Display:

Results

Viewing 241 to 270 of 9830
2014-04-01
Technical Paper
2014-01-1066
Akira Kikusato, Katsuya Terahata, Kusaka Jin, Yasuhiro Daisho
Abstract The objective of this work is to develop a numerical simulation model of spark ignited (SI) engine combustion and thereby to investigate the possibility of reducing heat losses and improving thermal efficiency by applying a low thermal conductivity and specific heat material, so-called heat insulation coating, to the combustion chamber wall surface. A reduction in heat loss is very important for improving SI engine thermal efficiency. However, reducing heat losses tends to increase combustion chamber wall temperatures, resulting in the onset of knock in SI engines. Thus, the numerical model made it possible to investigate the interaction of the heat losses and knock occurrence and to optimize spark ignition timing to achieve higher efficiency. Part 2 of this work deals with the investigations on the effects of heat insulation coatings applied to the combustion chamber wall surfaces on heat losses, knock occurrence and thermal efficiency. To reduce engine heat losses and improve the thermal efficiency, the heat insulation coating was applied to the combustion chamber wall surfaces.
2014-04-01
Technical Paper
2014-01-1843
Saeed Asgari, Xiao Hu, Michael Tsuk, Shailendra Kaushik
The thermal behavior of a fluid-cooled battery can be modeled using computational fluid dynamics (CFD). Depending on the size and complexity of the battery module and the available computing hardware, the simulation can take days or weeks to run. This work introduces a reduced-order model that combines proper orthogonal decomposition, capturing the variation of the temperature field in the spatial domain, and linear time-invariant system techniques exploiting the linear relationship between the resulting proper orthogonal decomposition coefficients and the uniform heat source considered here as the input to the system. After completing an initial CFD run to establish the reduction, the reduced-order model runs much faster than the CFD model. This work will focus on thermal modeling of a single prismatic battery cell with one adjacent cooling channel. The extension to the multiple input multiple output case such as a battery module will be discussed in another paper.
2014-04-01
Technical Paper
2014-01-1980
Vincent Laurent, Christophe Then, Gerhard Silber
Comfort is a main factor in customer's decision when buying a car. The seat plays a very important role, as it is the interface between occupant and vehicle. Pressure distribution is today's most common approach to characterize seat comfort, but it shows limitations. Analysis of human inter-tissue stress tends to be relevant for an objective comfort assessment. This paper presents the construction and validation of a CAE human model, based on Magnetic Resonance Imaging scans and in-vivo tests data. Correlation between objective criteria and subjective evaluation will be investigated, comfort performance of a real seat will be predicted.
2014-04-01
Technical Paper
2014-01-0460
Chuqi Su, Zhengzhong Chu
Driving comfort is one of the most important indexes for automobile comfort. Driving posture comfort is closely related to the drivers' joint angles and joint torques. In present research, a new method is proposed to identify the most comfortable driving posture based on studying the relation between drivers' joint angles and joint torques. In order to truly reflect a driving situation, the accurate human driving model of 50 percent of the size of Chinese male is established according to the human body database of RAMSIS firstly. Biomechanical model based on accurate human driving model is also developed to analyze and obtain dynamic equations of human driving model by employing Kane method. The joint torque-angle curves of drivers' upper and lower limbs during holding wheel or pedal operation can be obtained through dynamic simulation in the MATLAB. Through curve-fitting analysis, the minimum joint torque of a driver' limb and the optimal joint angel can be found. As an important reference, these parameters can be used to optimize driving seat structure and offer an important support for the optimization of cab package.
2014-04-01
Technical Paper
2014-01-0655
Akihito Hosoi, Atsushi Morita, Naoto Suzuki
At the engine restart, when the temperature of the catalytic converter is low, additional fuel consumption would be required to warm up the catalyst for controlling exhaust emission.The aim of this study is to find a thermally optimal way to reduce fuel consumption for the catalyst warm up at the engine restart, by improving the thermal retention of the catalytic converter in the cool down process after the previous trip. To make analysis of the thermal flow around the catalytic converter, a 2-D thermal flow model was constructed using the thermal network method. This model simulates the following processes: 1) heat conduction between the substrate and the stainless steel case, 2) heat convection between the stainless steel case and the ambient air, 3) heat convection between the substrate and the gas inside the substrate, 4) heat generation due to chemical reactions. The points to be especially noted are: a) in the cool down process, free convection of the gas inside the substrate was based on Darcy's law, b) in the engine operating condition, chemical phenomena and species mass balance in gas phase and catalyst surface was considered.
2014-04-01
Technical Paper
2014-01-1904
Xueyu Zhang, Andrej Ivanco, Xinran Tao, John Wagner, Zoran Filipi
This paper investigates the impact of battery cooling ancillary losses on fuel economy, and optimal control strategy for a series hybrid electric truck with consideration of cooling losses. Battery thermal model and its refrigeration-based cooling system are integrated into vehicle model, and the parasitic power consumption from cooling auxiliaries is considered in power management problem. Two supervisory control strategies are compared. First, a rule-based control strategy is coupled with a thermal management strategy; it controls power system and cooling system separately. The second is optimal control strategy developed using Dynamic Programming; it optimizes power flow with consideration of both propulsion and cooling requirement. The result shows that battery cooling consumption could cause fuel economy loss as high as 5%. When dynamic programming coordinates control of the powertrain and the cooling system in an optimal way, the fuel consumption penalty due to cooling losses is reduced to 3.7%, and battery duty cycle becomes milder.
2014-04-01
Technical Paper
2014-01-0455
Alessandro Naddeo, Nicola Cappetti, Orlando Ippolito
Abstract General comfort may be defined as the “level of well-being” perceived by humans in a working environment. The state-of-the-art about evaluation of comfort/discomfort shows the need for an objective method to evaluate the “effect in the internal body” and “perceived effects” in main systems of comfort perception. In the early phases of automotive design, the seating and dashboard command can be virtually prototyped, and, using Digital Human Modeling (DHM) software, several kinds of interactions can me modeled to evaluate the ergonomics and comfort of designed solutions. Several studies demonstrated that DHM approaches are favorable in virtual reachability and usability tests as well as in macro-ergonomics evaluations, but they appear insufficient in terms of evaluating comfort. Comfort level is extremely difficult to detect and measure; in fact, it is affected by individual perceptions and always depends on the biomechanical, physiological, and psychological state of the tester during task execution.
2014-04-01
Technical Paper
2014-01-1032
Mohammed K Billal, B V Moorthy, Dan Aquilina, Steven Schenten
Abstract A snap-fit is a form-fitting joint, which is used to assemble plastic parts together. Snap-fits are available in different forms like a projecting clip, thicker section or legs in one part, and it is assembled to another part through holes, undercuts or recesses. The main function of the snap-fit is to hold the mating components, and it should withstand the vibration and durability loads. Snap-fits are easy to assemble, and should not fail during the assembling process. Based on the design, these joints may be separable or non-separable. The non- separable joints will withstand the loads till failure, while separable joints will withstand only for the design load. The insertion and the retention force calculation for the snaps are very essential for snap-fit design. The finite element analysis plays a very important role in finding the insertion and the retention force values, and also to predict the failure of the snaps and the mating components during this process. The snap insertion and retention simulation is highly non-linear, due to the non-linear material behavior and contact between the mating components.
2014-04-01
Technical Paper
2014-01-0348
Rajiv Mehta, Mark Hadley
With the ever increasing pressure to improve the fuel economy of vehicles, there has been a corresponding interest in reducing the mass and size of vehicles. While mass is easily quantifiable, vehicle size, particularly the notion of “interior space” as perceived by the customer, is not. This paper explores different ways in which vehicle spaciousness can be quantified and explores new metrics based on customer verbatims. A novel ‘spaciousness calculator’ combines individual metrics to provide a singular holistic rating for spaciousness, useful during vehicle development. Beyond spaciousness, the paper discusses techniques to quantify the ‘packaging efficiency’ of a vehicle; this allows engineers to maximize the interior space for a given exterior size.
2014-04-01
Technical Paper
2014-01-0648
Steve De Vos, Kristian Haehndel, Torsten Frank, Frieder Christel, Sylvester Abanteriba
Modern exhaust systems contain not only a piping network to transport hot gas from the engine to the atmosphere, but also functional components such as the catalytic converter and turbocharger. The turbocharger is common place in the automotive industry due to their capability to increase the specific power output of reciprocating engines. As the exhaust system is a main heat source for the under body of the vehicle and the turbocharger is located within the engine bay, it is imperative that accurate surface temperatures are achieved. A study by K. Haehndel [1] implemented a 1D fluid stream as a replacement to solving 3D fluid dynamics of the internal exhaust flow. To incorporate the 3D effects of internal fluid flow, augmented Nusselt correlations were used to produce heat transfer coefficients. It was found that the developed correlations for the exhaust system did not adequately represent the heat transfer of the turbocharger. This paper addresses the fluid flow phenomena present in the turbine volute and applies augmented Nusselt correlations to accurately represent the heat transfer coefficients of the internal volute surface.
2014-04-01
Technical Paper
2014-01-0630
Mark Scibilia, Tim Giberson
As fuel prices continue to rise automotive manufacturers continue to push their suppliers to provide technology that improves the potential fuel efficiency of their applications. In addition there is an increasing trend towards smaller, lighter and more compact vehicles to mitigate the automotive carbon footprint. These movements necessitated the development of a new compact, low mass, variable displacement compressor to match the requirements for these smaller and more efficient vehicles. The new Delphi MVC, or Miniature Variable Compressor, meets these requirements by integrating the high efficiency of our latest swashplate variable compressor design into a compact and lightweight package. This design can be offered in a range of displacements from 80 to 100cc and can be offered as either internally or externally controlled to support the customer's needs.
2014-04-01
Technical Paper
2014-01-0694
Shenghan Jin, Predrag Hrnjak
The paper presents a semi-empirical model to predict refrigerant and lubricant inventory in both evaporator and condenser of an automotive air conditioning (MAC) system. In the model, heat exchanger is discretized into small volumes. Temperature, pressure and mass inventory are calculated by applying heat transfer, pressure drop and void fraction correlations to these volumes respectively. Refrigerant and lubricant are treated as a zeotropic mixture with a temperature glide. As refrigerant evaporates or condenses, thermophysical properties are evaluated accordingly with the change of lubricant concentration. Experimental data is used to validate the model. As a result, refrigerant and lubricant mass is predicted within 20% in the evaporator. However, in the condenser, lubricant mass was consistently under-predicted while refrigerant mass was predicted within 15% error. Moreover, the lubricant under-prediction becomes more significant at higher Oil Circulation Ratio (OCR). The analysis showed that the lubricant is separated from the flow in the condenser header and starts to accumulate in the bottom channels.
2014-04-01
Technical Paper
2014-01-0726
Alaa El-Sharkawy, Ahmed Uddin
In this paper, thermal models are developed based on experimental test data, and the physics of thermal systems. If experimental data is available, the data can be fitted to mathematical models that represent the system response to changes in its input parameters. Therefore, empirical models which are based on test data are developed. The concept of time constant is presented and applied to development of transient models. Mathematical models for component temperature changes during transient vehicle driving conditions are also presented. Mathematical models for climate control system warm up and cool-down are also discussed. The results show the significance of adopting this concept in analysis of vehicle test data, and in development of analytical models. The developed models can be applied to simulate the system or component response to variety of changes in input parameters. As a result, significant testing and simulation time can be saved during the vehicle development process.
2014-04-01
Technical Paper
2014-01-0669
Tibor Kiss, Jason Lustbader
The operation of air conditioning (A/C) systems is a significant contributor to the total amount of fuel used by light-and heavy-duty vehicles. Therefore, continued improvement of the efficiency of these mobile A/C systems is important. Numerical simulation has been used to reduce the system development time and to improve the electronic controls, but numerical models that include highly detailed physics run slower than desired for carrying out vehicle-focused drive cycle-based system optimization. Therefore, faster models are needed even if some accuracy is sacrificed. In this study, a validated model with highly detailed physics, the “Fully-Detailed” model, and two models with different levels of simplification, the “Quasi-Transient” and the “Mapped-Component” models, are compared. The Quasi-Transient model applies some simplifications compared to the Fully-Detailed model to allow faster model execution speeds. The Mapped-Component model is similar to the Quasi-Transient model except instead of detailed flow and heat transfer calculations in the heat exchangers, it uses lookup tables created with the Quasi-Transient model.
2014-04-01
Technical Paper
2014-01-0686
Mingyu Wang, Edward Wolfe, Debashis Ghosh, Jeffrey Bozeman, Kuo-huey Chen, Taeyoung Han, Hui Zhang, Edward Arens
Traditional vehicle air conditioning systems condition the entire cabin to a comfortable range of temperature and humidity regardless of the number of passengers in the vehicle. The A/C system is designed to have enough capacity to provide comfort for transient periods when cooling down a soaked car. Similarly for heating, the entire cabin is typically warmed up to achieve comfort. Localized heating and cooling, on the other hand, focuses on keeping the passenger comfortable by forming a micro climate around the passenger. This is more energy efficient since the system only needs to cool the person instead of the entire cabin space and cabin thermal mass. It also provides accelerated comfort for the passenger during the cooling down periods of soaked cars. Additionally, the system adapts to the number of passengers in the car, so as to not purposely condition areas that are not occupied. The present paper reports on a fundamental study of localized cooling to achieve comfort in a vehicle environment.
2014-04-01
Technical Paper
2014-01-0687
Rupesh Sonu Kakade
We propose a composite thermal model of the vehicle passenger compartment that can be used to predict and analyze thermal comfort of the occupants of a vehicle. Physical model is developed using heat flow in and out of the passenger compartment space, comprised of glasses, roof, seats, dashboard, etc. Use of a model under a wide variety of test conditions have shown high sensitivity of compartment air temperature to changes in the outside air temperature, solar heat load, temperature and mass flow of duct outlet air from the climate control system of a vehicle. Use of this model has subsequently reduced empiricism and extensive experimental tests for design and tuning of the automatic climate control system. Simulation of the model allowed several changes to the designs well before the prototype hardware is available. In addition to the reduced vehicle field tests and wind tunnel tests man hours and the cost associated with them, simulation of the model allowed for the greater potential benefits of increased accuracy and optimized heating and cooling of the passenger compartment to be achieved.
2014-04-01
Technical Paper
2014-01-0851
Yousof Azizi, Vaidyanadan Sundaram, Patricia Davies, Anil Bajaj
Flexible polyurethane foam is the main cushioning element used in car seats. Optimization of an occupied seat's static and dynamic behavior requires models of foam that are accurate over a wide range of excitation and pre-compression conditions. In this research, a method is described to estimate the parameters of a global model of the foam behavior from data gathered in a series of impulse tests at different settling points. The estimated model is capable of describing the responses gathered from all the impulse tests using a unique set of parameters. The global model structure includes a nonlinear elastic term and a hereditary viscoelastic term. The model can be used to predict the settling point for each mass used and, by expanding the model about that settling point, local linear models of the response to impulsive excitation can be derived. From this analysis the relationship between the local linear model parameters and the global model parameters is defined. A series of experiments are conducted using different sized masses on the foam block.
2014-04-01
Technical Paper
2014-01-0652
Hai Wu, Wen Chen, Meng-Feng Li, Xinlei Wang
Abstract A hot and cold water mixing process with a steam condenser and a chilled water heat exchanger is set up for an engine EGR fouling test. The test rig has water recycled in the loop of a pump, heat exchangers, a three-way mixing valve, and a test EGR unit. The target unit temperature is controlled by a heating, cooling and mixing process with individual valves regulating the flow-rate of saturated steam, chilled water and mixing ratio. The challenges in control design are the dead-time, interaction, nonlinearity and multivariable characteristics of heat exchangers, plus the flow recycle in the system. A systems method is applied to extract a simple linear model for control design. The method avoids the nonlinearity and interaction among different temperatures at inlet, outlet and flow-rate. The test data proves the effectiveness of systems analysis and modeling methodology. As a result, the first-order linear model facilitates the controller design. The simulation studies with internal recycle processes produced promising results.
2014-04-01
Technical Paper
2014-01-0672
Andrew P. Roberts, Richard Brooks, Philip Shipway, Robert Gilchrist, Ian Pegg
Abstract The thermal efficiency of an internal combustion engine at steady state temperatures is typically in the region of 25-35%[1]. In a cold start situation, this reduces to be between 10% and 20% [2]. A significant contributor to the reduced efficiency is poor performance by the engine lubricant. Sub optimal viscosity resulting from cold temperatures leads to poor lubrication and a subsequent increase in friction and fuel consumption. Typically, the engine lubricant takes approximately twenty minutes [3] to reach steady state temperatures. Therefore, if the lubricant can reach its steady state operating temperature sooner, the engine's thermal efficiency will be improved. It is hypothesised that, by decoupling the lubricant from the thermal mass of the surrounding engine architecture, it is possible to reduce the thermal energy loss from the lubricant to the surrounding metal structure in the initial stages of warm-up. Using a bespoke oil flow rig described in the methodology section of this paper, it has been demonstrated that the addition of a 2 mm thick nylon tube, increases the maximum temperature differential between the lubricant and surrounding metal by 145% and reduces the energy losses from the gallery by 50%.
2014-04-01
Technical Paper
2014-01-0729
Alaa El-Sharkawy, Asif Salahuddin, Brian Komarisky
In this paper a design methodology for automotive heat exchangers has been applied which brings robustness into the design process and helps to optimize the design goals: as to maintain an optimal coolant temperature and to limit the vehicle underhood air temperature within a tolerable limit. The most influential design factors for the heat exchangers which affect the goals have been identified with that process. The paper summarizes the optimization steps necessary to meet the optimal functional goals for the vehicle as mentioned above. Taguchi's [1] Design for Six Sigma (DFSS) methods have been employed to conduct this analysis in a robust way.
2014-04-01
Technical Paper
2014-01-0802
Tau Tyan, Jeff Vinton, Eric Beckhold, Xiangtong Zhang, Jeffrey Rupp, Nand Kochhar, Saeed Barbat
The objective of this paper focused on the modeling of an adaptive energy absorbing steering column which is the first phase of a study to develop a modeling methodology for an advanced steering wheel and column assembly. Early steering column designs often consisted of a simple long steel rod connecting the steering wheel to the steering gear box. In frontal collisions, a single-piece design steering column would often be displaced toward the driver as a result of front-end crush. Over time, engineers recognized the need to reduce the chance that a steering column would be displaced toward the driver in a frontal crash. As a result, collapsible, detachable, and other energy absorbing steering columns emerged as safer steering column designs. The safety-enhanced construction of the steering columns, whether collapsible, detachable, or other types, absorb rather than transfer frontal impact energy. Recently, more advanced steering column designs with adaptive features, mechanically or pyrotechnically activated, have been introduced for different crash conditions, including different crash severity, occupant mass/size, seat position and seatbelt usage.
2014-04-01
Technical Paper
2014-01-1024
Michael Kolich, Daniel Dooge, Mark Doroudian, Efim Litovsky, Richard Ng, Jacob Kleiman
Thermophysical properties of materials used in the design of automotive interiors are needed for computer simulation of climate conditions inside the vehicle. These properties are required for assessment of the vehicle occupants' thermal sensation as they come in contact with the vehicle interior components, such as steering wheels, arm rests, instruments panel and seats. This paper presents the results of an investigation into the thermophysical properties of materials which are required for solving the non-linear Fourier equations with any boundary conditions and taking into account materials' specific heat, volume density, thermal conductivity, and thermal optical properties (spectral and total emissivity and absorptivity). The model and results of the computer simulation will be published in a separate paper. The tested materials included foam, leather/foam laminated materials, and a few plastic laminated materials, which were used in the construction of various automotive interior parts.
2014-04-01
Technical Paper
2014-01-1023
Dinesh Pahuja, Arpit Kapila, Sanjay Haldar, Sandeep Raina
Interiors of past vehicles were created to satisfy specific functions with appearance being a secondary consideration, but in the present & future market with ever increasing vehicle luxury, decoration of vehicle has become a prime focus in automobile industry along with the safety & economy. Automotive interiors have evolved over the years from a collection of trims covering bare sheet metal panels to add quality & richness of interior cabin, ultimately delivering greater value to customers. One such area in interiors is Side door trims serving the dual purpose of functionality and creating a pleasing environment too. The aesthetic appeal to the Side door trim is added usually through a Door trim insert having a decorative skin pasted on to the plastic base. And the selection of pasting technique for pasting decorative film on to the plastic base insert is a challenge for an automotive interior designer. The objective of this paper will be to review technologies available for manufacturing Door trim inserts with decorative skins, and discuss a direction toward selecting an appropriate pasting technique with cost effectiveness.
2014-04-01
Technical Paper
2014-01-1033
Seishiro Murata, Hiroyuki Ito, Steven Sopher
Flexible polyurethane (PU) foam has been widely used for seat cushions in automotive passenger vehicles due to the excellent cushioning performance and the ability to shape mold. Originally introduced in the late 1950's, it has been used for more than 50 years. However, there is a limitation using polyurethane foam with efforts to reduce the weight and address ever increasing risks to environment. This paper provides information about a new automotive seat concept which does not use polyurethane foam at all. Expanded polyolefin foam is used for this application to replace polyurethane foam and achieve comparable cushioning performance. Other features of the material include 100% recyclability, and no VOC's. By replacing polyurethane foam with expanded thermoplastic foam, hazardous outgassing is eliminated during the seat cushion production, thus improving workplace environmental health and safety.
2014-03-31
Article
Southco expands its tilt display mount (T Series) product line with the AV-D25 mount basic that provides proven tilt positioning and offers a solution for moving heavy panels and displays.
2014-03-31
Article
Maximatecc introduces the CCpilot VC product platform featuring an efficient ARM core, advanced software platform and readable 5-in (127-mm) display.
2014-03-31
Article
A comprehensive range of Isobus virtual terminal designs from American Industrial Systems are suitable for special applications on off-highway vehicles.
2014-03-31
Standard
J2972_201403
This Information Report contains a definition of road vehicle hands-free operation. This definition applies to driver inputs to a wireless communications device used for person-to-person wireless communications while driving. This report applies to both original equipment manufacturers’ and aftermarket devices. The definition does not apply to outputs, e.g., visual or haptic feedback, from a communication system or device, regardless of the modality of human-machine interface. It also does not apply to parallel or redundant manual control operating modes.
2014-03-27
Article
TRW Automotive's second-generation active control retractor system (ACR2) has started production on the 2014 Cadillac CTS.
2014-03-27
WIP Standard
J2763
This SAE Standard covers the Mini-Shed testing methodology to measure the rate of refrigerant loss from an automotive air conditioning (A/C) system. This SAE procedure encompasses both front and rear air conditioning systems utilizing refrigerants operating under sub-critical conditions.
Viewing 241 to 270 of 9830

Filter

  • Article
    562
  • Book
    17
  • Collection
    17
  • Magazine
    342
  • Technical Paper
    7436
  • Standard
    1456