Display:

Results

Viewing 211 to 240 of 10400
2016-04-05
Technical Paper
2016-01-0283
Joydip Saha, Harry Chen, Sadek Rahman
Abstract More stringent federal emission regulations and fuel economy requirements have driven the automotive industry toward more sophisticated vehicle thermal management systems in order to best utilize the waste heat and minimize overall power consumption. With all new technologies and requirements, how to properly design, optimize, and control the vehicle thermal and cooling systems become great challenges to automotive engineers. Model based approach has become essential to the new thermal management system architectures design and evaluation of the optimal system solutions. This paper will discuss how the model based vehicle thermal system simulation tools have been developed from analytical & empirical data, and have been used for assessment and development of new thermal management system architectures.
2016-04-05
Journal Article
2016-01-0084
Paul Weindorf, James Krier, Carl Evans
Abstract An optical configuration has been developed which offers a seamless appearance where the display aperture is less visible in the “off” condition and is minimized in the “on” condition.
2016-04-05
Journal Article
2016-01-0310
Xinran Tao, John R. Wagner
Abstract The pursuit of greater fuel economy in internal combustion engines requires the optimization of all subsystems including thermal management. The reduction of cooling power required by the electromechanical coolant pump, radiator fan(s), and thermal valve demands real time control strategies. To maintain the engine temperature within prescribed limits for different operating conditions, the continual estimation of the heat removal needs and the synergistic operation of the cooling system components must be accomplished. The reductions in thermal management power consumption can be achieved by avoiding unnecessary overcooling efforts which are often accommodated by extreme thermostat valve positions. In this paper, an optimal nonlinear controller for a military M-ATV engine cooling system will be presented. The prescribed engine coolant temperature will be tracked while minimizing the pump, fan(s), and valve power usage.
2016-04-05
Journal Article
2016-01-0233
Masayoshi Mori, Manabu Matsumoto, Makoto Ohtani
Abstract The practical application of heat recovery using thermoelectrics requires the realization of reasonable cost effectiveness. Therefore, a thermoelectric generator (TEG) structure that can compatibly increase efficiency and reduce cost was investigated with the aim of enhancing cost effectiveness. To increase efficiency, a method of using a vacuum space structure to reduce the TEG size was investigated to enable installation just after the close-coupled catalyzer, which is subject to many space restrictions. It was found that by making it possible to use high temperature exhaust heat, power generation efficiency can be increased to approximately twice that of the typical under floor installation. In addition, coupled simulation of heat transfer and power generation using FEM, 1D cost effectiveness simulations, and bench tests were performed with the aim of reducing cost.
2016-04-05
Journal Article
2016-01-0238
Gang Liu, Zheng Zhao, Hao Guan, Yaqi Liu, Chunhui Zhang, Dingwei Gao, Wuming Zhou, Juergen Knauf
Abstract Reducing fuel consumption is a major challenge for vehicle, especially for SUV. Cooling loss is about 30% in total energy loss under NEDC (New European Driving Cycle) cycle. It is necessary to optimize vehicle thermal management system to improve fuel economy. Otherwise, rapid warm-up is beneficial for friction reduction and passenger comfort in cold-start. Vehicle thermal behavior is influenced by cooling system layout, new technology and control strategy. Thermal management simulation is effective to show the energy flow and fuel consumption under the influence of new technology under NEDC cycle. So 1D thermal management simulation model is created, including vehicle, cooling system, lubrication system and detailed engine model with all friction components. And the interrelations between all the components are considered in the model.
2016-04-05
Journal Article
2016-01-0236
Forrest Jehlik, Eric Rask, Michael Duoba
Abstract It is widely understood that cold ambient temperatures negatively impact vehicle system efficiency. This is due to a combination of factors: increased friction (engine oil, transmission, and driveline viscous effects), cold start enrichment, heat transfer, and air density variations. Although the science of quantifying steady-state vehicle component efficiency is mature, transient component efficiencies over dynamic ambient real-world conditions is less understood and quantified. This work characterizes wheel assembly efficiencies of a conventional and electric vehicle over a wide range of ambient conditions. For this work, the wheel assembly is defined as the tire side axle spline, spline housing, bearings, brakes, and tires. Dynamometer testing over hot and cold ambient temperatures was conducted with a conventional and electric vehicle instrumented to determine the output energy losses of the wheel assembly in proportion to the input energy of the half-shafts.
2016-04-05
Journal Article
2016-01-0251
Somnath Sen, Mayur Selokar
Abstract Maintaining thermal comfort is one of the key areas in vehicle HVAC design wherein airflow distribution inside the cabin is one of the important elements in deciding comfort sensation. However, the energy consumption of air conditioning system needs to stay within the efficient boundaries to efficiently cool down the passenger cabin otherwise the vehicle energy consumption may get worsened to a great extent. One approach to optimize this process is by using numerical methods while developing climate systems. The present paper focuses on the numerical study of cabin aiming and cabin cool-down of a passenger car by using computational fluid dynamics (CFD). The main goal is to investigate the cabin aiming with a view to figure out the minimum average velocity over the passengers at all vent positions. Cabin aiming ensures substantial amount of airflow reaches to the passengers as well as every corners of the cabin across the wide climatic range.
2016-04-05
Journal Article
2016-01-0243
Jingwei Zhu, Stefan Elbel
Abstract Expansion work recovery by two-phase ejector is known to be beneficial to vapor compression cycle performance. However, one of the biggest challenges with ejector vapor compression cycles is that the ejector cycle performance is sensitive to working condition changes which are common in automotive applications. Different working conditions require different ejector geometries to achieve maximum performance. Slightly different geometries may result in substantially different COPs under the same conditions. The ejector motive nozzle throat diameter (motive nozzle restrictiveness) is one of the key parameters that can significantly affect ejector cycle COP. This paper presents a new two-phase nozzle restrictiveness control mechanism which is possibly applicable to two-phase ejectors used in vapor compression cycles.
2016-04-05
Journal Article
2016-01-0262
Matthew A. Jeffers, Larry Chaney, John P. Rugh
Abstract When operated, the cabin climate control system is the largest auxiliary load on a vehicle. This load has significant impact on fuel economy for conventional and hybrid vehicles, and it drastically reduces the driving range of all-electric vehicles (EVs). Heating is even more detrimental to EV range than cooling because no engine waste heat is available. Reducing the thermal loads on the vehicle climate control system will extend driving range and increase the market penetration of EVs. Researchers at the National Renewable Energy Laboratory have evaluated strategies for vehicle climate control load reduction with special attention toward grid-connected electric vehicles. Outdoor vehicle thermal testing and computational modeling were used to assess potential strategies for improved thermal management and to evaluate the effectiveness of thermal load reduction technologies. A human physiology model was also used to evaluate the impact on occupant thermal comfort.
2016-04-05
Journal Article
2016-01-0258
Jason Aaron Lustbader, Bidzina Kekelia, Jeff Tomerlin, Cory J. Kreutzer, Skip Yeakel, Steven Adelman, Zhiming Luo, John Zehme
Abstract Annual fuel use for sleeper cab truck rest period idling is estimated at 667 million gallons in the United States, or 6.8% of long-haul truck fuel use. Truck idling during a rest period represents zero freight efficiency and is largely done to supply accessory power for climate conditioning of the cab. The National Renewable Energy Laboratory’s CoolCab project aims to reduce heating, ventilating, and air conditioning (HVAC) loads and resulting fuel use from rest period idling by working closely with industry to design efficient long-haul truck thermal management systems while maintaining occupant comfort. Enhancing the thermal performance of cab/sleepers will enable smaller, lighter, and more cost-effective idle reduction solutions. In addition, if the fuel savings provide a one- to three-year payback period, fleet owners will be economically motivated to incorporate them.
2016-04-05
Journal Article
2016-01-0261
Lili Feng, Predrag Hrnjak
Abstract This paper presents a simulation model for a reversible air conditioning and heat pump system for electric vehicles. The system contains a variable speed compressor, three microchannel heat exchangers, an accumulator, and two electronic expansion valves. Heat exchangers are solved by discretizing into cells. Compressor and accumulator models are developed by fitting data with physical insights. Expansion valves are modeled by isenthalpic processes. System performance is calculated by connecting all parts in the same way as the physical system and solved iteratively. The model is reasonably validated against experimental data from a separate experimental study. Future improvement is needed to take into account maldistribution in outdoor heat exchanger working as an evaporator in HP mode. Charge retention in components also requires further study.
2016-04-05
Journal Article
2016-01-1402
Jeffrey Hurlbut, Daniel Cashen, Emily Robb, Lora L. Spangler, Jim Eckhart
Abstract Head-up display (HUD) technology creates inherent driver safety advantages by displaying critical information directly in the driver’s line of sight, reducing eyes off road and accommodation time. This is accomplished using a system of relay optics and windshield reflection to generate a virtual image that appears to hover over the hood near the bumper. The windshield is an integral optical component of the HUD system, but unfortunately the windshield-air interface causes a double image ghost effect as a result of refractive index change, reducing HUD image clarity. Current technology uses a constant angle wedged PVB windshield interlayer to eliminate double image at a single driver height. However, the HUD double image persists for all other viewing locations. Eastman Chemical Company has developed a new interlayer technology which eliminates the double image at all driver locations by tuning the wedge angle as a function of driver occupant seated height.
2016-04-05
Technical Paper
2016-01-0648
Sinan Eroglu, Ipek Duman, Alp Ergenc, Rıfat Yanarocak
Abstract The exhaust manifold bridges the gap between the engine structure and the hot-end after-treatment system, the burned in-cylinder gases are disposed through the manifold. The automotive exhaust manifolds are designed and developed for providing a smooth flow with low/least back pressure and must be able to withstand extreme heating under very high temperatures and cooling under low temperatures. The paper presents a theoretical study aiming to investigate the feasibility of three different CAE approaches and techniques used for the simulation of exhaust manifold fluid flow and the accompanying thermal distribution. The main difficulty emanates from the pulsating nature of fluid flow inside the engine exhaust manifold. To verify the outcome of each solution experimental measurements of the manifold temperatures have been performed.
2016-04-05
Journal Article
2016-01-0656
Jung Hyun Kim, Taewoo Kim, SungJin Park, JungJae Han, Choongsoo Jung, Young rock Chung, Sangsoo Pae
Abstract In cold start driving cycles, high viscosity of the lubrication oil (engine oil) increases the mechanical friction losses compared with warmed up condition. Thus, an engine oil warm up system can provide the opportunity to reduce the mechanical friction losses during cold start. In this study, an engine oil heater using EGR is used for the fast warm up of the engine oil. This paper presents the effect of the engine oil heater on the fuel economy and emissions over a driving cycle (NEDC). A numerical model is developed to simulate the thermal response of the powertrain using multi-domain 1-D commercial powertrain simulation software (GT-Suite) and it is calibrated using test data from a full size sedan equipped with a 2.0L diesel engine. The model consists of an engine model, coolant circuit model, oil circuit model, engine cooling model, friction model, and ECU model.
2016-04-05
Journal Article
2016-01-0729
Takeshi Okamoto, Noboru Uchida
Abstract To overcome the trade-offs of thermal efficiency with energy loss and exhaust emissions typical of conventional diesel engines, a new diffusion-combustion-based concept with multiple fuel injectors has been developed. This engine employs neither low temperature combustion nor homogeneous charge compression ignition combustion. One injector was mounted vertically at the cylinder center like in a conventional direct injection diesel engine, and two additional injectors were slant-mounted at the piston cavity circumference. The sprays from the side injectors were directed along the swirl direction to prevent both spray interference and spray impingement on the cavity wall, while improving air utilization near the center of the cavity.
2016-04-05
Journal Article
2016-01-1273
Lakshmikanth Meda, Martin Romzek, Yanliang Zhang, Martin Cleary
Abstract Although the technology of combustion engines is reasonably well developed, the degree of efficiency is considerably low. Considerable amount of the energy of around 35 % is lost as exhaust waste heat, and up to 30 % is dissipated in the cooling circuits. Due to this, thermal recuperation has a great potential for raising the efficiency of combustion engines. In order to meet the ever-increasing consumer demand for higher fuel economy, and to conform to more stringent governmental regulations, auto manufacturers have increasingly looked at thermoelectric materials as a potential method to recover some of that waste heat and improve the overall efficiency of their vehicle fleets. Seeking new possibilities to make vehicles greener and more efficient, the industry wants to use the waste heat which passes through the exhaust system almost completely unused in the past.
2016-04-05
Journal Article
2016-01-0309
Matthew Reed, Sheila Ebert-Hamilton
Abstract This study evaluated the ISO 5353 Seat Index Point Tool (SIPT) as an alternative to the SAE J826 H-point manikin for measuring military seats. A tool was fabricated based on the ISO specification and a custom back-angle measurement probe was designed and fitted to the SIPT. Comparisons between the two tools in a wide range of seating conditions showed that the mean SIP location was 5 mm aft of the H-point, with a standard deviation of 7.8 mm. Vertical location was not significantly different between the two tools (mean - 0.7 mm, sd 4.0 mm). A high correlation (r=0.9) was observed between the back angle measurements from the two tools. The SIPT was slightly more repeatable across installations and installers than the J826 manikin, with most of the discrepancy arising from situations with flat seat cushion angles and either unusually upright or reclined back angles that caused the J826 manikin to be unstable.
2016-04-05
Journal Article
2016-01-0178
Feng Zhou, Ercan Dede, Shailesh Joshi
Abstract Rankine cycle (RC) is a thermodynamic cycle that converts thermal energy into mechanical work, which is commonly found in thermal power generation plants. Recently, there are many studies focusing on applying Rankine cycle to recover low-grade waste heat. On-road vehicles, which convert around one third of the fuel energy into useful mechanical energy for propulsion, are moving energy conversion systems that generate considerable waste heat. It was found from many research studies that Rankine cycle has a great potential to be applied to harvest waste heat from automobiles. However, different from other low-grade waste heat sources, vehicles have limited space for the RC system integration and the waste heat is relatively unstable. In the current paper, the efforts in the past few decades related to applying RC to on-road vehicles, specifically passenger cars, are reviewed.
2016-04-05
Journal Article
2016-01-0189
Alaa El-Sharkawy, Ahmed Uddin
Abstract A heat pipe is a self-operating device which is capable of transferring large amounts of heat with a minimum temperature differences between the hot end (evaporator) and the cold end (condenser). However, a limited number of research work or analysis [1,2,3,4,5,6,7,8,9] has been reported in automotive industry on the applications of heat pipes in power train cooling. The advantage of a heat pipe heat exchanger is the possibility to use a more compact and lighter radiator. In addition, the proposed radiator is expected to be more robust as it is less sensitive to variations in ambient temperatures. In this paper, a proposed design for an automotive heat exchanger is investigated. The proposed design is evaluated through thermal simulation of heat pipes using various design parameters. The analysis addresses the ability of the heat exchanger to maintain engine coolant temperature at acceptable limits under different loading conditions.
2016-04-05
Journal Article
2016-01-0191
Gursaran D. Mathur
Water drainage characteristics of an evaporator changes with the age of the vehicle. This is due to the fact that with time, a part of the hydrophilic coating washes off with the moisture that condenses over the evaporator core from the air-stream. Hence, the effectiveness of the evaporator for water drainage deteriorates with the age of the vehicle. At this condition more water is retained in the evaporator as the contact angle increases. Author has conducted experiments with evaporators from multiple vehicles from different OEMs. These evaporators were analyzed to determine the effectiveness of the hydrophilic coating as a function of time or vehicle age. This is the first paper in the open literature that deals with the vehicle mileage or vehicle age with the evaporator plate contact angle and surface coating of an evaporator.
2016-04-05
Journal Article
2016-01-0183
Taehoon Han, Hyunki Sul, John Hoard, Chih-Kuang Kuan, Daniel Styles
Abstract Exhaust Gas Recirculation (EGR) coolers are commonly used in diesel and modern gasoline engines to reduce the re-circulated gas temperature. A common problem with the EGR cooler is a reduction of the effectiveness due to the fouling layer primarily caused by thermophoresis, diffusion, and hydrocarbon condensation. Typically, effectiveness decreases rapidly at first, and asymptotically stabilizes over time. There are several hypotheses of this stabilizing phenomenon; one of the possible theories is a deposit removal mechanism. Verifying such a mechanism and finding out the correlation between the removal and stabilization tendency would be a key factor to understand and overcome the problem. Some authors have proposed that the removal is a possible influential factor, while other authors suggest that removal is not a significant factor under realistic conditions.
2016-04-05
Journal Article
2016-01-0186
Hyunki Sul, Taehoon Han, Mitchell Bieniek, John Hoard, Chih-Kuang Kuan, Daniel Styles
Abstract Exhaust gas recirculation (EGR) coolers are used on diesel engines to reduce peak in-cylinder flame temperatures, leading to less NOx formation during the combustion process. There is an ongoing concern with soot and hydrocarbon fouling inside the cold surface of the cooler. The fouling layer reduces the heat transfer efficiency and causes pressure drop to increase across the cooler. A number of experimental studies have demonstrated that the fouling layer tends to asymptotically approach a critical height, after which the layer growth ceases. One potential explanation for this behavior is the removal mechanism derived by the shear force applied on the soot and hydrocarbon deposit surface. As the deposit layer thickens, shear force applied on the fouling surface increases due to the flow velocity growth. When a critical shear force is applied, deposit particles start to get removed.
2016-04-05
Journal Article
2016-01-0215
Amey Y. Karnik, Adrian Fuxman, Phillip Bonkoski, Mrdjan Jankovic, Jaroslav Pekar
Abstract An advanced powertrain cooling system with appropriate control strategy and active actuators allows greater flexibility in managing engine temperatures and operating near constraints. An organized controls development process is necessary to allow comparison of multiple configurations to select the best way forward. In this work, we formulate, calibrate and validate a Model Predictive Controller (MPC) for temperature regulation and constraint handling in an advanced cooling system. A model-based development process was followed; where the system model was used to develop and calibrate a gain scheduled linear MPC. The implementation of MPC for continuous systems and the modification related to implementing switching systems has been described. Multiple hardware configurations were compared with their corresponding control system in simulations.
2016-04-05
Journal Article
2016-01-0223
Mikael Karlsson, Mats Åbom, Manan Lalit, Ragnar Glav
Abstract A thermo-acoustic engine is a device converting thermal energy into high amplitude acoustic waves that can be harvested, for example, to obtain electricity. The core of the device is a stack/regenerator along which a temperature gradient is created using one hot and one cold heat exchanger. Correctly designed, the thermal interaction between the working fluid and the regenerator assists in amplifying incident acoustic waves. Previous studies have indicated good efficiency obtained with a system of low geometrical complexity. However, for the practical application of this technique it is vital to understand and identify critical design parameters and operating conditions. This is of special interest in automotive applications where the operating conditions vary significantly over a drive cycle. This works aims at providing a framework for studying the net power generation over a drive cycle.
2016-04-05
Journal Article
2016-01-0192
Alaa El-Sharkawy, Ahmed Uddin
Abstract Engine mount is one of the temperature sensitive components in the vehicle under-hood. Due to increasing requirements for improved fuel economy, the under-hood thermal management has become very challenging in recent years. In order to study the effects of material thermal degradation on engine mount performance and durability; it is required to estimate the temperature of engine mount rubber during various driving conditions. The effect of temperature on physical properties of natural rubber can then be evaluated and the life of engine mount can be estimated. In this paper, a bench test is conducted where the engine mount is exposed to a step change in the environment around it, and the temperature of the rubber section is recorded at several points till a steady state temperature is reached. A time response curve is generated, from which a time constant is determined.
2016-04-05
Journal Article
2016-01-0202
Bjoern Franzke, Stefan Pischinger, Philipp Adomeit, Christof Schernus, Johannes Scharf, Tolga Uhlmann
Abstract A new approach is presented to modelling wall heat transfer in the exhaust port and manifold within 1D gas exchange simulation to ensure a precise calculation of thermal exhaust enthalpy. One of the principal characteristics of this approach is the partition of the exhaust process in a blow-down and a push-out phase. In addition to the split in two phases, the exhaust system is divided into several sections to consider changes in heat transfer characteristics downstream the exhaust valves. Principally, the convective heat transfer is described by the characteristic numbers of Nusselt, Reynolds and Prandtl. However, the phase individual correlation coefficients are derived from 3D CFD investigations of the flow in the exhaust system combined with Low-Re turbulence modelling. Furthermore, heat losses on the valve and the seat ring surfaces are considered by an empirical model approach.
2016-04-05
Journal Article
2016-01-0280
Alaa El-Sharkawy, Amr Sami, Abd El-Rahman Hekal, Dipan Arora, Masuma Khandaker
Abstract In this paper, the development of a transient thermal analysis model for the exhaust system is presented. Given the exhaust gas temperature out of the engine, a software tool has been developed to predict changes in exhaust gas temperature and exhaust surface temperature under various operating conditions. The software is a thermal solver that will predict exhaust gas and wall surface temperatures by modeling all heat transfer paths in the exhaust system which includes multi-dimensional conduction, internal forced/natural convection, external forced/natural convection, and radiation. The analysis approach involves the breaking down of the thermal system into multiple components, which include the exhaust system (manifold, takedown pipe, tailpipe, etc.), catalytic converter, DPF (diesel particulate filter), if they exist, thermal shields, etc. All components are modeled as 1D porous and 1D non-porous flow streams with 3D wall layers (solid and air gaps).
2016-04-05
Journal Article
2016-01-0282
Julio Carrera
Abstract Recent emissions standards have become more restrictive in terms of CO2 and NOx reduction. This has been translated into higher EGR rates at higher exhaust gas temperatures with lower coolant flow rates for much longer lifetimes. In consequence, thermal load for EGR coolers has been increasing and the interaction of boiling with thermal fatigue is now a critical issue during development. It is almost impossible to avoid localized boiling inside an EGR cooler and, in fact, it would not be strictly necessary when it is below the Critical Heat Flux (CHF). However when CHF is exceeded, film boiling occurs leading to the sudden drop of the heat transfer rate and metal temperature rise. In consequence, thermal stress increases even when film boiling is reached only in a small area inside the part. It is very difficult to accurately predict under which conditions CHF is reached and to establish the margins to avoid it.
2016-04-05
Journal Article
2016-01-0281
Alaa El-Sharkawy, Dipan Arora, Abd El-Rahman Hekal, Amr Sami, Muhannad Hendy
Abstract In this paper, transient component temperatures for the vehicle under-hood and underbody are estimated. The main focus is on the component temperatures as a result of radiation from exhaust, convection by underbody or under-hood air and heat conduction through the components. The exhaust surface temperature is simulated as function of time and for various vehicle duty cycles such as city traffic, road load and grade driving conditions. At each time step the radiation flux to the surrounding component is estimated, heat addition or removal by convection is evaluated based on air flow, air temperature and component surface area. Simulation results for under-hood and underbody components are compared against vehicle test data. The comparison shows very good agreement between simulated and measured component temperatures under both steady state and transient conditions.
2016-04-05
Journal Article
2016-01-0521
Ronald S. Grossman
Abstract The lightweighting of auto components is a crucial strategy for OEMs to achieve increasingly challenging CAFÉ requirements. Research from MIT has found that every 10% reduction in passenger vehicle weight reduces fuel consumption by about 7%. Since fuel economy requirements have already increased by 18% from MY 2012 to 2017, the weight savings strategies that are easiest to implement have largely been exhausted. Seating is the largest interior component by weight, but the foam is often overlooked from lightweighting consideration due to the perception that higher weight, higher density seating is an important aspect of the vehicle’s comfort. It has become almost a truism that the physical properties associated with seating comfort -- load bearing, resilience, durability - are directly related to foam density. A new auxiliary blowing agent known chemically as HFO 1233zd(E) is commercially available as Solstice® LBA.
Viewing 211 to 240 of 10400

Filter