisely position parts using motion controllers.
2016-09-27
Technical Paper
2016-01-2109
Michael Morgan, Caroline McClory, Colm Higgins, Yan Jin, Adrian Murphy
Aerospace structures are typically joined to form larger assemblies using screw lock or swage lock fasteners or rivets. Countersunk fasteners are used widely in the aerospace industry on flying surfaces to reduce excrescence drag and increase aircraft performance. Typically these fasteners are installed to a nominal countersink value which leaves them flush to the surface before being locked into position. The Northern Ireland Technology Centre at Queen’s University Belfast has developed and demonstrated two processes which enable high flushness fastening of countersunk fasteners. The ‘Flush Install’ process produces countersunk holes based on the specific geometry of each individual fastener. The ‘Fettle Flush’ process accurately machines fasteners to match the surrounding surface. Flushness values well within the allowable tolerances have been demonstrated for both Flush Install and Fettle Flush processes.
2016-09-27
Technical Paper
2016-01-2107
Rainer Mueller, Matthias Vette, Matthias Scholer, Jan Ball
The global competition challenges aircraft manufactures in high wage countries. The assembly of large components is distinguished by fixed position assembly. Many complex assembly processes such as in the aircraft assembly are manually done by high experienced workers. The aircraft manufacturers deal with a varying number of items, growing product variants and an increase of requirements for their products. During the assembly process hundreds of clips, ties and stringers as well as thousands of rivets must be assembled. An important aspect is the maintenance of a high productivity and ensuring the competitiveness and the existence of manufacturing companies in Germany. To achieve a reduction of cycle times with a simultaneous increase in quality, supportive assistance systems for visual support and for the documentation and organization within the assembly are required. One example for visual assistance systems are laser projection systems.
2016-09-27
Technical Paper
2016-01-2120
David Judt, Kevin Forster, Helen Lockett, Craig Lawson, Philip Webb
In the civil aircraft industry there is a continuous drive to increase the production aircraft rate, particularly for single aisle aircraft where there is a large backlog of orders. One of the bottlenecks is the wing assembly process which is largely manual due to the complexity of the task and the limited accessibility. The presented work describes a general wing build approach for both structure and systems equipping operations. A modified build philosophy is then proposed, concerned with large component pre-equipping, such as skins, spars or ribs. The approach benefits from an offloading of the systems equipping phase and allowing for higher flexibility to organize the pre-equipping stations as separate entities from the overall production line. Its application is presented in the context of an industrial project focused on selecting feasible system candidates for a fixed wing design, based on assembly consideration risks for tooling, interference and access.
2016-09-27
Technical Paper
2016-01-2127
Sylvain Guerin, Sylvain da Costa
Contribution of 3D printing in tooling and portable tools Application case for a Smart Driller The recent contribution rise in 3D printing is rapidly changing the whole industry. In aeronautics, it has 2 major domains of growth: • Aircraft parts • Tooling and portable tools Aircraft parts in metallic 3D printing have been highly publicized in the media, although they represent only a tiny share of the aircraft cell in the short term. On the other hand, metallic (and non-metallic) 3D printing in tooling and tools bring immediate advantages compared to traditional methods. The advantages • Design made directly from the final function • Optimized for strength vs weight • Weight reduction • Reduction in parts number • Short cycle time from design to use • Low cost for customization The drawbacks • Limited in size We have already applied this new manufacturing technique to obtain real breakthroughs in portable tools.
2016-09-27
Technical Paper
2016-01-2108
Marc Fette, Kim Schwake, Jens Wulfsberg, Frank Neuhaus, Manila Brandt
The rising demand for civil aircraft leads to the development of flexible and adaptive production systems in aviation industry. Due to economic efficiency, operational accuracy and high performance these manufacturing and assembly systems must be technologically robust and standardized. The current aircraft assembly and its jigs are characterized by a high complexity with poor changeability and low adaptability. In this context, the use of industrial robots and standardized jigs promise highly flexible and accurate complex assembly operations. This paper deals with the flexible and adaptable aircraft assembly based on industrial robots with special end-effectors for shaping operations. By the development and use of lightweight gripper system made of carbon fiber reinforced plastics the required scaling, robustness and stiffness of the whole assembly system can be realized.
2016-09-27
Technical Paper
2016-01-2099
Peter Mueller-Hummel, Thomas Langhorst
On CNC Machines drilling holes under perfect condition is possible. For drilling holes into Titan, Composite and Aluminium stacked materials the specific cutting condition can be selected. Furthermore surrounding conditions like peck cycle, MQL and force and torque monitoring can be adapted easily. Drilling holes in the final assembly CNC machine tools cannot be adapted because of sizes and accessibility. Power Feed Units or Automated Drill Units ADU are very handy, flexible and depending on the jig extremely rigid. Whenever a Machine tool does not fit, ADUs are highly recommended. In comparison to Machine tools conventional pneumatic ADUs can be used with one fixed set of feed, speed and micro peck only. Due to that a compromise in cutting condition has to be chosen in drilling stacked material with different layers.
2016-09-27
Technical Paper
2016-01-8014
David A. Schaller, Michael D. Roeth
Fuel efficiency has always been important to fleets and as fuel costs have risen, a plethora of technologies emerged. The industry also cares about sustainability and emissions reductions and now Greenhouse gas regulations exist to even further encourage development and adoption. Recent history has shown a variety of paths and success levels including SCR aftertreatment, 6x2 axles, automated manual transmissions, trailer skirts, low rolling resistance and wide-base tires, idle reduction, alternative fuels and many more. Lab and fleet testing are challenging with a wide variety of applications, configurations and test methods. Real world results don’t always match expectations as some exceed, while others disappoint. We will overview recent fleet history of technical solution adoption rates from detailed fleet surveys. Manufacturers’ contributions in terms of technology development, cost reduction, durability and refinement will be discussed.
2016-09-27
Technical Paper
2016-01-8011
Kevin Grove, Jon Atwood, Myra Blanco, Andrew Krum, Richard Hanowski
The goal of this research was to investigate the reliability of tractor-trailer collision avoidance systems (CASs) and characterize the activations observed in the real world. 150 commercial tractor-trailers were equipped with a data acquisition system (DAS) for up to one year. The DAS recorded video of the roadway, video of the driver and vehicle data whenever the truck was driving. Data was collected between November 2013 and August 2015, and the trucks in the study were equipped with either the Meritor WABCO OnGuardTM or Bendix® Wingman® AdvancedTM products. Seven companies from across the United States participated in the study, and all participating vehicles drove their normal, revenue-producing routes. The study evaluated reliability by classifying activations into three categories, based on whether a valid object was being tracked and whether the driver need to react immediately to the activation.
2016-09-27
Technical Paper
2016-01-2110
Ilker Erdem, Peter Helgosson, Ashwin Gomes, Magnus Engstrom
The ability to adapt to rapidly evolving market demands continues to be the one of the key challenges in the automation of assembly processes in the aerospace industry. In order to meet this challenge industry and academia have made efforts to automate flexible fixturing. LOCOMACHS (Low Cost Manufacturing and Assembly of Composite and Hybrid Structures) – a European Union funded project with 31 partners – aims to address various aspects of aero-structure assembly with a special attention is directed to the development of a new build philosophy along with relevant enabling technologies. This paper aims to present the results on the developed wing box build philosophy and the integration of automated flexible tooling solutions into the prospective assembly process.
2016-09-27
Technical Paper
2016-01-2096
Simon Schnieders, Dirk Eickhorst
Drilling of high-strength titan material and composites in combination creates complex challenges in order to achieve required productivity and quality. Long spiral chips are characteristically for the titan drilling process, which leads to e.g. chip accumulation, high thermomechanical load, surface damages and excessive tool wear. The basic approach is the substitution of today’s peck-drilling as current solution to this problem and the implementation of a vibration assisted drilling, so called micro-peck-drilling-process, to generate a kinematic chip breakage in a significant more efficient way. To meet perfectly the requirements regarding rates, quality and automation level, Broetje-Automation as system integrator has investigated and developed the implementation of different alternative high-performance systems and methods to approach the optimal oscillation movement of the tool.
2016-09-20
Technical Paper
2016-01-2024
Allan J. Volponi, Liang Tang
Engine module performance trending and engine system anomaly detection and identification is a core capability for any engine Condition Based Maintenance system. The genesis of on-condition monitoring can be traced back nearly 4 decades, and a methodology known as Gas Path Analysis (GPA) has played a pivotal role in its evolution. Gas Path Analysis is a general methodology that assesses and quantifies changes in the underlying performance of the major modules of the engine (compressors and turbines) which directly affect performance changes of interest such as fuel consumption, power availability, compressor surge margins, etc. It utilizes instrumentation such as spool speeds, inter-stage temperatures and pressures and power output, much of which is already available on the propulsion system for control purposes.
2016-09-20
Technical Paper
2016-01-2022
Ajay Rao, Vivek Karan, Pradeep Kumar
Turbulence is by far the number one concern of anxious passengers and a cause for airline injuries. Apart from causing discomfort to passengers, it also results in unplanned downtime of aircrafts. Currently the Air Traffic Control (ATC) and the meteorological weather charts aid the pilot in devising flight paths that avoid turbulent regions. Even with such tailored flight paths, pilots report constant encounters with turbulence. Turbulence avoidance can be made much more accurate by the use of predictive models that exploit patterns found in historical and transactional data. This paper proposes the use of such predictive analysis algorithms on meteorological data over the geographical area where the flight is intended to fly.
2016-06-15
Technical Paper
2016-01-1836
Sylvestre Lecuru, Pascal Bouvet, Jean-Louis Jouvray, Shanjin Wang
Abstract The recent use of electric motors for vehicle propulsion has stimulated the development of numerical methodologies to predict their noise and vibration behavior. These simulations generally use models based on an ideal electric motor. But sometimes acceleration and noise measurements on electric motors show unexpected harmonics that can generate acoustic issues. These harmonics are mainly due to the deviation of the manufactured parts from the nominal dimensions of the ideal machine. The rotor eccentricities are one of these deviations with an impact on acoustics of electric motors. Thus, the measurement of the rotor eccentricity becomes relevant to understand the phenomenon, quantify the deviation and then to use this data as an input in the numerical models. An innovative measurement method of rotor eccentricities using fiber optic displacement sensors is proposed.
2016-04-05
Technical Paper
2016-01-0072
Jihas Khan
Abstract Unified Diagnostic Service and On Board Diagnostics require a client side device with necessary software to implement certain specific algorithms. This paper proposes a highly optimized and generic model based architecture to implement client side algorithms used in Unified Diagnostic Service systems and with On Board Diagnostics which can be reused for any hardware target. The proposed method can implement particular algorithms which include flow control, timing control, database parsing, logging of messages, diagnostic database parsing, security unlock, intuitive HMI layer, DTC display with textual information, frame control, multi network - multi ECU support, software flashing, physical-functional message handling, and interfacing for multiple hardware host devices. Re-usability of this model based product ensures that it can be ported to the diagnostic tool used by a work shop engineer or by a diagnostics validation engineer working at OEM or Tier 1suppliers.
2016-04-05
Technical Paper
2016-01-0073
Peter Subke, Muzafar Moshref
Abstract Passenger cars are equipped with an OBD connector according to SAE J1962 / ISO 15031-3. Passenger cars that support ISO UDS on DoIP use the same connector with Ethernet pins according to ISO/DIS 13400-4 (Ethernet diagnostic connector). If external test equipment is connected to the Ethernet diagnostic connector via a 100BASE-TX cable with the RJ45 connector at the tester, a VCI is not necessary anymore. With a device that fits the Ethernet diagnostic connector physically and acts as a converter between the Ethernet signals and WLAN, external test equipment that supports wireless communication, can be connected to the vehicle. Examples for such wireless external test equipment include Android/iOS- based smart phones and tablets with purpose-made applications (APPs). The software components of external test equipment are standardized in ISO 22900 (MVCI). The MVCI D-Server processes data in ODX (ISO 22901) and sequences in OTX (ISO 13209).
2016-04-05
Technical Paper
2016-01-0270
Zhigang Wei, Limin Luo, Michael Start, Litang Gao
Product validation and reliability demonstration require testing of limited samples and probabilistic analyses of the test data. The uncertainties introduced from the tests with limited sample sizes and the assumptions made about the underlying probabilistic distribution will significantly impact the results and the results interpretation. Therefore, understanding the nature of these uncertainties is critical to test method development, uncertainty reduction, data interpretation, and the effectiveness of the validation and reliability demonstration procedures. In this paper, these uncertainties are investigated with the focuses on the following two aspects: (1) fundamentals of the RxxCyy criterion used in both the life testing and the binomial testing methods, (2) issues and benefits of using the two-parameter Weibull probabilistic distribution function.
2016-04-05
Technical Paper
2016-01-0289
Balakrishna Chinta
Abstract Mahalanobis Distance (MD) is gaining momentum in many fields where classification, statistical pattern recognition, and forecasting are primary focus. It is a multivariate method and considers correlation relationships among parameters for computing generalized distance measure to separate groups or populations. MD is a useful statistic in multivariate analysis to test that an observed random sample is from a multivariate normal distribution. This capability alone enables engineers to determine if an observed sample is an outlier (defect) that falls outside the constructed (good) multivariate normal distribution. In Mahalanobis-Taguchi System (MTS), MD is suitably scaled and used as a measure of severity in abnormality assessment. It is obvious that computed MD depends on values of parameters observed on a random sample. All parameters may not equally impact MD. MD could be highly sensitive with respect to some parameters and less sensitive to some other parameters.
2016-04-05
Technical Paper
2016-01-0271
David A. Warren
Abstract The objective of the paper is to outline the steps taken to change the reliability and maintenance environment of a plant from completely reactive to proactive. The main systems addressed are maintenance function fulfillment with existing staffing; work order management, planning, and scheduling; preventive maintenance (PM) definition and frequency establishment; predictive maintenance (PdM) scheduling and method definition; and shutdown planning and execution. The work order management methods were evaluated and modified to provide planning and scheduling of work orders on a weekly basis. The computerized maintenance and management system (CMMS) was updated to automatically insert work orders into the backlog of work for completion. A failure modes and effects analysis (FMEA) was performed and the results of the FMEA led to implementation of the following PM and PdM activities: vibration analysis, thermal imaging, and temperature monitoring.
2016-04-05
Technical Paper
2016-01-0274
Sharon L. Honecker, David J. Groebel, Adamantios Mettas
Abstract In order to accurately predict product reliability, it is best to design a test in which many specimens are tested for a long duration. However, this scenario is not often practical due to economic and time constraints. This paper describes a reliability test in which a limited number of specimens are tested with little time remaining before the scheduled start of production. During the test, an unexpected failure mode that can be mitigated through a product redesign occurs. Because the scheduled start of production is near, there is not enough time to perform a test with redesigned specimens, so the current test proceeds as planned. We discuss several methods and the associated assumptions that must be made to account for the presence of the unexpected failure mode in the test data in order to make predictions of reliability of the redesigned product.
2016-04-05
Technical Paper
2016-01-0279
Chong Chen, Zhenfei Zhan, Jie Li, Yazhou Jiang, Helen Yu
Abstract To reduce the computational time of the iterations in robust design, meta-models are frequently utilized to approximate time-consuming computer aided engineering models. However, the bias of meta-model uncertainty largely affects the robustness of the prediction results, this uncertainty need to be addressed before design optimization. In this paper, an efficient uncertainty quantification method considering both model and parameter uncertainties is proposed. Firstly, the uncertainty of parameters are characterized by statistical distributions. The Bayesian inference is then performed to improve the predictive capabilities of the surrogate models, meanwhile, the model uncertainty can also be quantified in the form of variance. Monte Carlo sampling is finally utilized to quantify the compound uncertainties of model and parameter. Furthermore, the proposed uncertainty quantification method is used for robust design.
2016-04-05
Technical Paper
2016-01-0283
Joydip Saha, Harry Chen, Sadek Rahman
Abstract More stringent federal emission regulations and fuel economy requirements have driven the automotive industry toward more sophisticated vehicle thermal management systems in order to best utilize the waste heat and minimize overall power consumption. With all new technologies and requirements, how to properly design, optimize, and control the vehicle thermal and cooling systems become great challenges to automotive engineers. Model based approach has become essential to the new thermal management system architectures design and evaluation of the optimal system solutions. This paper will discuss how the model based vehicle thermal system simulation tools have been developed from analytical & empirical data, and have been used for assessment and development of new thermal management system architectures.
2016-04-05
Technical Paper
2016-01-0329
Piyush Bubna, Michael P. Humbert, Marc Wiseman, Enrico Manes
Abstract Conventional car manufacturing is extremely capital and energy-intensive. Due to these limitations, major auto manufacturers produce very similar, if not virtually identical, vehicles at very large volumes. This limits potential customization for different users and acts as a barrier to entry for new companies or production techniques. Better understanding of the barriers for low volume production and possible solutions with innovative production techniques is crucial for making low volume vehicles viable and accelerating the adoption of new production techniques and lightweight materials into the competitive marketplace. Additive manufacturing can enable innovative design with minimal capital investment in tooling and hence should be ideal for low and perhaps high volume parts. For this reason, it was desired to evaluate potential opportunities in manufacturing automotive parts with additive techniques.
Viewing 1 to 30 of 4756