Criteria

Text:
Topic:
Display:

Results

Viewing 1 to 30 of 256
2017-05-10
Technical Paper
2017-01-1927
Andreas Graef
China’s construction equipment (CE) market has been shrinking since 2011 with only few machinery segments gaining sales in last few years. Most of China’s CE machinery segments are already highly concentrated with few major Chinese CE OEMs contributing the majority of sales volume in each machinery segment. Machinery segments with more advanced technology such as crawler excavators see the rise of Chinese CE OEM competing with their international peers on market shares. Chinese full-liner OEMs are expected to shift their global M&A strategies in light of China’s enforced governmental control of capital outflows and increased scrutiny over the authenticity and compliance of overseas investments. With this market and competitor dynamics in China, the key question for international CE powertrain system and component supplier is how Chinese CE OEM and engine supplier develop and source their key powertrain components in future.
2017-03-28
Journal Article
2017-01-0271
Robert Jane, Gordon G. Parker, Wayne Weaver, Ronald Matthews, Denise Rizzo, Michael Cook
Abstract This paper considers optimal power management during the establishment of an expeditionary outpost using battery and vehicle assets for electrical generation. The first step in creating a new outpost is implementing the physical protection and barrier system. Afterwards, facilities that provide communications, fires, meals, and moral boosts are implemented that steadily increase the electrical load while dynamic events, such as patrols, can cause abrupt changes in the electrical load profile. Being able to create a fully functioning outpost within 72 hours is a typical objective where the electrical power generation starts with batteries, transitions to gasoline generators and is eventually replaced by diesel generators as the outpost matures.
2016-10-25
Technical Paper
2016-36-0171
Leandro Brasil Araujo, Juliano Tessaro, Renan Sardim
Abstract Due to financial global crisis started in 2008 and intensified in the past years in Brazil, the maintenance of a good company’s financial situation is a big challenge and it is more relevant in actual moment. Because of expected turbulent scenario for the next years, it is necessary to adopt strategies to mitigate risks that involve Supply Chain impacting industrial production. In this way, it is crucial adopt strategies and actions that assist to evaluate the performance of suppliers and its associate potential financial risk, what can be considered a companies’ success differential factor during crisis period as well. In this scenario, MWM Motores Diesel adopts an internal process of monitoring the risk of suppliers based on internally developed tools and others available at market.
2016-09-27
Technical Paper
2016-01-2091
Raul Cano, Oscar Ibanez de Garayo, Miguel Angel Castillo, Ricardo Marin, Hector Ascorbe, Jose Ramon de los Santos
Abstract The aim of this paper is to present a robust and low-cost automatic system for drilling aluminum stacks, as well as an integral methodology for the design of tool trajectories and the control of the drilling process itself. The proposed system employs a high accuracy robotic arm, a commercial spindle head and a specially developed SCADA, which enables it to load tool trajectories designed by using any software application. Furthermore, this SCADA is useful to monitor the main parameters of the drilling process for anticipating problems related to the unexpected tool wear or for a quick response in case of tool collision. A special jig for positioning the stack to be drilled is designed to increase the robot accessibility. In this work, tests are performed for optimizing the cutting parameters of the robotic system in order to maximize the accuracy and the surface finishing of the holes.
2016-09-27
Journal Article
2016-01-8055
Rohit Saha, Long-Kung Hwang, Mahesh Madurai Kumar, Yunfeng Zhao, Chen Yu, Bob Ransijn
Abstract Wheel loader subsystems are multi-domain in nature, including controls, mechanisms, hydraulics, and thermal. This paper describes the process of developing a multi-domain simulation of a wheel loader. Working hydraulics, kinematics of the working tool, driveline, engine, and cooling system are modeled in LMS Imagine.Lab Amesim. Contacts between boom/bucket and bucket/ground are defined to constrain the movement of the bucket and boom. The wheel loader has four heat exchangers: charge air cooler, radiator, transmission oil cooler, and hydraulic oil cooler. Heat rejection from engine, energy losses from driveline, and hydraulic subsystem are inputs to the heat exchangers. 3D CFD modeling was done to calibrate airflows through heat exchangers in LMS Amesim. CFD modeling was done in ANSYS FLUENT® using a standard k - ε model with detailed fan and underhood geometry.
2016-09-27
Journal Article
2016-01-8106
Sameer Kolte, Ananth Kumar Srinivasan, Akilla Srikrishna
Abstract As we move towards the world of autonomous vehicles it becomes increasingly important to integrate several chassis control systems to provide the desired vehicle stability without mutual interference. The principles for integration proposed in existing technical literature are majorly centralized which are not only computationally expensive but does not fit the current supplier based OEM business model. An Automotive OEM brings multiple suppliers on-board for developing the Active Safety systems considering several factors such as cost, quality, time, ease of business etc. When these systems are put together in the vehicle they may interfere with each other’s function. Decoupling their function results in a need of heavy calibration causing performance trade-offs and loss in development time.
2016-04-05
Technical Paper
2016-01-0379
Gilles Robert, Olivier Moulinjeune, Benoit Bidaine
Abstract Short glass fiber reinforced polyamides (SFRPs) are a choice material for automotive industry, especially for in the engine compartment. To develop their application field to more and more complex hydrothermal and mechanical environments, reliable or even predictive simulation technologies are necessary. Integrative simulation takes into account the forming process during final Finite Elements Analysis (FEA). For SFRPs, injection molding is taken into account by computing glass fibers orientation. It is further used to compute a specific anisotropic constitutive model on each integration point of FEA model. A wide variety of models is now available. Integrative simulation using Digimat has been proved very efficient for static and dynamic loadings.
2016-04-05
Journal Article
2016-01-0467
Haizhen Liu, Weiwen Deng, Rui He, Jian Wu, Bing Zhu
Abstract This paper presents a unified novel function-based brake control architecture, which is designed based on a top-down approach with functional abstraction and modularity. The proposed control architecture includes a commands interpreter module, including a driver commands interpreter to interpret driver intention, and a command integration to integrate the driver intention with senor-guided active driving command, state observers for estimation of vehicle sideslip, vehicle speed, tire lateral and longitudinal slips, tire-road friction coefficient, etc., a commands integrated control allocation module which aims to generate braking force and yaw moment commands and provide optimal distribution among four wheels without body instability and wheel lock or slip, a low-level control module includes four wheel pressure control modules, each of which regulates wheel pressure by fast and accurate tracking commanded wheel pressure.
2016-04-05
Technical Paper
2016-01-0293
Jaspreet Singh, Vishnu Agrawal
Abstract The paper expresses an important issue of optimum selection of a supercharger for a given application from the global market in the presence of a variety of superchargers available commercially off the shelf (COTS). Coding scheme suggested is based on developing an attribute based scheme for all superchargers available off the shelf. N-digit coding scheme provides in-depth understanding of all the attributes to be considered by the customers, designers, engineers and engineers of the industry for further improvement. We also aim to create exhaustive database of superchargers along with their attributes. The paper adopts a MADM-TOPSIS (Multiple Attribute Decision Making -Technique for Order of Preference by Similarity to Ideal Solution) technique and graphical methods that are being used widely in different disciplines and are published. The method ensures that the optimum supercharger is closest to the hypothetically best solution and farthest from the worst solution.
2016-02-01
Technical Paper
2016-28-0024
Aditya Rai, Sanchit Vijh, P Baskara Sethupathi
Abstract To increase the range of a Battery Electric Vehicle (BEV), a lot of ideas have been proposed. A prominent one among them is the Battery swapping methodology or Rapid Battery Interchange (RBI), where standardized batteries can easily be removed from the BEV and replaced with recharged batteries quickly. The feasibility of this methodology has been highly debated and contested. This paper studies the feasibility of a very popular distribution and maintenance network currently used for LPG distribution in India, to be applied to battery distribution used across different makes and models of BEVs. In India, 33.6 million households subscribe to LPG Cylinders for domestic cooking usage. These standard sized (14.2Kg) cylinders are refilled and redistributed via multiple public sector and private companies.
2015-09-29
Technical Paper
2015-01-2865
Damodar Kulkarni, Pankaj Deore
Abstract Cost-reduction and cost competitiveness have emerged as major strategic tools to an enterprise and are being used all over the world to fight for survival as well as maintain sustainable growth. Maximization of value-creation by enriching the planet, people and the economy should be the key drivers leading to cost-reduction strategies in any business. The main objectives of this paper are to explain the Processes and Principles of Cost-reduction in technology-transfer to low-cost emerging economies to achieve sustainable cost-reduction and create a culture of cost-consciousness throughout an organization.
2015-09-29
Technical Paper
2015-01-2849
Hariharan Venkitachalam, Axel Schlosser, Johannes Richenhagen, Mirco Küpper, Thomas Tasky
Abstract Electrification is a key enabler to reduce emissions levels and noise in commercial vehicles. With electrification, Batteries are being used in commercial hybrid vehicles like city buses and trucks for kinetic energy recovery, boosting and electric driving. A battery management system monitors and controls multiple components of a battery system like cells, relays, sensors, actuators and high voltage loads to optimize the performance of a battery system. This paper deals with the development of modular control architecture for battery management systems in commercial vehicles. The key technical challenges for software development in commercial vehicles are growing complexity, rising number of functional requirements, safety, variant diversity, software quality requirements and reduced development costs. Software architecture is critical to handle some of these challenges early in the development process.
2015-09-29
Journal Article
2015-01-2848
Saleh Mirheidari, Abdolreza Fallahi, David Zhang, Kumar Kuppam
Abstract AUTOSAR is finding its way into the automotive industry. European automotive manufacturing companies were the early adopters defining and promoting AUTOSAR standard. One of the main AUTOSAR goals is to improve containment of product and process complexity and risk. Increased scalability and flexibility to integrate and transfer functions is another important goal of AUTOSAR. Working with different suppliers and vendors and respect their confidentiality makes the process of application software development even more complex. Presented in this paper is a creative way of utilizing AUTOSAR to overcome the integration challenges in a multi-party object code based software integration. The run time environment (RTE) files for the application software are generated through a set of scripts to automate the process for consecutive releases.
2015-09-22
Technical Paper
2015-36-0374
João Henrique Neme, Max Mauro Dias Santos, Evandro Leonardo Silva Teixeira
Abstract Model-Based Design (MBD) has been widely used for automotive embedded software design. Automobile manufacturers and suppliers have often underlined the importance of an unified approach for electrical and electronic (E/E) system design. In this scenario, MBD can provide a mutual benefit for stakeholders due to the share of information, workflow, and tool-chain. In this paper, we highlight MBD application for automotive Exterior Lighting System (ELS) design. In fact, ELS is an event-driven control system typically needed for car lighting and signalization, in particular at night. Furthermore, this system is mandatory for every road vehicle according to current Brazilian laws and legislation. Also, it provides safety drive preventing car accidents and pedestrian injury. In this context, we present how to boost ELS design using MBD concepts. ELS was developed in three MBD workflow (Model-In-the-Loop, Software-In-the-Loop, and Processor-In-the-Loop), from supplier’s viewpoint.
2015-04-14
Technical Paper
2015-01-1239
Neal J. Corey, Mark Madin, Rick L. Williams
Abstract While weight reduction in automotive design and manufacturing have been on-going for several years, in the area of powertrain technology lightweighting has been a difficult challenge to overcome due to functional requirements, as well as material and manufacturing constraints. The Multi Material Lightweight Vehicle (MMLV) developed by Magna International and Ford Motor Company is a result of US Department of Energy project DE-EE0005574. The project demonstrates the lightweighting potential of a five passenger sedan, while maintaining vehicle performance and occupant safety. Prototype vehicles were manufactured and limited full vehicle testing was conducted. The Mach-I vehicle design, comprised of commercially available materials and production processes, achieved a 364kg (23.5%) full vehicle mass reduction, enabling the application of a 1.0-liter three-cylinder engine resulting in a significant environmental benefit and fuel reduction.
2015-04-14
Journal Article
2015-01-1311
Leland Decker, James Truskin
Abstract As CAFE requirements increase, automotive OEMs are pursuing innovative methods to lightweight their Body In Whites (BIWs). Within FCA US, this lightweighting research and development activity often occurs through Decoupled Innovation projects. A Decoupled Innovation team comprised of engineers from the BIW Structures Group, in collaboration with Tier 1 supplier Magna Exteriors, sought to re-design a loadbearing component on the BIW that would offer significant weight savings when the current steel component was replaced with a carbon fiber composite. This paper describes the design, development, physical validation and partnership that resulted in a composite Rear Package Shelf Assembly solution for a high-volume production vehicle. As the CAFE requirements loom closer and closer, these innovation-driven engineering activities are imperative to the successful lightweighting of FCA US vehicles.
2015-04-14
Technical Paper
2015-01-1480
Seung Kwon Cha, Jong Heon Lee, Un Ko, Tae Hoon Song, HangChul Ko, YangGi Lee
Abstract Recently, the wagon for European has been developed. The characteristic of this vehicle is to have a capability of large luggage space. Therefore the passenger needs to be protected from injuries by sudden inflow of baggage from luggage room. This is also a requirement of EU regulation (ECE R-17[4]). Barrier Net[1, 2, 3] to small size wagon has been adopted for the first time based on advanced foreign supplier's technology. This reality still gives us the burden of high cost and royalty expenditure. The objective of this study is to overcome these restrictions, especially for patent circumvention and secure the new design concept which is entirely independent of the present system in addition to cost effectiveness.
2015-04-14
Technical Paper
2015-01-0475
Truong Nguyen, John Bell
Abstract Modern automotive electrical and electronic architecture is comprised of the battery and charging system, power distribution boxes, electronic control units, electrical devices, grounds, and the means of connecting all of these together - the wire harness or Electrical Distribution System (EDS). As automotive electrical content and complexity increases, it becomes imperative to optimize the weight, size, cost, and manufacturability of a vehicle [1]. In terms of an EDS, the most potential gain can be realized if the EDS supplier and vehicle Original Equipment Manufacturer (OEM) work together during the advanced electrical & electronic architecture development and packaging design process. Traditionally, the electrical content, harness partitioning, and packaging locations are designed by the vehicle OEM with limited advanced input from the EDS supplier.
2015-04-14
Technical Paper
2015-01-0273
Helmut Martin, Martin Krammer, Bernhard Winkler, Christian Schwarzl
Abstract Although the ISO 26262 provides requirements and recommendations for an automotive functional safety lifecycle, practical guidance on how to handle these safety activities and safety artifacts is still lacking. This paper provides an overview of a semi-formal safety engineering approach based on SysML for specifying the relevant safety artifacts in the concept phase. Using specific diagram types, different views of the available data can be provided that reflects the specific needs of the stakeholders involved. One objective of this work is to improve the common understanding of the relevant safety aspects during the system design. The approach, which is demonstrated here from the perspective of a Tier1 supplier for an automotive battery system, covers different breakdown levels of a vehicle. The safety workflow presented here supports engineers' efforts to meet the safety standard ISO 26262 in a systematic way.
2015-04-14
Technical Paper
2015-01-0278
Ingo Stürmer, Heiko Doerr, Thomas End
Managing ISO 26262 software development projects is a challenging task. This paper discusses major challenges in managing safety-critical projects from a high-level perspective, i.e. from a manager's point of view. We address managers (directors) with full project responsibility including software and hardware teams. Rather than discussing how to fulfill (technical) requirements stated by the ISO standard, we highlight major challenges and tough decisions a manager has to face on her way from project start up to delivery of the safety case. We discuss important project management topics and best practices such as negotiation issues with the contractor (OEM), selection of the appropriate functional safety manager, general ISO 262626-related project management matters, as well as contractual issues with supplier such as development interface agreement. We discuss the topics on the basis of real-life experience we collected during several ISO 26262 management projects.
2015-04-14
Technical Paper
2015-01-0145
Reinhold Blank
Abstract The electrical and electronic system in vehicles with all its components has become more and more complex. Many different stakeholders are involved and more and more parts of the development process have been shifted to the suppliers. This outsourcing results in substantial savings on the OEM side, but brings additional challenges to manage the overall system and keep the core IP within the OEM. This presentation shows an approach that was adopted recently by several OEMs. It is called the “E/E-Architecture” process and applies the principles of system engineering according ISO/IEC15288. It shows the starting point by managing the requirements and how to use functions as the source of the truth over the entire design process. During the E/E Architecture phase, it is important to concentrate on the strategic design aspects.
2015-04-14
Technical Paper
2015-01-0185
Younho Lee, YangNam Lim, KokCheng Gui, Jin Seo Park, Pawan Reddy, Syed Arshad Kazmi
Abstract These days in automotive industry, AUTOSAR has been increasingly used as a standard and unified software platform as vehicle electronics have becoming more variety, more performance and more complicated. MCAL is a software driver which belongs to lowest level in AUTOSAR software structure. MCAL directly access the microcontroller hardware and is provided by microcontroller supplier like Infineon to handle microcontroller peripherals. And in cases for special dedicated functions of microcontroller or for special requirements, Complex Device Driver could be used as legacy software instead of MCAL. The paper is structured as follows: First, the SPI requirements for vehicle applications such as chassis will be shown. Then, the current AUTOSAR specification for SPI MCAL will be explained in detail. Next, the sequential SPI communication and the parallel SPI communication with multi-nodes will be discussed.
2015-04-14
Technical Paper
2015-01-0239
Markus Ernst, Markus Heuermann
Abstract Due to the development towards automated or even autonomous driving, an increasing number of assistance systems and inherent networks of data and power will be required in vehicles. The main challenge for this development is the coordination of these functions and the securing of functionalities in terms of failure. Living organisms are capable of efficiently coordinating a large number of paths to transmit information and energy. They dispose of tested mechanisms as well as structures which offer certain robustness and fault tolerance. Prudent redundancy in energy supply, communication and safeguarding of function ensures that the system as a whole remains capable of operating even when there are disruptions. Vehicles, which are being fitted with ever more assistance systems, must perform comparably. The transformation of these structures and functional principles from nature into technical solutions is combined within the keyword ‘bionic’.
2015-01-14
Technical Paper
2015-26-0115
MV Rajasekhar, J Perumal, Samir Rawte, Nabin Nepal
Abstract In current scenario importance of fuel efficient vehicles, lesser emissions & energy efficiency are the major considerations for any vehicle manufacturer. To meet these expectations vehicle manufacturer are exploring alternate powertrains to reduce emissions and produce better fuel efficient vehicles. For any vehicle manufacturer component cost, weight and package volume are the major driving factors for success. This is even true for latest upcoming hybrid and electric vehicles as well. To gain advantage and introduce products faster, OEMs are inclined to electrify their existing platforms to compete with other manufacturers. To convert existing vehicles into hybrid vehicles, all the major components like e machine, High voltage battery, power electronics etc. needs to be carefully packaged along with existing components in the same package space.
2015-01-14
Technical Paper
2015-26-0147
Vladimir Shevtsov, Alexandr Lavrov, Andrei Izmailov, Yakov lobachevskii
Abstract A feature of the present state of the Russian agricultural industry is that productive resources (tractor pool, arable land area and number of workers involved) are diminishing and the reduction does not have a quantified value. In the prevailing conditions of limited resources, agricultural enterprises are forced to operate tractors beyond their amortization periods on a massive scale, which results in an unpredictable service life. This situation calls for an assessment of the optimal composition of the tractor pool in terms of number and age. By way of a solution to this problem, the given article presents a methodological approach as to the analysis of two opposing factors.
2014-11-11
Technical Paper
2014-32-0011
Pavel Brynych, Jan Macek, Pascal Tribotte, Gaetano De Paola, Cyprien Ternel
Abstract The objective of this paper is to present the results of the GT Power calibration with engine test results of the air loop system technology down selection described in the SAE Paper No. 2012-01-0831. Two specific boosting systems were identified as the preferred path forward: (1) Super-turbo with two speed Roots type supercharger, (2) Super-turbo with centrifugal mechanical compressor and CVT transmission both downstream a Fixed Geometry Turbine. The initial performance validation of the boosting hardware in the gas stand and the calibration of the GT Power model developed is described. The calibration leverages data coming from the tests on a 2 cylinder 2-stroke 0.73L diesel engine. The initial flow bench results suggested the need for a revision of the turbo matching due to the big gap in performance between predicted maps and real data. This activity was performed using Honeywell turbocharger solutions spacing from fixed geometry waste gate to variable nozzle turbo (VNT).
2014-09-16
Journal Article
2014-01-2231
Louis Columbus
Aerospace suppliers face the daunting task of constantly improving time-to-market, reducing cost of quality and turning compliance into a competitive advantage. Managing to these constraints while staying profitable is a challenge faced by the entire aerospace supply chain face today. The intent of this presentation is to share five lessons learned on how aerospace suppliers can optimize for these three constraints while growing their businesses. The first is electronically enabling traceability both within a multi-tier supply chains and throughout suppliers. Automating traceability at the shop floor improves quality management and accelerates compliance. Specific methodologies and metrics used to accomplish this will be provided. Second, lessons learned from implementing Manufacturing Execution Systems (MES) showing how shop floor visibility has a direct effect on supplier performance is illustrated with case studies and metrics.
2014-09-16
Technical Paper
2014-01-2263
Eric Barton, Dan Hasley, Joey Jackson
Abstract The following is a unique case study expounding on automatic fastening technology designed and engineered to ramp up a Tier 2 supplier that had no experience with automatic fastening, to efficiently produce a large volume of fuselage panel assemblies with demanding process requirements in a very short amount of time. The automation technology integrated for the skin to stringer & skin to window frame fastening were two GEMCOR G12 five-axis CNC All-Electric fastening systems coupled with a Cenit offline part programming system. This joint solution served as a launch vehicle for Center Industries to efficiently supply the full rate of fuselage panel assemblies for a large volume commercial aircraft program without having any automatic riveting experience.
2014-09-16
Technical Paper
2014-01-2125
Janice Meraglia, Mitchell Miller
Abstract Counterfeit items can be viewed as the by-product of a supply chain which has been compromised. While many industries are impacted, certain types of products can mean the difference between life and death. Electronics are of special interest, however, mechanical parts can also have dire consequences. The point is that the counterfeiting community is very diverse. The business model is fluid and unrestricted. Electronics today…hardware tomorrow. All of this leads to the need for an authentication platform that is agnostic to product. Most supply chains would benefit from a technical way to have assurance of authenticity - a benefit that could be shared by all.
2014-04-01
Technical Paper
2014-01-0285
Yaamini Devi Loganathan, Jayakrishnan M
Abstract The automobile industry in India has long been recognized as a core manufacturing sector with the potential to drive national economic growth. India's attraction as a destination for automobile manufacturers has been underscored by the number of new manufacturers entering the country over the last two decades, through FDI. The number of manufacturers has continued to grow in India over the years across vehicle segments. Multinational and Transnational firms may enter a market by different modes of Foreign Direct Investment (FDI), either by Greenfield, Mergers & Acquisitions, Joint Ventures or Contract manufacturing. Indian automobile industry currently has a wide mix of home grown automobile companies and foreign invested companies. In this FDI development and the inclusion of more automobile manufacturers, the product development process of companies also has gone through a change.
Viewing 1 to 30 of 256

Filter

Subtopics