Criteria

Text:
Display:

Results

Viewing 1 to 30 of 302
2016-04-05
Technical Paper
2016-01-1251
Thomas Bradley, Clinton Knackstedt, Eric jambor
Abstract As the rigor of vehicle pollution regulations increase there is an increasing need to come up with unique and innovative ways of reducing the effective emissions of all vehicles. In this paper, we will describe our development of a carbon capture and sequestration system that can be used in-tandem with existing exhaust treatment used in convention vehicles or be used as a full replacement. This system is based on work done by researchers from NASA who were developing a next generation life support system and has been adapted here for use in a convention vehicle with minimal changes to the existing architecture. A prototype of this system was constructed and data will be presented showing the changes observed in the effective vehicle emissions to the atmosphere. This system has the potential to extract a significant portion of tailpipe emissions and convert them into a form that allows for safe, clean disposal without causing any harm to the environment.
2009-07-12
Technical Paper
2009-01-2551
Eduard A. Kurmazenko, Lev I. Gavrilov, Mikhail Ju. Tomashpolskiy, Aleksey A. Kochetkov, Nicolay N. Khabarovskiy, Ivan V. Dokunin, Guzel P. Kamaletdinova
The problems formation and localization of Off-nominal Situations (OnS) on an Hardware/Software Complex of Crew's Service of the Regeneration Life Support System Operation (HSCCSO) are considered in this paper both at functions separate system and at deviations of crew's inhabitancy controllable parameter values. The HSCCSO is developed for the first ground long-term experiment under ‘Mars - 500’ project. The purpose of this paper is to examine HSCCSO taking into consideration the key of the future mission to Mars (extremely long duration, autonomy, complicated communication peculiarities with the ground Mission Control Center (MCC) because of signal delay, and limited stock of expendables). It is planned to simulate off-nominal and emergency situations caused by failures of on-board LSS and/or the human factor: insufficient crew efficiency, degraded professional reliability and soon.
2009-07-12
Technical Paper
2009-01-2566
S. S. Guo, Y. K. Tang, W. D. Ai, L. F. Qin
Lettuce (Lactuca sativa var. Youmaicai) was cultivated at higher atmospheric CO2 concentration gradients (0.05∼2.0%), and then some parameters such as comprehensive evaluation of plant growing states, rates of photosynthesis and transpiration were carried out. There were some positive effects of elevated CO2 (0.1% to 1.0%) on the average rates of photosynthesis and transpiration of the collective lettuce leaves and the contents of chlorophyll and carotenoid, but excessive CO2 (1.5% and 2.0%) weakened the effects, and even had some negative impacts; average shoot height and leaf area of lettuce plants treated at 0.1%∼2.0% CO2 all increased, but the numbers of leaves reduced; The contents of nitrogen, potassium and vitamin C in plants decreased, but phosphorus content rose and microelement contents had no obvious change in various CO2 treatments.
2009-07-12
Technical Paper
2009-01-2513
Julie A. Levri, John A. Hogan, Bruce Deng, Jon Welch, Mike Ho
The On-line Project Information System (OPIS) is the Exploration Life Support (ELS) mechanism for task data sharing and annual reporting. Fiscal year 2008 (FY08) was the first year in which ELS Principal Investigators (PI's) were required to complete an OPIS annual report. The reporting process consists of downloading a template that is customized to the task deliverable type(s), completing the report, and uploading the document to OPIS for review and approval. In addition to providing a general status and overview of OPIS features, this paper describes the user critiques and resulting system modifications of the first year of OPIS reporting efforts. Specifically, this paper discusses process communication and logistics issues, user interface ambiguity, report completion challenges, and the resultant or pending system improvements designed to circumvent such issues for the fiscal year 2009 reporting effort.
2009-07-12
Technical Paper
2009-01-2514
M. Czupalla, P. Hager, A. Hein, T. Dirlich, A. Zhukov, M. Pfeiffer, D. Klaus
In order to assess the robustness of a Spacecraft Life Support System (LSS) design based on average performance values, criteria such as stability and controllability must be considered under variable and peak system loads. The Exploration Group at the Technische Universität München (TUM) is developing the “Virtual Habitat” computational tool (V-HAB) for exactly this type of investigation. In order to characterize the relative level of confidence for a complex model such as this, a generalized metric was defined which is able to indicate an incremental Model Confidence Level (MCL) throughout the model development process. This paper describes a proposed metric for systematically rating and describing the level of model development, created for and based on the V-HAB simulation.
2009-07-12
Journal Article
2009-01-2515
Michael K. Ewert, Frank F. Jeng
In support of the Constellation Program, NASA conducted an analysis of crew clothing and laundry options. Disposable clothing is currently used in human space missions. However, the new mission duration, goals, launch penalties and habitat environments may lead to a different conclusion. Mass and volume for disposable clothing are major penalties in long-duration human missions. Equivalent System Mass (ESM) of crew clothing and hygiene towels was estimated at about 11% of total life support system ESM for a 4-crew, 10-year Lunar Outpost mission. Ways to lessen this penalty include: reduce clothing supply mass through using clothes made of advanced fabrics, reduce daily usage rate by extending wear duration and employing a laundry with reusable clothing. Lunar habitat atmosphere pressure and therefore oxygen volume percentage will be different from Space Station or Shuttle. Thus flammability of clothing must be revisited.
2009-07-12
Technical Paper
2009-01-2521
David E. Burchfield, Wai Tak Lee, William Niu, Andrew Pargellis, George Steiner, William O'Hara, John F. Lewis
The Orion Air Monitor (OAM), a derivative of the International Space Station's Major Constituent Analyzer (MCA) (1–3) and the Skylab Mass Spectrometer (4, 5), is a mass spectrometer-based system designed to monitor nitrogen, oxygen, carbon dioxide, and water vapor. In the Crew Exploration Vehicle, the instrument will serve two primary functions: 1) provide Environmental Control and Life Support System (ECLSS) data to control nitrogen and oxygen pressure, and 2) provide feedback the ECLSS water vapor and CO2 removal system for swing-bed control. The control bands for these ECLSS systems affect consumables use, and therefore launch mass, putting a premium on a highly accurate, fast-response, analyzer subsystem. This paper describes a dynamic analytical model for the OAM, relating the findings of that model to design features required for accuracies and response times important to the CEV application.
2009-07-12
Technical Paper
2009-01-2533
H. Y.(Jannivine) Yeh, Cheryl B. Brown, Molly S. Anderson, Michael K. Ewert, Frank F. Jeng
The development of the Advanced Life Support (ALS) Sizing Analysis Tool (ALSSAT) using Microsoft® Excel was initiated by the Crew and Thermal Systems Division of the NASA Johnson Space Center (JSC) in 1997 to support the ALS and Exploration Offices in Environmental Control and Life Support System (ECLSS) design and studies. It aids the user in performing detailed sizing of the ECLSS for different combinations of Exploration Life Support (ELS) regenerative system technologies. This analysis tool will assist the user in performing ECLSS preliminary design and trade studies as well as system optimization efficiently and economically.
2009-07-12
Technical Paper
2009-01-2579
Yevhen Holubnyak, Vadim Rygalov
This work represents an extended analysis of the mathematical model which was originally developed in an attempt to analyze the process of plant biomass incineration as a source of carbon dioxide for plant photosynthesis and growth and its effects on closed ecological system stability, Mathematical modeling has demonstrated that when the limit value of intensity of production processes and matter turnover specific for every closed ecosystem is exceeded, the gaseous toxic agents destroy the system. In order to illustrate further the performance and application of the proposed model, the hypothetical optimized ecological life support system was investigated, The preliminary results suggest appropriate system parameters for further engineering implementation. The results of the theoretical analysis are verified and supported by quantitative estimates from the Russian Closed Ecosystem (CES) BIOS-3 which was tested for extended life support between 1970 and 1990.
2009-07-12
Technical Paper
2009-01-2581
G. Boscheri, M. Lavagna, M. Lamantea
This paper describes a multidisciplinary strategy for designing and preliminary sizing of advanced life support systems for space applications, ranging from open-loop solutions to more advanced physico-chemical and bioregenerative systems. The strategy, based on the use of transient simulation, heuristic techniques, and realtime integrated control has been implemented into a Matlab-Simulink tool, letting large numbers of system configurations to be rapidly tested and evaluated. The tool has been built aiming to easy expandability and updating. The optimization approach for selection of design solutions is based on a MOPSO (Multi Objective Particle Swarm Optimization) algorithm, which presented optimum convergence properties. Different test cases have been considered, both to evaluate tool's capacity to select proper life support system configurations, and to verify sizing accuracy.
2009-07-12
Technical Paper
2009-01-2585
Gary L. Harris, Pablo de León
The objective of this paper is to detail a proposal for an Androgynous Docking Airlock/Utility Module (ADAM) that would allow extravehicular (EVA) crews, working from the Orion spacecraft, to avoid depressurizing the command module of the Orion vehicle for planned EVA repair, maintenance and interdiction of orbital structures. Unlike the Space Shuttle, Russian Soyuz vehicle or the Chinese Shenzhou manned spacecraft, the proposed Orion space vehicle has no airlock. This necessitates the depressurizing of the entire Command Module cabin during EVA activity. It also means that all crewmembers will have to wear space suits during contingency and planned EVAs. This inordinately dangerous situation will require all crewmembers to be exposed to the space vacuum for as much as seven hours or more if a working EVA becomes necessary.
2009-07-12
Technical Paper
2009-01-2582
L. Grizzaffi, M. Lamantea, C. Lobascio, P. Cergna, D. Perrachon, M. Perino, A. Prelle
In the frame of the space food production research activities conducted in the Thales Alenia Space Italia (TAS-I) Advanced Life Support Research and Development laboratory (RecycLAB, [6]), and with the contribution of a degree thesis developed in collaboration with the Politecnico of Torino, a rack-like facility for ground research on Life Support Systems based on Plants has been designed, developed, integrated, verified and tested in TAS-I. The new facility, called EDEN EPISODE 2, is a significant evolution of a previous TAS-I project (EDEN EPISODE 1) and takes benefit from other lower size TAS-I demonstrators (CUBE). It aims at realizing a completely closed and controlled environment for crop production, while a mobile lighting panel allows to maximize the delivered light in each phase of the plant life cycle. Hydroponic and aeroponic techniques have been implemented in the project for nutrient delivery to the plant roots.
2009-07-12
Technical Paper
2009-01-2345
Paul Dillon, Gretchen Thomas, Joe Oliver, Felipe Zapata
This paper documents the progress of a conceptual packaging design effort for a Portable Life Support Subsystem (PLSS). The concept discussed is a flexible backpack intended for use on the Constellation Program (CxP) lunar suit, also known as the Constellation Space Suit Element (CSSE). The goal of this effort is to reduce the weight of the PLSS packaging while also meeting CxP goals to develop systems that are less costly, more adaptable to mission and technology changes, and have more performance capability than that of existing systems or previous lunar systems. This flexible backpack concept relies on a foam protection system to absorb, distribute, and dissipate the energy from falls on the lunar surface. The testing and analysis of the foam protection system concept that took place during this effort indicate that this method of system packaging is a viable solution.
2009-07-12
Journal Article
2009-01-2353
Ariel V. Macatangay, Jay L. Perry, Paul L. Belcher, Sharon A. Johnson
A habitable atmosphere is a fundamental requirement for human spaceflight. To meet this requirement, the cabin atmosphere must be constantly scrubbed to maintain human life and system functionality. The primary system for atmospheric scrubbing of the US on-orbit segment (USOS) of the International Space Station (ISS) is the Trace Contaminant Control System (TCCS). As part of the Environmental Control and Life Support Systems' (ECLSS) atmosphere revitalization rack in the US Lab, the TCCS operates continuously, scrubbing trace contaminants generated primarily by two sources: the metabolic off-gassing of crew members and the off-gassing of equipment in the ISS. It has been online for approximately 95% of the time since activated in February 2001. The TCCS is comprised of a charcoal bed, a catalytic oxidizer, and a lithium hydroxide post-sorbent bed, all of which are designed to be replaced on-orbit when necessary.
2009-07-12
Technical Paper
2009-01-2354
David E. Williams
The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Supply (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper provides a summary of the Node 1 ECLS ACS subsystem design and a detailed discussion of the ISS ECLS Acceptance Testing methodology utilized for that subsystem.
2009-07-12
Technical Paper
2009-01-2364
N. V. Coppa, K. V. Chandler
Spray drying is a continuous physical separation process where a solution is sprayed into a hot drying medium. The resulting products are dry solute particles and the drying medium bearing the solvent vapor. Using one of several methods the solvent is recovered from the drying medium. The exact nature of the dried solid and recovered solvent depends on the physical and chemical properties of the feed and the design and operation of the dryer. In this paper we discuss progress made on the development of a prototype for advanced life support applications, and provide data on its purification abilities. A system processing 1 kg hr−1 of aqueous brine solution consumes on the order of 1000 W, but this value was strongly tied to other processing parameters such as dryer inlet and exit temperatures and the heating mode. Analysis of recovered water having an initial concentration of 48000 ppm TDS had between 12 and 134 ppm TDS and strongly depended on the processing conditions.
2009-07-12
Technical Paper
2009-01-2368
Ernesto Appella, Emanuele Flesia, Alessandro Quaglia
In a long term vision of space exploration an orbiting station located at Earth Moon Lagrangian Point 1 (EML1), named ECLIPSE should act as a logistic node supporting traffic between Earth, Moon and the future manned and unmanned missions towards Mars. The paper presents the results of the study performed during the SEEDS III Project Work Phase: focusing on the preliminary concepts of the Habitability and the Environmental Control and Life Support System for the ECLIPSE Medical Center (EMC) and ECLIPSE Quarantine Module (EQM), the Cis Lunar Orbiting Shuttle (CLOS) and the Mobile Pressurized Control Module (MPCM).
2009-07-12
Technical Paper
2009-01-2387
Sebastian Padilla, Aaron Powers, Tyler Ball, Christine S. Iacomini, Heather L. Paul
Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal and carbon dioxide (CO2) control for a Portable Life Support System (PLSS), as well as water recycling. CO2 removal and rejection is accomplished by driving a sorbent through a temperature swing starting at below freezing temperatures. The swing is completed by warming the sorbent with a separate condensing ice heat exchanger (CIHX) using metabolic heat from moist ventilation gas. The condensed humidity in the ventilation gas is recycled at the habitat. Designing a heat exchanger to efficiently transfer this energy to the sorbent bed and allow the collection of the water is a challenge since the CIHX will operate in a temperature range from 210 K to 280 K. The ventilation gas moisture will first freeze and then thaw, sometimes existing in three phases simultaneously.
2009-07-12
Technical Paper
2009-01-2388
Christine S. Iacomini, Aaron Powers, Heather L. Paul
Metabolic heat regenerated temperature swing adsorption (MTSA) that is incorporated into a Portable Life Support System (PLSS) is being explored as a viable means of removing and rejecting carbon dioxide (CO2) from an astronaut's ventilation loop. Sorbent pellets, which were used in previous work, are inherently difficult to heat and cool quickly. Further, their use in packed beds creates a large, undesirable pressure drop. Work has thus been done to assess the application and performance of aluminum foam that has been washcoated with a layer of sorbent. A to-scale sorbent bed, which is envisioned for use by a Martian PLSS, was designed, built, and tested. Performance of the assembly in regards to CO2 adsorption and pressure drop was assessed, and the results are presented here.
2009-07-12
Technical Paper
2009-01-2382
Robert C. Morrow, Ross W. Remiker
The Deployable Vegetable Production System (VEGGIE) was originally developed as a way to produce fresh vegetables on the ISS with minimal resources. We are reassessing this system for use in lunar habitats to produce palatable, nutritious, and safe fresh food, provide a recreational tool, and provide a platform to support biological life support development by allowing in situ study of crop productivity and air and water revitalization. The VEGGIE system consists of plant growth chambers that can be stowed in a volume less than 10% of their deployed volume, while still providing the light output and root zone capabilities necessary to support high plant productivity rates. The system has significantly reduced logistical and operational requirements compared to other plant growth systems, and is of a modular design to allow logistical flexibility in terms of transport options and placement in a habitat structure.
2009-07-12
Technical Paper
2009-01-2372
D.L. Dietrich, H.L. Paul, B.C. Conger
This paper presents the findings of the trade study to evaluate carbon dioxide (CO2) sensing technologies for the Constellation (Cx) space suit life support system for surface exploration. The trade study found that non-dispersive infrared absorption (NDIR) is the most appropriate high Technology Readiness Level (TRL) technology for the CO2 sensor for the Cx space suit. The maturity of the technology is high, as it is the basis for the CO2 sensor in the Extravehicular Mobility Unit (EMU). The study further determined that while there is a range of commercial sensors available, the Cx CO2 sensor should be a new design. Specifically, there are light sources (e.g., infrared light emitting diodes) and detectors (e.g., cooled detectors) that are not in typical commercial sensors due to cost. These advanced technology components offer significant advantages in performance (weight, volume, power, accuracy) to be implemented in the new sensor.
2009-07-12
Technical Paper
2009-01-2421
Michele Birmele, LaShelle McCoy, Monsi Roman, Michael S. Roberts
With the installation of the Water Recovery System (WRS) during mission STS-126 in 2008, the International Space Station (ISS) added the capability to recover clean water for reuse from crewmember urine and atmospheric humidity condensate, including EVA (Extravehicular Activity) wastes. The ability to collect, store and process these waste streams is required to increase potable water recovery and support the ISS crew augmentation planned for 2009. During ground testing of the Urine Processing Assembly (UPA), one of two primary component subsystems that comprise the WRS, significant fouling was repeatedly observed in stored urine pretreated with 0.56% of chromium trioxide and sulfuric acid. During initial observation, presumptive microbiological growth clogged and damaged flight-rated hardware under test as part of a risk-mitigation Flight Experiment (FE).
2009-07-12
Technical Paper
2009-01-2415
David E. Williams, Gregory J. Gentry
The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year, covering the period of time between March 2008 and February 2009. The ISS continued permanent crew operations, with the continuation of Phase 3 of the ISS Assembly Sequence. Work continues on the last of the Phase 3 pressurized elements and the continued manufacturing and testing of the regenerative ECLS equipment.
2009-07-12
Technical Paper
2009-01-2416
Dwight E. Link, David E. Williams
The International Space Station (ISS) program is nearing an assembly complete configuration with the addition of the final resource node module in early 2010. The Node 3 module will provide critical functionality in support of permanent long duration crews aboard ISS. The new module will permanently house the regenerative Environment Control and Life Support Systems (ECLSS) and will also provide important habitability functions such as waste management and exercise facilities. The ISS program has selected the Port side of the Node 1 “Unity” module as the permanent location for Node 3 which will necessitate architecture changes to provide the required interfaces. The USOS ECLSS fluid and ventilation systems, Internal Thermal Control Systems, and Avionics Systems require significant modifications in order to support Node 3 interfaces at the Node 1 Port location since it was not initially designed for that configuration.
2009-07-12
Technical Paper
2009-01-2405
Thomas O. Leimkuehler, Aaron Powers, Chris Linrud, Chad Bower, Grant Bue
A phase change material (PCM) heat sink using super cooled ice as a non-toxic, non-flammable PCM is being developed for use in a portable life support system (PLSS). The latent heat of fusion for water is approximately 70% larger than most paraffin waxes, which can provide significant mass savings. Further mass reduction is accomplished by super cooling the ice significantly below its freezing temperature for additional sensible heat storage. Expansion and contraction of the water as it freezes and melts is accommodated with the use of flexible bag and foam materials. A demonstrator unit has been designed, built, and tested to demonstrate proof of concept. Both testing and modeling results are presented.
2009-07-12
Technical Paper
2009-01-2464
B. F. Zaretskiy, L. I. Gavrilov, E. A. Kurmazenko
Interplanetary manned missions will change significantly the requirements imposed upon Life Support Systems (LSS) and specifically the requirements on LSS Automated Control Systems (ACS). During interplanetary manned missions the possibilities to control the operation of a specific system from the Ground Mission Control Center (GMCC) are diminished considerably. Therefore, this demands survivability and intelligent level enhancement LSS ACS.
2009-07-12
Technical Paper
2009-01-2457
John F. Lewis, Richard A. Barido, Robyn Carrasquillo, Cynthia D. Cross, Ed Rains, George C. Tuan
The Crew Exploration Vehicle (CEV) is the first crew transport vehicle to be developed by the National Aeronautics and Space Administration (NASA) in the last thirty years. The CEV is being developed to transport the crew safely from the Earth to the International Space Station and then later, from the Earth to the Moon . This year, the vehicle continued to go through design refinements to reduce weight, meet requirements, and operate reliably while preparing for Preliminary Design Review in the summer of 2009. The design of the Orion Environmental Control and Life Support (ECLS) system, which includes the life support and active thermal control systems, is progressing through the design stage. This paper covers the Orion ECLS development from April 2008 to April 2009.
2009-07-12
Journal Article
2009-01-2445
Lee A. Miller, James C. Knox
The design and evaluation of a Vacuum-Swing Adsorption (VSA) system to remove metabolic water and metabolic carbon dioxide from a spacecraft atmosphere is presented. The approach for Orion and Altair is a VSA system that removes not only 100 percent of the metabolic CO2 from the atmosphere, but also 100% of the metabolic water as well, a technology approach that has not been used in previous spacecraft life support systems. The design and development of an Orion Crew Exploration Vehicle Sorbent Based Atmosphere Revitalization system, including test articles, a facility test stand, and full-scale testing in late 2008 and early 2009 is discussed.
2009-07-12
Technical Paper
2009-01-2506
Klaus Bockstahler, Helmut Funke, Joachim Lucas, Johannes Witt, Scott Hovland
1 ABSTRACT The Closed-Loop Air REvitalisation System ARES is a regenerative life support system for closed habitats. With regenerative processes the ARES covers the life support functions: 1. Removal of carbon dioxide from the spacecraft atmosphere via a regenerative adsorption/desorption process, 2. Supply of breathable oxygen via electrolysis of water, 3. Catalytic conversion of carbon dioxide with hydrogen to water and methane. ARES will be accommodated in a double ISPR Rack which will contain all main and support functions like power and data handling and process water management. It is foreseen to be installed onboard the International Space Station (ISS) in the Columbus Module in 2013. After an initial technology demonstration phase ARES shall continue to operate thus enhancing the capabilities of the ISS Life Support System as acknowledged by NASA [5]. Due to its regenerative processes ARES will allow a significant reduction of water upload to the ISS.
2009-07-12
Technical Paper
2009-01-2505
Syed-Ali A. Husain, David L. Akin
The Terrapin Undergraduate Rover for Terrestrial Lunar Exploration (TURTLE) system was developed as part of a senior design course at the University of Maryland; it has since become a test bed for habitability and life support studies. The design requirements for the project dictated a 2,500 kg pressurized lunar rover to sustain two crew members for eight days with a range of 100 km. Part of the design effort included a full-scale mock-up populated with volumetric representations of interior elements. This research proposes a solution to the life support requirements for spacecraft as well as design requirements for other habitat elements. An analysis of relevant technologies and their application to small rovers is presented. Habitability issues (with respect to interior layout of life support hardware) are also considered. Testing was done with the full-scale TURTLE mockup to determine suitable configuration of life support equipment.
Viewing 1 to 30 of 302

Filter