Criteria

Display:

Results

Viewing 1 to 30 of 697
2015-04-14
Technical Paper
2015-01-0282
Emrah Adamey, Guchan Ozbilgin, Umit Ozguner
Abstract Vehicle tracking problem is of crucial importance in intelligent vehicles research, as it is amongst the basic components of any comprehensive situation awareness technology. In mixed-traffic environments, where vehicles with varying degrees of sensing and communication capabilities coexist, the vehicle-tracking problem becomes particularly more demanding. In this paper, a collaborative vehicle tracking approach is presented, where onboard sensing and inter-vehicular communication resources are utilized in an efficient manner to provide track lists to all participating vehicles in a mixed-traffic environment. The approach is implemented on SimVille, our indoor testbed for urban driving, in accordance with our system development philosophy. The performance of the approach is evaluated using entropy values of vehicle tracks-an information theoretic measure of uncertainty. The experimental results of our scaled-down tests demonstrate the effectiveness of our approach.
2015-04-14
Technical Paper
2015-01-0294
Takamasa Koshizen, MAS Kamal, Hiroyuki Koike
Abstract Our study unveils what smart cars are needed to minimize congestion by traffic stability. We have previously considered pacer cars with single lane road networks based on a car following model, e.g. adaptive cruise control (ACC). However, pacer cars may have a limitation with multi-lane roadways in terms of lane distribution of traffic and shockwave suppression. Therefore, we motivate building a new smart car which extends the capability of pacer cars allowing lane changing at the timing of congestion detection. In essence, the congestion detection plays a role of adjusting the (time) headway of smart cars to determine whether lane changes should be undertaken. Lane changes can be used to uniformize (or equalize) lane distribution for traffic (flow) stability. Our simulation study has suggested that the proposed smart cars enforce the capability of traffic stability more than manual and pacer cars.
2015-04-14
Technical Paper
2015-01-0291
Radovan Miucic, Samer Rajab, Sue Bai, James Sayer, Dillon Funkhouser
Abstract Many Intelligent Transportation System (ITS) technologies have been developed to improve the safety and efficiency of cars, trucks, public transport and infrastructure. However, very few ITS have been developed specifically for the motorcycle user protection. In this paper an analysis of dynamic and static communications tests between a vehicle and two motorcycles are provided. The system enables vehicles and motorcycles to exchange safety information such as speed, heading, location, and brake status through the use of 5.9 GHz Dedicated Short Range Communication (DSRC) protocol. The vehicles and motorcycles can then assess the potential threat level based on the incoming messages from the nearby traffic. Several high-impact motorcycle-to-vehicle collision scenarios are analyzed. Technical challenges, such as motorcycle wireless unit antenna direction performance, communication performance and target classification accuracy are further investigated.
2015-04-14
Technical Paper
2015-01-0299
Saurav Talukdar
Abstract Control of vehicular platoons has been a problem of interest in the controls domain for the past 40 years. This problem gained a lot of popularity when the California PATH (Partners for Advanced Transportation Technology) program was operational. String stability is an important design criterion in this problem and it has been shown that lead vehicle information is essential to achieve it. This work builds upon the existing framework and presents a controller form for each follower in the string where the lead vehicle information is used explicitly to analytically demonstrate string stability. The discussion is focused on using information from immediate neighbors to achieve string stability. Recent developments in distributed control are an attractive framework for control design where each agent has access to states of the neighbors and not all agents in the network. In this work, the aim is to design sparse H2 controllers and then perform a check on string stability.
2015-04-14
Journal Article
2015-01-0295
Dominik Moser, Harald Waschl, Roman Schmied, Hajrudin Efendic, Luigi del Re
Abstract Modern cars feature a variety of different driving assistance systems, which aim to improve driving comfort and safety as well as fuel consumption. Due to the technical advances and the possibility to consider vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication, cooperative adaptive cruise control (CACC) strategies have received significant attention from both research and industrial communities. The performance of such systems can be enhanced if the future velocity of the surrounding traffic can be predicted. Generally, human driving behavior is a complex process and influenced by several environmental impacts. In this work a stochastic model of the velocity of a preceding vehicle based on the incorporation of available information sources such as V2I, V2V and radar information is presented. The main influences on the velocity prediction considered in this approach are current and previous velocity measurements and traffic light signals.
2015-04-14
Technical Paper
2015-01-0296
Roman Schmied, Harald Waschl, Luigi del Re
Abstract Adaptive cruise control (ACC) systems allow a safe and reliable driving by adapting the velocity of the vehicle to velocity setpoints and the distance from preceding vehicles. This substantially reduces the effort of the driver especially in heavy traffic conditions. However, standard ACC systems do not necessarily take in account comfort and fuel efficiency. Recently some work has been done of the latter aspect. This paper extends previous works for CI engines by incorporating a prediction model of the surrounding traffic and a simplified control law capable for real time use in experiments. The prediction model itself uses sinusoidal functions as the traffic measurements often show periodic behavior and is adapted in every sample instant with respect to the predecessor's velocity. Furthermore, the controlled vehicle is forced to stay within a specific inter-vehicle distance corridor to avoid collisions and ensure safe driving.
2015-04-14
Journal Article
2015-01-0297
Jianbo Lu, Dimitar Filev, Finn Tseng
Abstract This paper proposes an approach that characterizes a driver's driving behavior and style in real-time during car-following drives. It uses an online learning of the evolving Takagi-Sugeno fuzzy model combined with the Markov model. The inputs fed into the proposed algorithm are from the measured signals of on-board sensors equipped with current vehicles, including the relative distance sensors for Adaptive Cruise Control feature and the accelerometer for Electronic Stability Control feature. The approach is verified using data collected using a test vehicle from several car-following test trips. The effectiveness of the proposed approach has been shown in the paper.
2014-01-15
Journal Article
2013-01-9094
Waleed Faris, Hesham Rakha, Salah A.M. Elmoselhy
Climate change due to greenhouse gas emissions has led to new vehicle emissions standards which in turn have led to a call for vehicle technologies to meet these standards. Modeling of vehicle fuel consumption and emissions emerged as an effective tool to help in developing and assessing such technologies, to help in predicting aggregate vehicle fuel consumption and emissions, and to complement traffic simulation models. The paper identifies the current state of the art on vehicle fuel consumption and emissions modeling and its utilization to test the environmental impact of the Intelligent Transportation Systems (ITS)’ measures and to evaluate transportation network improvements. The study presents the relevant models to ITS in the key classifications of models in this research area. It demonstrates that the trends of vehicle fuel consumption and emissions provided by current models generally do satisfactorily replicate field data trends.
2013-10-07
Technical Paper
2013-36-0108
Carlos Bustamante, Eduard Mateu, Jesús Hernández, Álvaro Arrúe
By using telecommunications, Intelligent Transport Systems (ITS) improve traffic safety and efficiency, facilitating an integral transport of people and goods. Even with the benefits obtained through ITS Systems nowadays, significant innovations will take place in the following years such as the ubiquitous and integral use of computer vision, or the development and future implementation of Cooperative ITS (C-ITS) that will allow a direct communication between vehicles (Vehicle-to-Vehicle, V2V) and with the roadside elements (Vehicle-to-Infrastructure, V2I) by means of mobile and wireless communication. In this context, the INTELVIA project was implemented, with the clear objective of developing ITS technologies and Intelligent Human-Machine Interfaces (HMI) to obtain the advantages of using information and communication technologies in the field of road transport and traffic management.
2013-04-08
Technical Paper
2013-01-0989
Mohamad Abdul-Hak, Youssef Bazzi, Oliver Cordes, Nizar Alholou, Malok alamir
Vehicles equipped with wireless communication technology, “Dedicated Short Range Communication” are a promising field for fuel optimization navigation applications. This paper presents a vehicle routing methodology modeled as a Petri Net (PN) for optimizing travel time and vehicle emission in a connected roadway network with minimal total traffic capacity to route vehicle in a dynamically changing traffic environment, and in an optimal and predictive manner. The novel unfolded PN model presented in this paper incorporates the essential features in Dynamic Programming (DP) to solve the stochastic traffic routing problem. The effectiveness of the proposed eco-friendly navigation methodology is validated by comparing the performance with conventional travel time based navigation methods.
2013-04-08
Technical Paper
2013-01-0987
Tang Xinpeng
Two vehicles non-cooperation differential game model of the vehicle automatic tracking was established and the corresponding optimization control algorithm was proposed using the differential game's theory. Based on this method, the simulation was carried out with high speed ISO Lane Change, Sine Steer and low speed circular motion. The preliminary study result indicated that applied differential game's theory in the vehicles automatic tracking's research was completely feasible; the computation accuracy was also satisfying.
2013-04-08
Journal Article
2013-01-0617
Jan-Mou Li, Zhiming Gao
It is rare for an attempt towards optimization at the fleet-level when consideration is given to the sheer number of seemingly unpredictable interactions among vehicles and infrastructure in congested urban areas. To close the gap, we introduce a simulation based framework to explore the impact of speed synchronization on fuel economy improvement for fleets in traffic. The framework consists of traffic and vehicle modules. The traffic module is used to simulate driver behavior in urban traffic; and the vehicle module is employed to estimate fuel economy. Driving schedule is the linkage between these two modules. To explore the impact, a connected vehicle technology sharing vehicle speed information is used for better fuel economy of a fleet including six vehicles. In all scenarios analyzed, the leading vehicle operates under the EPA Urban Dynamometer Driving Schedule (UDDS), while the other five vehicles follow the leader consecutively.
2012-10-08
Technical Paper
2012-01-9018
Alberto Broggi
Many successful implementations of intelligent vehicles are using laser based technology to perceive the area around the vehicle, providing a dense 3D point cloud covering an extended range. However, such technology is still too expensive to be a candidate for series production, and its integration requirements are hardly compatible with cost and style constraints dictated by the mainstream automotive market. On the other hand computer vision is reaching close enough results in terms of sensing performance to be a viable alternative. Vision also brings additional advantages such as a much lower price and straighforward integration options. This paper presents a comparison of these two technologies.
2012-10-08
Technical Paper
2012-01-9019
Eric Chan
Vehicles are increasingly being sold with partially automated systems in order to improve fuel consumption, safety or driver convenience. The SARTRE project is an EU FP7 project which brings together seven companies to explore how road trains, or platoons, can continue the trend of automation to bring benefits to fuel consumption, safety, congestion and driver convenience. In order to enable the introduction of such systems in the near future, the project is assuming that no changes to the road infrastructure will be required, and that any systems added to the vehicles are either already in production or are close to being in production. This paper provides an overview of the project and presents some of the preliminary results.
2011-09-11
Technical Paper
2011-24-0162
Pinak Tulpule, Vincenzo Marano, Giorgio Rizzoni
Energy management plays a key role in achieving higher fuel economy for plug-in hybrid electric vehicle (PHEV) technology; the state of charge (SOC) profile of the battery during the entire driving trip determines the electric energy usage, thus determining the fuel consumed. The energy management algorithm should be designed to meet all driving scenarios while achieving the best possible fuel economy. The knowledge of the power requirement during a driving trip is necessary to achieve the best fuel economy results; performance of the energy management algorithm is closely related to the amount of information available in the form of road grade, velocity profiles, trip distance, weather characteristics and other exogenous factors. Intelligent transportation systems (ITS) allow vehicles to communicate with one another and the infrastructure to collect data about surrounding, and forecast the expected events, e.g., traffic condition, turns, road grade, and weather forecast.
2011-05-17
Technical Paper
2011-39-7217
Gaku Sone
Nissan LEAF that is a new model of an Electric Vehicle has dedicated IT system as standard equipment. Concept of this IT system, Services provided to owners and technical solutions to be introduced.
2010-10-05
Journal Article
2010-01-2005
Rachana Ashok Gupta, Wesley Snyder, W Shepherd Pitts
This paper develops a novel integrated navigational system for autonomous vehicle motion control. Vehicle control is defined in terms of the required vehicle steering angle, rate of steering change and speed. This paper proposes predictive control in the image plane. The proposed predictive control enables the navigation on the desired path, reduces the control complexity and increases the application space for multiple types of vehicles. The paper investigates vehicle control stability; especially in scenarios containing varying curvature turns and variable vehicle speeds. The primary emphasis of this paper is on vehicle control rather than scene analysis. To demonstrate the proposed vehicle control, a computer vision based multi-lane detection algorithm is introduced. The control strategy is applied such that the vehicle maintains position within the lane boundaries. Stability of the control algorithm is tested and demonstrated in multiple scenarios using 3-D simulation results.
2009-04-20
Journal Article
2009-01-0429
David A. Coovert, Gary J. Heydinger, Ronald A. Bixel, Dale Andreatta, Dennis A. Guenther, Anmol S. Sidhu, David R. Mikesell
This paper describes the design and implementation of the SEA, Ltd. Brake and Throttle Robot (BTR). Presented are the criteria used in the initial design and the development and testing of the BTR, as well as some test results achieved with the device. The BTR is designed for use in automobiles and light trucks. It is based on a servomotor driven ballscrew, which in turn operates either the brake or accelerator. It is easily portable from one vehicle to another and compact enough to fit even smaller vehicles. The BTR is light enough so as to have minimal effect on the measurement of vehicle parameters. The BTR is designed for use as a stand-alone unit or as part of a larger control system such as the Automated Test Driver (ATD) yet allows for the use of a test driver for safety, as well as test selection, initiation, and monitoring. Installation in a vehicle will be described, as well as electronic components that support the BTR.
2009-04-20
Technical Paper
2009-01-0168
Eric C. Sauck
At the forefront of intelligent vehicle technologies are vehicle-to-vehicle communication (V2V) and vehicle-infrastructure integration (VII). Their capabilities can be added to currently-available systems, such as adaptive cruise control (ACC), to drastically decrease the number and severity of collisions, to ease traffic flow, and to consequently improve fuel efficiency and environmental friendliness. There has been extensive government, industry, and academic involvement in developing these technologies. This paper explores the capabilities and challenges of vehicle-based technology and examines ways that policymakers can foster implementation at the federal, state, and local levels.
2009-04-20
Journal Article
2009-01-1477
Alexander E. Smith
An innovative program is described to improve emergency vehicle deployment by automatically alerting all other nearby vehicles on the road as to the presence and intention of the emergency vehicle. Since the use of audible sirens has somewhat marked effectiveness nowadays, in selecting the most practical automated method to notify most drivers a review is given of the various data-links that are available today, including plans for new standards. The research presented concludes that use of today’s newer vehicle data-links is currently ineffective due to the fragmentation and, in many cases, low adoption rates, including satellite radio, HD and conventional radio, automatic cruise control radar, and vehicle telematics.
2009-04-20
Technical Paper
2009-01-1478
Keiko Katsuragawa, Daisuke Saitoh, Takeshi Oono, Minoru Tomikashi
Natural speech contains a wide variety of expressions, making it much more difficult to recognize than specified verbal commands. We have developed a method using a language model template to generate language models capable of recognizing manifold expressions. This template method is designed on the basis of the modification structure of keywords. The evaluation results for a language model generated with this method showed that it allowed 630,000 command patterns with a high recognition rate of 96%. The results also revealed that the processing speed and memory used for speech recognition with this language model were at a practical level.
2009-04-20
Technical Paper
2009-01-1479
Tae-Kyung Moon, Jun-Nam Oh, Hyuck-Min Na, Pal-Joo Yoon
In this paper, we present the integration of C2C communication into IAV. Traditional IAV detects target vehicles only they are in visible area; however this integration makes IAV to sense target vehicles even they are blocked by obstacles. In this system, C2C ECU keeps monitoring the target vehicles on the road and sends a warning to IAV controller when it detects any event or risky situation. Finally IAV avoids the collision with the target vehicle by reducing the moving speed or generating a new path.
2009-04-20
Technical Paper
2009-01-1480
Danny Gangapersaud
Car navigation systems are evolving to support a host of new functions, including vehicle location and navigation capabilities, and are fast becoming the brain of the car, where entertainment, safety and autonomous driving converge. Increased functionalities require higher- performance processors—and studies have shown that as operating frequency increases to provide higher performance, power consumption drastically increases. Further, as semiconductor technologies move to smaller process nodes to achieve higher performance, operating and leakage power also increase due to the low voltage-threshold (VT) transistors and high operating voltages. As a result, the need for thermal dissipation becomes a bottleneck in high-frequency silicon designs. To support the requirements of these emerging navigational hubs, OEMs are requiring electronic components that offer greater functionality while consuming little power.
2009-04-20
Technical Paper
2009-01-1482
Gao Zhenhai, Wang Bing
Vehicle lane keeping system is becoming a new research focus of drive assistant system except adaptive cruise control system. As we all known, vehicle lateral dynamics show strong nonlinear and time-varying with the variety of longitudinal velocity, especially tire’s mechanics characteristic will change from linear characteristic under low speed to strong nonlinear under high speed. For this reason, the traditional PID controller and even self-tuning PID controller, which need to know a precise vehicle lateral dynamics model to adjust the control parameter, are too difficult to get enough accuracy and the ideal control quality. Based on neural network’s ability of self-learning, adaptive and approximate to any nonlinear function, an adaptive PID control algorithm with BP neural network self-tuning online was proposed for vehicle lane keeping.
2009-04-20
Technical Paper
2009-01-1481
Gao Zhenhai, Guo Jian, Deng Guohui
Research of Adaptive Cruise Control (ACC) is an important issue of intelligent vehicle (IV). As we all known, a real and experienced driver can control vehicle's speed very well under every traffic environment of ACC working. So a direct and feasible way for establishing ACC controller is to build a human-like longitudinal control algorithm with the simulation of driver behavior of speed control. In this paper, a novel fuzzy self-tuning control algorithm of ACC is established and this controller's parameters can be tuned on-line based on the evaluation indexes that can describe how the driver consider the quality of dynamical characteristic of vehicle longitudinal dynamics. With the advantage of the controller's parameter on-line self-tuning, the computational workload from matching design of ACC controller is also efficiently reduced.
2009-04-20
Technical Paper
2009-01-1291
Shunji Miyahara, Kenneth Freeman, Anatoli Koulinitch, Kevin Tiedje
A practical and low cost Blind Spot Monitoring system is proposed. By using a single camera, the range and azimuth position of a vehicle in a blind spot are measured. The algorithm is based on the proposed RWA (Range Window Algorithm). The camera is installed on the door mirror and monitoring the side and rear of the host vehicle. The algorithm processes the image and identifies range and azimuth angle of the vehicle in the adjacent lane. This algorithm is applied to real situations. The 388 images including several kinds of vehicles are analyzed. The detection rate is 86% and the range accuracy is 1.6[m]. The maximum detection range is about 30[m].
2009-04-20
Technical Paper
2009-01-1290
Azim Eskandarian, Damoon Soudbakhsh, Johann Moreau, Julien Karcher
An active torque control steering system is developed and implemented in a car simulator. The simulator has a comprehensive and accurate full vehicle dynamics and road/environment models. A simple model of the driving simulator’s vehicle was developed and a PID controller, which uses the vehicle’s yaw angle, and position, was designed to control vehicle steering torque. The controller is then integrated with the driving simulator program, emulating the real world conditions. The developed system was tested in various obstacle avoidance and lane change scenarios in the car simulator, and the vehicle was able to avoid the stationary obstacles autonomously.
2009-04-20
Technical Paper
2009-01-1288
Christian Lundquist, Thomas B. Schön
There are more and more systems emerging making use of measurements from a forward looking radar and a forward looking camera. It is by now well known how to exploit this data in order to compute estimates of the road geometry, tracking leading vehicles, etc. However, there is valuable information present in the radar concerning stationary objects, that is typically not used. The present work shows how radar measurements of stationary objects can be used to obtain a reliable estimate of the free space in front of a moving vehicle. The approach has been evaluated on real data from highways and rural roads in Sweden.
2009-04-20
Technical Paper
2009-01-1287
King Tin Leung, James Whidborne, David Purdy, Alain Dunoyer
This paper uses data from a GPS/INS integrated device to investigate the feasibility of estimating vehicle states using a consumer grade GPS and INS. The GPS data is sampled at 1Hz to represent a consumer grade GPS. This data is then fused with INS data in a dual Kinematic Kalman Filter (KKF). The first KKF (yaw KKF) predicts heading angle, bias in gyroscope and sideslip angle. The second KKF (velocity KKF) predicts longitudinal and lateral velocities as well as the accelerometer biases. Due to the multirate sampling, discontinuities in the estimated states occur, hence, a line interpolation algorithm of two different orders (i.e. linear and quadratic) are implemented into the KKF. Results show that the algorithm is able to reduce the discontinuities in the velocity predictions but with an increase in error when the sideslip saturates.
2009-04-20
Technical Paper
2009-01-1286
Yilu Zhang, William C. Lin, Yuen-Kwok Steve Chin
By adapting vehicle control systems to the skill level of the driver, the overall vehicle active safety provided to the driver can be further enhanced for the existing active vehicle controls, such as ABS, Traction Control, Vehicle Stability Enhancement Systems. As a follow-up to the feasibility study in [1], this paper provides some recent results on data-driven driving skill characterization. In particular, the paper presents an enhancement of discriminant features, the comparison of three different learning algorithms for recognizer design, and the performance enhancement with decision fusion. The paper concludes with the discussions of the experimental results and some of the future work.
Viewing 1 to 30 of 697

Filter