Criteria

Text:
Topic:
Display:

Results

Viewing 1 to 30 of 3213
2017-11-05
Technical Paper
2017-32-0008
Pei Yi Lim, Youhei Inagaki
Sustainability trends and reduced fuel consumption as a value proposition to end users have led to an ever-increasing focus on fuel efficiency in the personal mobility segment. This is evident in the development of smaller and lighter engine hardware with optimized combustion systems as well as the lowering of engine oil viscosity grades and formulation of additives with improved friction properties. Due to the unique challenges of lubricating motorcycle engines, the development of fuel efficient motorcycle engine oil presents several technical dilemmas. The reduction of oil viscosity gives rise to durability concerns particularly in such high temperature and high speed operating conditions, while the formulation of additives with lower friction properties may affect clutch friction that is necessary for a manual motorcycle.
2017-10-13
Technical Paper
2017-01-5014
Maurilio Pereira Gomes, Igor Santos, Camila Couto, Cristiano Mucsi, Jesualdo Luiz Rossi, Marco Colosio
Abstract This work consists of evaluating the influence of heat treatment on sintered valve seat insert (VSI) obtained with two different high-speed steels powders and one tool steel: AISI M3:2, AISI M2 and AISI D2, respectively. The high-speed / tool steel powders were mixed with iron powders and additives such as manganese sulphide, zinc stearate, graphite and niobium carbide. All the high-speed / tool steel powders had its particle size distribution and morphology analyzed. The heat treatment of the VSI consisted of air quenching followed by double tempering it in seven different and equidistant temperatures, ranging from 100 °C until 700 °C. A data acquisition system with a thermocouple type k attached to the samples was used to determine the air-quenching cooling rate. The mechanical and physical properties measurements were carried out, i.e., apparent density, apparent hardness and crush radial strength.
2017-10-08
Technical Paper
2017-01-2333
Marcos Gutierrez, Andres Castillo, Juan Iniguez, Gorky Reyes
Abstract Aiming for cleaner and more efficient energy from the internal combustion engines makes necessary to ensure the special conditions for exploitation of alternative fuels. The engine vibrations are primarily understood as effects of mechanical failures, but they are also a subject of the fuel combustion effects. These effects depend on the fuel type and its ability to complete the combustion process. The vibrations of a diesel engine were measured and analyzed with a frequency spectrum calculated with fast Fourier transforms. The engine was operated with a fuel blend of 10 % recycled lubricating oil with 90% diesel fuel as well as with neat diesel. It was found that the engine operation with this fuel blend has a lower vibration level in comparison with the use of neat diesel fuel. The goal of this research is to determine the properties of the fuel blend, which provide more stability to the engine by means of vibrations reduction.
2017-10-08
Technical Paper
2017-01-2352
Gongde Liu, Li Wang, Runxiang Zhang, Chao Yang, Tengfei Shao
Abstract Fuel economy, Emission regulation and extended oil drain intervals (ODI) are the three key driving forces for engine oil development. More and more attentions have been focused on long ODI diesel engine oil both from the domestic OEMs and oil suppliers, and the ODI was being periodically improved from a normal mileage of about 1×104 kilometers to 6/8/10×104 km or even 12×104 km just within several years on China market. Lots and lots of factors may affect the oil life including oil properties, engine technologies, after-treatment devices and engine working conditions and so on. While from the oil side, the main factors contribute to the oil drain intervals may be the oil nitration and oxidation, soot contamination, base number deterioration and sludge accumulation and etc. There are two strategies to extend the oil longevity applied currently.
2017-10-08
Technical Paper
2017-01-2357
Mark Devlin, Jeffrey Guevremont, Chip Hewette, Marc Ingram, Grant Pollard, William Wyatt
Abstract Different mechanical components in a vehicle can be made from different steel alloys with various surface treatments or coatings. Lubricant technology is needed to prevent wear and control friction on all of these different surfaces. Phosphorus compounds are the key additives that are used to control wear and they do this by forming tribofilms on surfaces. It has been shown that different operating conditions (pressures and sliding conditions) can influence the formation of tribofilms formed by different anti-wear additives. The effect of surface metallurgy and morphology on tribofilm formation is described in this paper. Our results show that additive technology can form proper tribofilms on various surfaces and the right combination of additives can be found for current and future surfaces.
2017-10-08
Technical Paper
2017-01-2350
Chalermwut Wongtaewan, Umaporn Wongjareonpanit, Komkrit Sivara, Ken Hashimoto, Yoichiro Nakamura
Abstract In Thailand, most heavy-duty trucks were equipped with diesel engine, while a small portion was equipped with compressed natural gas (CNG) engine. However, in the past few years the number of CNG fuel trucks in Thailand has increased significantly due to the cheaper cost of CNG. In general, the emphasis of heavy-duty diesel engine oil performance is on piston cleanliness and soot handling properties, while thermal and anti-oxidation properties are most critical for CNG engine oil performance. For truck fleet owners who operate both types of trucks, using the inappropriate oil that is not fit-for-purpose can adversely affect engine performance and reduce engine service lifespan under prolonged usage. A novel CNG/diesel engine oil was developed to meet both JASO DH-2 heavy-duty diesel engine oil performance and CNG engine oil performance. The candidate formulation was proved adequately fit for practical use regarding to thermal and anti-oxidation properties.
2017-10-08
Technical Paper
2017-01-2422
Na Li, Fenlian Huang, Yuhua Bi, Yueqiang Xu, Lizhong Shen, Dewen Jia
Abstract The assembly of con rod bearing and crankpin is a key friction pair which offers an important guarantee for stable operation of diesel engine. Specific to the non-road 2-cylinder diesel engine developed independently and based on the theory of thermoelastohydrodynamic lubrication as well as multi-body dynamics, this paper establishes a multi-body dynamics model for con rod big end bearings of the 2D25 horizontal diesel engine and makes a research on the influence of bearing width, bearing clearance, and oil inlet position and diameter upon lubrication of con rod bearing, taking into consideration that of the surface appearance of bearing bush and the elastic deformation of bearing bush and axle journal upon the same. Research results show that bearing width and bearing clearance are the major factors that influence lubrication characteristics of con rod bearing while oil inlet position and diameter only have a small influence on such characteristics.
2017-10-08
Technical Paper
2017-01-2423
Xiaoming Ye, Yan Fu, Wei Li, Yuze Jiang, Shixin Zhu
Abstract As the key components of internal combustion engine(ICE), the crankshaft main bearings are used to support the crankshaft and connecting rod mechanism whose rotary motion realizes the energy conversion from heat energy to mechanical power in cylinder. The lubrication performances and wear life of crankshaft main bearings directly affect ICE working efficiency and reliability. Therefore, it is very important to study the lubrication performances of crankshaft main bearings. In this paper, a 16V marine diesel engine was studied. Based on the AVL-Designer software platform, a dynamic model of crankshaft and connecting rod mechanism and a hydrodynamic lubrication model of crankshaft main bearing were built. The numerical analyses were carried out on the lubrication performances of crankshaft main bearings under different speed conditions.
2017-10-08
Technical Paper
2017-01-2444
Yanzhong Wang, Guanhua Song
Abstract High-speed rotating gears are generally lubricated by spray lubrication. Lubricating oil is driven by high-speed rotating gear, and some lubricating oil will be excited into oil mist, so that the gears are in the gas-liquid mixed environment. In this paper, the computational fluid dynamics model of the spray lubrication cooling process is established based on the gear heat transfer behavior under the spray lubrication condition. The influence of different spray parameters on the liquid-solid two-phase convective heat transfer coefficient is obtained. On this basis, the accurate boundary conditions of gear temperature field calculation are analyzed by studying the heat transfer behavior of high speed gear spray lubrication. The calculation model of gear temperature based on spray lubrication is established, and the temperature field distribution of gear is obtained.
2017-10-08
Technical Paper
2017-01-2437
Renjith S, Vinod Kumar Srinivasa, Umesh Venkateshaiah
Abstract The jet lubrication method is extensively used in the constant mesh high performance transmission system operating at range of speeds though it affects mechanical efficiency through spin power loss. The lubrication jet has a key role to maintain the meshing gears at non-fatal thermal equilibrium by effectively dissipating the heat generated to the surrounding. Heat transfer coefficient (HTC) is the indicator of the thermal behavior of the system, which provides great insight of efficient lubrication system that needs to be employed for prescribed type of transmission. In this study, a segment of the transmission unit which constitutes a gear pair is used for the simulation. Parametric study is carried out by considering the critical parameters affecting the thermal performance such as lubrication jet flow rate and rotational motions of the gears with speeds and temperatures.
2017-10-08
Technical Paper
2017-01-2344
Robert Taylor, Hua Hu, Carl Stow, Tony Davenport, Robert Mainwaring, Scott Rappaport, Sarah Remmert
Abstract It is anticipated that worldwide energy demand will approximately double by 2050, whilst at the same time, CO2 emissions need to be halved. Therefore, there is increasing pressure to improve the efficiency of all machines, with great focus on improving the fuel efficiency of passenger cars. The use of downsized, boosted, gasoline engines, can lead to exceptional fuel economy, and on a well-to-wheels basis, can give similar CO2 emissions to electric vehicles (depending, of course, on how the electricity is generated). In this paper, the development of a low weight concept car is reported. The car is equipped with a three-cylinder 0.66 litre gasoline engine, and has achieved over 100 miles per imperial gallon, in real world driving conditions.
2017-10-08
Technical Paper
2017-01-2231
Yongquan Chen, Liguang Li, Qing Zhang, Jun Deng, Wei Xie, Erbao Zhang, Sunyu Tong
Abstract Pre-ignition may lead to an extreme knock (super-knock or mega-knock) which will impose a severe negative influence on the engine performance and service life, thus limiting the development of downsizing gasoline direct injection (GDI) engine. More and more studies reveal that the auto-ignition of lubricants is the potential source for pre-ignition. However, pre-ignition is complicated to study on the engine test bench. In this paper, a convenient test method is applied to investigate the influence of lubricants metal-additives on pre-ignition. 8 groups of lubricants are injected into a hot co-flow atmosphere which generated by a burner. A single-hole nozzle injector with a diameter of 0.2 mm at 20 MPa injection pressure is utilized for lubricants' injection and spray atomization.
2017-10-08
Technical Paper
2017-01-2353
Bernardo Tormos, Leonardo Ramirez, Guillermo Miró, Tomás Pérez
Abstract One of the most interesting alternatives to reduce friction losses in the internal combustion engines is the use of low viscosity engine oils. Recently, a new engine oil category focused fuel economy, has been released in North America encouraging the use of these oils in the heavy-duty vehicles’ segment. This paper presents the results of a comparative test where the differences in fuel consumption given by the use of these oils are shown. The test included 48 buses of the urban public fleet of the city of Valencia, Spain. The selected vehicles were of four different bus models, three of them fueled with diesel and the other one with compressed natural gas (CNG). Buses’ fuel consumption was calculated on a daily basis from refueling and GPS mileage. After three oil drain intervals (ODI), the buses using low viscosity engine oils presented a noticeable fuel consumption reduction. These results bear out the suitability of these oils to palliate engine inefficiencies.
2017-10-08
Technical Paper
2017-01-2358
Michael P Gahagan
Abstract The automotive vehicle market has seen an increase in the number of hybrid electric vehicles (HEVs), and forecasts predict additional growth. In HEVs, the hybrid drivetrain hardware can combine electric motor, clutches, gearbox, electro-hydraulics and the control unit. In HEV hardware the transmission fluid can be designed to be in contact with an integrated electric motor. One transmission type well-suited to such hybridization is the increasingly utilized dual clutch transmission (DCT), where a lubricating fluid is in contact with the complete motor assembly as well as the DCT driveline architecture. This includes its electrical components and therefore raises questions around the suitability of standard transmission fluids in such an application. This in turn drives the need for further understanding of fluid electrical properties in addition to the more usually studied engineering hardware electrical properties.
2017-10-08
Technical Paper
2017-01-2347
Kazushi Tamura, Kenji Sunahara, Motoharu Ishikawa, Masashi Mizukami, Kazue Kurihara
Abstract Modern formulation in a wide variety of lubricants including engine oils and transmission fluids is designed to control friction through film-forming tribochemical reactions induced by the functional additives mixtures. Although many cases on the synergistic or antagonistic effects of additives on friction have been reported, their mechanisms are poorly understood. This study focused on the influences of metallic detergents on tribochemical reactions. We examined the mechanical properties of detergent-containing lubricants confined at a single-asperity contact and their contributions to tribochemical phenomena. We found that detergents enlarged the confinement space required for generating repulsive force and shear resistance. This means that these detergents provide steric effects under nanoconfinement at interfacial contacts.
2017-10-08
Technical Paper
2017-01-2349
Sarita Seth, Swamy Maloth, Prashant Kumar, Bhuvenesh Tyagi, Lokesh Kumar, Rajendra Mahapatra, Sarita Garg, Deepak Saxena, R Suresh, SSV Ramakumar
Abstract Automobile OEMs are looking for improving fuel economy[1,2] of their vehicles by reducing weight, rolling resistance and improving engine and transmission efficiency apart from the aerodynamic design. Fuel economy may be improved by using appropriate low viscosity [3] and use of friction reducers (FRs)[4,5] in the engine oils. The concept of high viscosity index [6] is being used for achieving right viscosity at required operating temperatures. In this paper performance properties of High Viscosity Index engine oils have been compared with conventional VI engine oils. Efforts have been made to check the key differentiation in oil properties w.r.t. low temperature fluidity, high temperature high shear viscosity/deposits, friction behavior, oxidation performance in bench tribological /engine/chassis dyno tests which finally lead to oil performance assessment.
2017-10-08
Technical Paper
2017-01-2351
Bernardo Tormos, Guillermo Miró, Leonardo Ramirez, Tomás Pérez
Abstract Low viscosity engine oils are considered a feasible solution for improving fuel economy in internal combustion engines (ICE). So, the aim of this study was to verify experimentally the performance of low viscosity engine oils regarding their degradation process and possible related engine wear, since the use of low viscosity engine oils could imply higher degradation rates and/or unwanted wear performance. Potential higher wear could result in a reduction in life cycle for the ICE, and higher degradation rates would be translated in a reduction of the oil drain period, both of them non-desired effects. In addition, currently limited data are available regarding “real-world” performance of low viscosity engine oils in a real service fleet.
2017-10-08
Journal Article
2017-01-2343
Nicolas Champagne, Nicolas Obrecht, Arup Gangopadhyay, Rob Zdrodowski, Z Liu
Abstract The oil and additive industry is challenged to meet future automotive legislations aimed at reducing worldwide CO2 emissions levels. The most efficient solution used to date has been to decrease oil viscosity leading to the introduction of new SAE grades. However this solution may soon reach its limit due to potential issues related to wear with lower engine oil viscosities. In this paper, an innovative solution is proposed that combines the use of a new tailor-made polyalkylene glycol (PAG) with specific anti-wear additives. Valvetrain wear measurements using radionuclide technique demonstrates the robustness of this solution. The wear performance was also confirmed in Sequence IVA test. An extensive tribological evaluation (film formation, wear and tribofilm surface analysis) of the interactions between the base oil and the anti-wear additives lead us to propose an underlying mechanism that can explain this performance benefit.
2017-10-08
Journal Article
2017-01-2341
Kongsheng Yang, Kristin A. Fletcher, Jeremy P. Styer, William Y. Lam, Gregory H. Guinther
Abstract Countries from every region in the world have set aggressive fuel economy targets to reduce greenhouse gas emissions. To meet these requirements, automakers are using combinations of technologies throughout the vehicle drivetrain to improve efficiency. One of the most efficient types of gasoline engine technologies is the turbocharged gasoline direct injection (TGDI) engine. The market share of TGDI engines within North America and globally has been steadily increasing since 2008. TGDI engines can operate at higher temperature and under higher loads. As a result, original equipment manufacturers (OEMs) have introduced additional engine tests to regional and OEM engine oil specifications to ensure performance of TGDI engines is maintained. One such engine test, the General Motors turbocharger coking (GMTC) test (originally referred to as the GM Turbo Charger Deposit Test), evaluates the potential of engine oil to protect turbochargers from deposit build-up.
2017-10-08
Journal Article
2017-01-2431
Michitaka Yamamoto, Takayuki Hosogi, Tetsuji Watanabe, Yuki Nishida
Abstract Over the past decades, the automotive industry has made significant efforts to improve engine fuel economy by reducing mechanical friction. Reducing friction under cold conditions is becoming more important in hybrid vehicle (HV) and plug-in hybrid vehicle (PHV) systems due to the lower oil temperatures of these systems, which results in higher friction loss. To help resolve this issue, a new internal gear fully variable discharge oil pump (F-VDOP) was developed. This new oil pump can control the oil pressure freely over a temperature range from -10°C to hot conditions. At 20°C, this pump lowers the minimum main gallery pressure to 100 kPa, thereby achieving a friction reduction effect of 1.4 Nm. The developed oil pump achieves a pressure response time constant of 0.17 seconds when changing the oil pressure from 120 kPa to 200 kPa at a temperature of 20°C and an engine speed of 1,600 rpm.
2017-10-08
Journal Article
2017-01-2348
Michael Clifford Kocsis, Peter Morgan, Alexander Michlberger, Ewan E. Delbridge, Oliver Smith
Abstract Increasingly stringent fuel economy and emissions regulations around the world have forced the further optimization of nearly all vehicle systems. Many technologies exist to improve fuel economy; however, only a smaller sub-set are commercially feasible due to the cost of implementation. One system that can provide a small but significant improvement in fuel economy is the lubrication system of an internal combustion engine. Benefits in fuel economy may be realized by the reduction of engine oil viscosity and the addition of friction modifying additives. In both cases, advanced engine oils allow for a reduction of engine friction. Because of differences in engine design and architecture, some engines respond more to changes in oil viscosity or friction modification than others. For example, an engine that is designed for an SAE 0W-16 oil may experience an increase in fuel economy if an SAE 0W-8 is used.
2017-10-08
Journal Article
2017-01-2356
Hyun-Soo Hong, Christopher Engel, Brian Filippini, Sona Slocum, Farrukh Qureshi, Tomoya Higuchi
Abstract Improving vehicle fuel economy is a major consideration for original equipment manufacturers (OEMs) and their technology suppliers worldwide as government legislation increasingly limits carbon dioxide emissions. At the same time that automotive OEMs have been driving toward lower viscosity axle oils to improve fuel economy, OEMs have worked to improved durability over an extended drain interval. These challenges have driven the use of API group III and/or API group IV base oils in most factory fill axle oils. This paper details the development of a novel lower viscosity SAE 75W-85 axle technology based on group II base oil that rivals the performance of a PAO-based axle oil and challenges the conventional wisdom of not using group II base oils in fuel efficient axle oils.
2017-10-08
Technical Paper
2017-01-2415
Valery Dunaevsky
Abstract The film thickness-roughness ratio Λ has been used since the mid-1960s as a simplified criterion for the lubrication conditions in rolling bearings. However, due to an assumed Gaussian distribution of the roughness height amplitudes of the functional surfaces of rolling bearings and other unsubstantiated assumptions regarding the mechanisms of contact interaction, concerns have arisen about the representability of Λ in terms of lubrication. In this study, a more objective Λ-type ratio that does not depend on the law of roughness height distribution and the peculiarities of contact mechanics is introduced and defined as Λz. The relevant range of the new Λ ratio is lower than that of its conventional counterpart, and it overlaps with contemporary theoretical and experimental results. The study exhibits unique profilometric data of the functional surfaces of the roller bearings, produced by the major bearing manufacturers.
2017-10-08
Journal Article
2017-01-2346
Hong Liu, Jiajia Jin, Hongyu Li, Kazuo Yamamori, Toyoharu Kaneko, Minoru Yamashita, Liping Zhang
Abstract It has been long established fact that fuel economy is a key driving force of low viscosity gasoline engine oil research and development considered by the original equipment manufacturers (OEMs) and lubricant companies. The development of low viscosity gasoline engine oils should not only focus on fuel economy improvement, but also on the low speed pre-ignition (LSPI) prevention property. In previous LSPI prevention literatures, the necessity of applying Ca/Mg-based detergents system in the engine oil formulations was proposed. In this paper, we adopted a specific Group III base oil containing Ca-salicylate detergent, borated dispersant, Mo-DTC in the formulation and investigated the various effects of Mg-salicylate and Mg-sulfonate on the performance of engine oil. It was found that Mg-sulfonate showed a significant detrimental impact on silicone rubber compatibility while the influence from Mg-salicylate remains acceptable.
2017-09-17
Journal Article
2017-01-2480
Roberto Dante, Andrea Sliepcevich, Marco Andreoni, Mario Cotilli
Abstract Tin sulfides (SnS and SnS2), represent a safer and greener alternative to other metal sulfides such as copper sulfides, and MoS2 etc. Their behavior is usually associated to that of solid lubricants such as graphite. A mixture of tin sulfides, with the 65 wt% of SnS2, has been characterized by scanning electron microscopy and by thermal gravimetric analysis (TGA). In order to investigate the effect of tin sulfides upon two crucial friction material ingredients, two mixtures were prepared: the former was made by mixing tin sulfides with a natural flake graphite and the latter was made mixing tin sulfides with a straight novolak. They were analyzed by TGA and differential thermal analysis (DTA) in both nitrogen and air. Some interferences were detected between tin sulfides and graphite in air.
2017-08-25
Journal Article
2017-01-9381
Oliver M. Smith, Nga Nguyen, Ewan Delbridge, James Burrington, Binbin Guo, Jason Hanthorn, Yanshi Zhang
Abstract Increasing pressure to deliver vehicle fuel efficiency without compromising engine durability places significant demands on engine lubricants. The antiwear capability of the formulation is extremely important as wear on engine parts can lead to engine inefficiency. The rapidly advancing and diversifying array of engine architectures creates ever more arduous conditions under which lubricant additives must perform. The evolution of engine design brings with it the propensity for a variety of wear mechanisms to occur. This paper reports research conducted to rapidly collect key information from which to begin to conceive the design of better screening technologies. An exploration of wear mechanisms using simple bench-top experiments was conducted using a variety of lubricants. A lab based oil-aging technique was used to attempt to create an oil sample with wear properties mimiking those of real engine drains.
2017-08-25
Journal Article
2017-01-9382
Oliver M. Smith, Nga Nguyen, Ewan Delbridge, James Burrington, Binbin Guo, Jason Hanthorn, Yanshi Zhang
Abstract The global commitment to reduce CO2 emissions drives the automotive industry to create ever more advanced chemical and engineering systems. Better vehicle fuel efficiency is demanded which forces the rapid evolution of the internal combustion engine and its system components. Advancing engine and emission system technology places increasingly complex demands on the lubricant. Additive system development is required to formulate products capable of surpassing these demands and enabling further reductions in greenhouse gas emissions. This paper reports a novel method of generating fundamental structure-performance knowledge with real-world meaning. Traditional antiwear molecule performance mechanisms are explored and compared with the next generation of surface active additive system (SAAS) formulated with only Nitrogen, Oxygen, Carbon and Hydrogen (NOCH).
2017-07-10
Technical Paper
2017-28-1934
Anil Thakur, Md Tauseef Alam, Venkatesh Kumar PS, P D Kulkarni, Senthur Pandian
Abstract Current high rating thermal loaded engines must have super-efficient lubrication system to provide clean oil at appropriate pressure and appropriate lube oil temperature to every part of the engine at all engine RPM speeds and loads. So oil pump not only have to satisfy above parameters but also it should be durable till engine life. Gerotor pumps are internal rotary positive-displacement pumps in which the outer rotor has one tooth more than the inner rotor. The gear profiles have a cycloidal shape. Both are meshed in conjugate to each other. Gerotor takes up engine power through crankshaft and deliver to various engine consumers at required pressure and required time. Over the complete engine rpm speed and loads range, oil pump need to perform efficiently to provide proper functioning of the engine.
2017-07-10
Technical Paper
2017-28-1964
Rajaganesh Ramamoorthy, T. Venkatesan, R. Rajendran
Abstract Machining of materials has received significant consideration due to the increasing use of machining processes in various industrial applications. In machining, the heat generated in the cutting zone during machining is critical in deciding the work piece quality. Lubricants are widely used to reduce the heat generation. Their usage poses threat to environment and health hazards. Hence, there is a need to identify eco-friendly and user-friendly alternatives to conventional cutting fluids. Modern tribology has facilitated the use of solid lubricants such as graphite, calcium fluoride, molybdenum disulphide, and boric acid as an alternative to cutting fluids in machining. Solid lubricant assisted machining is an environmental friendly clean technology for improving the surface quality of the machined work piece.
2017-07-10
Technical Paper
2017-28-1975
ANIL P M, K Nantha Gopal, B. Ashok
Abstract The present research deals with study of pongamia oil methyl ester as a lubricant by blending with anti-wear additive ZDDP. The experimental work carried in this work aims to investigates the friction and wear characteristics by blending zinc diakyldithio phosphates (ZDDP) with pongamia oil methyl ester as lubricant under various loading conditions and temperatures. The coefficient of friction and wear scar depth were determined using pongamia biodiesel blended with 0.3%, 0.6% and 1 % ZDDP by concentration through high frequency reciprocating wear testing machine for 2 h duration. The reciprocating wear tests were performed on an engine liner-piston ring contact under the loads of 40 N, 60 N and 80 N for 2 h duration at temperatures of 100°C, 125°C 150° C with 10 Hz oscillation frequency. The addition of ZDDP with pongamia biodiesel showed marginal reduction in friction coefficient and wear scar depth under all loads and temperatures.
Viewing 1 to 30 of 3213