Display:

Results

Viewing 181 to 210 of 9877
2014-04-01
Journal Article
2014-01-1023
Dinesh Pahuja, Arpit Kapila, Sanjay Haldar, Sandeep Raina
Interiors of past vehicles were created to satisfy specific functions with appearance being a secondary consideration, but in the present & future market with ever increasing vehicle luxury, decoration of vehicle has become a prime focus in automobile industry along with the safety & economy. Automotive interiors have evolved over the years from a collection of trims covering bare sheet metal panels to add quality & richness of interior cabin, ultimately delivering greater value to customers. One such area in interiors is Side door trims serving the dual purpose of functionality and creating a pleasing environment too. The aesthetic appeal to the Side door trim is added usually through a Door trim insert having a decorative skin pasted on to the plastic base. And the selection of pasting technique for pasting decorative film on to the plastic base insert is a challenge for an automotive interior designer.
2014-04-01
Technical Paper
2014-01-1026
Ayse Ademuwagun, Joel Myers
Abstract Coconut shell and torrefied wood are bio-sourced and renewable materials that can be used as fillers in various polymer matrices. Torrefied wood material can be produced from numerous cellulose based materials, such as wood, sunflower hulls, flax shive, hemp and oat hulls. These bio-fillers would replace talc and glass bubbles which are not a renewable resource. Additionally, the implementation of torrefied wood and coconut would reduce the carbon footprint and improve sustainability of Hyundai and Kia vehicles, improving customer perception of our product line. In this study, coconut and torrefied wood filled polypropylene properties are tested for a HVAC Case application.
2014-04-01
Technical Paper
2014-01-1025
Mohammed K Billal, Vinothkumar Subramani, Mohan Rao, Tim Potok
Abstract An automotive cockpit module is a complex assembly, which consists of components and sub-systems. The critical systems in the cockpit module are the instrument panel (IP), the floor console, and door trim assemblies, which consist of many plastic trims. Stiffness is one of the most important parameters for the plastic trims' design, and it should be optimum to meet all the three functional requirements of safety, vibration and durability. This paper presents how the CAE application and various other techniques are used efficiently to predict the stiffness, and the strength of automotive cockpit systems, which will reduce the product development cycle time and cost. The implicit solver is used for the most of the stiffness analysis, and the explicit techniques are used in highly non-linear situations.
2014-04-01
Technical Paper
2014-01-1028
Venkat Pisipati, Srikanth Krishnaraj, Edgar Quinto Campos
Abstract Motor vehicle safety standards are getting to be more demanding with time. For automotive interiors, instrument panel (IP) head impact protection is a key requirement of the Federal Motor Vehicle Safety Standard (FMVSS) 201. To ensure compliance of this requirement, head impact tests are conducted at 12 and 15 mph for performance verification. Computer simulation has become more prevalent as the primary development tool due to the significant reduction in time and cost that it offers. LS-DYNA is one of the most commonly used non-linear solvers in the automotive industry, particularly for safety related simulations such as the head impact of automotive interiors. LS-DYNA offers a wide variety of material models, and material type 024 (MAT 024, piecewise linear plasticity) is one of the most popular ones [1]. Although it was initially developed for metals, it is commonly used for polymers as well.
2014-04-01
Technical Paper
2014-01-1029
Ram Iyer, Jin Zhou, Li Lu, Jeffrey Webb, Qaiser Khan
Abstract A CAE simulation methodology was developed to predict the warpage and shape deviation from nominal in finished plastic sub-assemblies that are joined using Infra-Red (IR), hot-plate or vibration welding processes. An automotive glove box bin and door sub-assembly was used to develop the methodology. It was seen that part warpage from injection molding and welding causes warpage in final assembled product which results in gaps and the consequent loss in quality of appearance. The CAE simulation methodology included prediction of the part warpage with residual stress from the injection molding process, use the post-molded shape as an initial part condition for the welding process, and simulation of the welding process itself.
2014-04-01
Technical Paper
2014-01-0890
Shuming Chen, Dengzhi Peng, Dengfeng Wang
Abstract Automobile cabin acoustical comfort is one of the main features that may attract customers to purchase a new car. The acoustic cavity mode of the car has an effect on the acoustical comfort. To identify the factors affecting computing accuracy of the acoustic mode, three different element type and six different element size acoustic finite element models of an automobile passenger compartment are developed and experimentally assessed. The three different element type models are meshed in three different ways, tetrahedral elements, hexahedral elements and node coupling tetrahedral and hexahedral elements (tetra-hexahedral elements). The six different element size models are meshed with hexahedral element varies from 50mm to 75mm. Modal analysis test of the passenger car is conducted using loudspeaker excitation to identify the compartment cavity modes.
2014-04-01
Journal Article
2014-01-0729
Alaa El-Sharkawy, Asif Salahuddin, Brian Komarisky
In this paper a design methodology for automotive heat exchangers has been applied which brings robustness into the design process and helps to optimize the design goals: as to maintain an optimal coolant temperature and to limit the vehicle underhood air temperature within a tolerable limit. The most influential design factors for the heat exchangers which affect the goals have been identified with that process. The paper summarizes the optimization steps necessary to meet the optimal functional goals for the vehicle as mentioned above. Taguchi's [1] Design for Six Sigma (DFSS) methods have been employed to conduct this analysis in a robust way.
2014-04-01
Technical Paper
2014-01-0707
Nicolas F. Ponchaut, Francesco Colella, Ryan Spray, Quinn Horn
Abstract The emergence of Plug-in hybrid electric vehicles (PHEVs) and electric vehicles (EVs) as a viable means of transportation has been coincident with the development of lithium-ion battery technology and electronics that have enabled the storage and use of large amounts of energy that were previously only possible with internal combustion engines. However, the safety aspects of using these large energy storage battery packs are a significant challenge to address. For example an unintentional sudden release of energy, such as through a thermal runaway event, is a common concern. Developing thermal management systems for upset conditions in battery packs requires a clear understanding of the heat generation mechanisms and kinetics associated with the failures of Li-ion batteries.
2014-04-01
Technical Paper
2014-01-0708
Jugurtha Benouali, Christophe Petitjean, Isabelle Citti, Regis Beauvis, Laurent Delaforge
Abstract The development of Electrical and Hybrid cars led to the introduction of reversible heat pump systems in order to reduce the energy consumption and increase the car autonomy during the Zero Emission Mode. One of the most important components in the heat pump system, is the evaporator condenser that “pumps the heat” from the ambient air. Moreover, this heat exchanger has to work in both modes: A/C (condenser mode) and heat pump (evaporator mode). This paper will explain the main steps of the development of this heat exchanger: circuiting (refrigerant side) in order to improve the homogeneity and the performances fins (air side) in order to reduce icing impact. We will also present system tests results that illustrate the impact of those evolutions on loop performances (heating capacity and COP).
2014-04-01
Technical Paper
2014-01-0709
Kesav Kumar Sridharan, Ravish Masti, Ravi Kumar, Jiancheng Xin, Wendong Wang, Henry Kong
Abstract In hybrid electric vehicles (HEVs) and full electric vehicles (EVs), efficient electrical power management with proper supply of power at the required voltage levels is essential. A DC (Direct Current)-DC converter is one of the key electrical units in a HEV/EV. The DC-DC converter dealt in the present work is intended to create the DC voltages necessary to power the accessories. The electronic circuit in this DC-DC converter consists of high power devices like Metal-Oxide Semiconductor Field-Effect Transistors (MOSFETs), inductors, transformers, etc. mounted on a printed circuit board (PCB). The DC-DC converter interacts with a high voltage battery pack and supplies a low voltage power to the accessory battery. Due to this power handling operation, the devices in the convertor experience high temperatures. The temperature rise of the devices beyond the permissible limits could be detrimental to an efficient and safe operation of the converter.
2014-04-01
Technical Paper
2014-01-0712
Jae Yeon Kim, Yong Nam Ahn, Shim Rok, Su Whan Kim, Wan Je Cho, Jy Choi, Hyun Keun Shin, Sang Ok Lee
Abstract In order to improve the fuel consumption ratio of the vehicle, a great deal of research is being carried out to improve air-conditioning efficiency. Increasing the efficiency of the condenser is directly connected to the power consumption of the compressor. This paper describes an experimental method of using an additional water-cooled condenser to reduce power consumption and decrease discharge pressure of the air-conditioning system. First, the principle of a combined cooling (water + air) method was evaluated theoretically. Next, experimental proof was conducted with the additional water-cooled condenser. The shape and structure is similar to the plate type of the transmission oil cooler used in a radiator. Through a number of tests, it was found that it is possible is to reduce power consumption of compressor by decreasing discharge pressure.
2014-04-01
Technical Paper
2014-01-0713
Guangning(Gary) Gao
Abstract Distance to empty (DTE) estimation is an important factor to electric vehicle (EV) applications due to its limited driving range. The DTE calculation is based on available energy of the battery and power usage by the powertrain components (e.g. electric motor) and climate control components (e.g. PTC heater and electric AC compressor). The conventional way of estimating the DTE is to treat the power consumed by the climate control system the same as the power by the powertrain for either instantaneous or rolling average estimation. The analysis in this study shows that the power consumption by the climate control system should be estimated based on the current ambient conditions and driver's input instead of using the recorded data from the past driving cycles. The climate control should also be considered separately from the powertrain in power usage rolling average calculation, which results in improvements in DTE estimation especially for extreme hot and cold conditions.
2014-04-01
Technical Paper
2014-01-0350
Pankaj G. Bhirud, Shreyas Shingavi, Ajay Virmalwar
Abstract Ashcan contributes to the aesthetics and elegance of the vehicle interiors. It is used to store the ash. Generally the ashcan is fitted on the console of the car. The operational requirement of ashcan is to open with minimum force but not at very low accelerations experienced during the vehicle bump event. Also closing force should be comparatively higher. The closing of the ashcan lid should ensure positive locking, which may be achieved by using cam and follower locking mechanism. The other requirement is that it should be structurally durable enough to sustain the repetitive loading during its operation. Ashcan may undergo severe abusive loading during its operation. To simulate these operations and understand the physics of the problem, a multi-step non-linear analysis involving a complex contact situation is carried out. The scope of this paper is to explain the procedure of calculating the force required for closing and opening of the ashcan lid.
2014-04-01
Technical Paper
2014-01-1184
Betty Belhassein, David Chalet, Pascal Chesse, Guillaume Alix, Romain Lebas
Abstract Emission regulations have become increasingly stringent in recent years. Current regulations need the development of a new worldwide driving cycle which gives greater weight to the pollutants emitted during transient phases or cold starts. Powertrains contain a large number of components such as multistage turbocharger systems; exhaust gas recirculation, after-treatment devices and sometimes an electric motor. In this context, 0D predictive models of heat transfer in the exhaust line, calibrated with experimental data, are particularly interesting. Many investigations are related to the development of precise control laws in order to optimize the light-off of after-treatment elements during the engine starting phase. A better understanding of the thermal phenomena occurring in the exhaust line is necessary. To study the heat transfer in the exhaust line of a Diesel engine during transient conditions, the temperature in the exhaust line must be known precisely.
2014-04-01
Technical Paper
2014-01-1183
Chao Ding, Zhibao Xu, Yunqing Zhang, Qiming Tao
Abstract Vehicle Thermal Management System (VTMS) is a cross-cutting technology that directly or indirectly affects engine performance, fuel economy, safety and reliability, driver/passenger comfort, emissions. This paper presents a novel methodology to investigate VTMS based on Modelica language. A detailed VTMS platform including engine cooling system, lubrication system, powertrain system, intake and exhaust system, HVAC system is built, which can predict the steady and transient operating conditions. Comparisons made between the measured and calculated results show good correlation and approve the forecast capability for VTMS. Through the platform a sensitivity analysis is presented for basic design variables and provides the foundation for the design and matching of VTMS. Modelica simulation language, which can be efficiently used to investigate multi-domain problems, was used to model and simulate VTMS.
2014-04-01
Technical Paper
2014-01-1181
Md Abdul Quaiyum, Mohammed Ismail, Amir Fartaj
Abstract Channel diameter is one of the most important parameters of a heat exchanger especially for a highly viscous fluid-flow. Narrow channel heat exchangers are believed to have better energy efficiency due to elevated heat transfer characteristics. Heat transfer and Fluid-flow behaviors of Automatic Transmission Fluid (ATF) have been experimentally investigated in a closed loop integrated thermal wind tunnel test facility using wavy finned Minichannel Heat Exchanger (MICHX). The experiment was conducted by varying the ATF Reynolds number from 3 to 30. The flow friction factors in minichannel were evaluated. For a fully developed laminar flow the friction factors were evaluated considering fluid viscosity effects due to temperature variation. The flow correlated with a Poiseuille equation while friction factors were analyzed considering constant property ratio. However, it showed different correlation when considered variable property ratio.
2014-04-01
Technical Paper
2014-01-0456
Se Jin Park, Seung Nam Min, Murali Subramaniyam, Dong-Hoon Lee, Heeran Lee, Dong Gyun Kim
Abstract Seating comfort is one of the most important indicators of the performance of automotive seats. The objective and subjective evaluation of seating comfort plays an important role in the development of seating systems. Objective methods are primarily based on evaluating the influence of vibrations on the driver's seat and assessing the seat pressure ratio. The primary goal of this study was to evaluate the comfort of two car seats (sedan and compact) by comparing a subjective technique with an objective technique like body pressure ratio for a sample of 12 subjects. The results show that the pressure ratio for IT (ischial tuberosity) and L4/L5 were significantly greater for the seat of a compact car than the seat of a sedan car. The subjective comfort was significantly greater for the seat of the sedan car and females than the seat of the compact car and males, respectively.
2014-04-01
Technical Paper
2014-01-0462
Se Jin Park, Seung Nam Min, Murali Subramaniyam, Heeran Lee, Dong Gyun Kim, Cheol Pyo Hong
Abstract Vibration is both a source of discomfort and a possible risk to human health. There have been numerous studies and knowledge exists regarding the vibrational behavior of vehicle seats on adult human occupants. Children are more and more becoming regular passengers in the vehicle. However, very little knowledge available regarding the vibrational behavior of child safety seats for children. Therefore, the objective of this study was to measure the vibrations in three different baby car seats and to compare these to the vibrations at the interface between the driver and the automobile seat. The test was performed on the National road at the average speed of 70 km/h and acceleration levels were recorded for about 350 Sec (5.83 min). One male driver considered as an adult occupant and a dummy having a mass of 9 kg was representing one year old baby. Four accelerometers were used to measure the vibration. All measured accelerations were relative to the vertical direction.
2014-04-01
Collection
This technical paper collection focusses on state of the art simulation technologies for modeling thermal systems and their application in the development and optimization of vehicle thermal management and fuel economy. The papers included will range from empirical, 1D modeling methods to three dimensional CFD models as well as coupled methods.
2014-04-01
Collection
This technical paper collection contains 23 papers covering the latest advancements in climate control.
2014-04-01
Collection
This technical paper collection features components used for thermal management. The papers address design, application and systems related topics.
2014-04-01
Collection
This technical paper collection focuses on current developments in the fields of vehicle fire science, statistics, risks, assessment and mitigation. Papers addressing vehicle design, live-fire tests and fire investigation issues applicable to traditional, electric and alternatively fueled vehicles are included.
2014-04-01
Collection
Proper thermal management can significantly contribute to overall system energy efficiency. This technical paper collection highlights the latest developments in thermal management energy efficiency.
2014-04-01
Journal Article
2014-01-0223
Ludwig Brabetz, Mohamed Ayeb
For the prevention of technical risks and the optimum design of an electrical distribution system, considerable efforts have been made to implement thermal models of wires, bundles, and electromechanical components in order to improve thermal analysis. Unfortunately, in most cases, important input parameters such as the position of a wire within a bundle or the profiles of the currents are unknown. This leads to the use of worst-case scenarios, frequently providing unrealistic results and uneconomic over-dimensioning. The proposed approach is based on the thermal simulation of a large number of randomly-generated bundle configurations for given profiles of currents. Thus one gets a temperature distribution, allowing a much more precise analysis compared to a simple worst-case calculation. By applying the same method to various current profiles, one gets temperature distributions for each wire as a function of a normalized total bundle current.
2014-04-01
Journal Article
2014-01-0266
Jason Lisseman, Lisa Diwischek, Stefanie Essers, David Andrews
The last years have seen an increasing amount of innovations in the functionality of car electronics (e.g. advanced driver assistant systems (ADAS) and in-vehicle infotainment systems (IVIS)). These electrical systems are not reserved for premium cars anymore, but additionally reach mid-size, compact, and subcompact cars. The growing number of functionalities in these cars entails increasing amount of interfaces, which may confuse, overload, or annoy the driver. Accompanying this, there is a trend towards the integration of capacitive touchscreens as user interfaces. These touchscreens were implemented first in consumer electronics and had a substantial impact on the way in which users interact with technology. This in turn has led to an increased user driven demand for the technology to be implemented in other domains, even in safety-critical ones like the automotive area.
2014-04-01
Journal Article
2014-01-1066
Akira Kikusato, Katsuya Terahata, Kusaka Jin, Yasuhiro Daisho
Abstract The objective of this work is to develop a numerical simulation model of spark ignited (SI) engine combustion and thereby to investigate the possibility of reducing heat losses and improving thermal efficiency by applying a low thermal conductivity and specific heat material, so-called heat insulation coating, to the combustion chamber wall surface. A reduction in heat loss is very important for improving SI engine thermal efficiency. However, reducing heat losses tends to increase combustion chamber wall temperatures, resulting in the onset of knock in SI engines. Thus, the numerical model made it possible to investigate the interaction of the heat losses and knock occurrence and to optimize spark ignition timing to achieve higher efficiency. Part 2 of this work deals with the investigations on the effects of heat insulation coatings applied to the combustion chamber wall surfaces on heat losses, knock occurrence and thermal efficiency.
2014-04-01
Journal Article
2014-01-1073
Akira Kikusato, Kusaka Jin, Yasuhiro Daisho
The first objective of this work is to develop a numerical simulation model of the spark ignited (SI) engine combustion, taking into account knock avoidance and heat transfer between in-cylinder gas and combustion chamber wall. Secondly, the model was utilized to investigate the potential of reducing heat losses by applying a heat insulation coating to the combustion chamber wall, thereby improving engine thermal efficiency. A reduction in heat losses is related to important operating factors of improving SI engine thermal efficiency. However, reducing heat losses tends to accompany increased combustion chamber wall temperatures, resulting in the onset of knock in SI engines. Thus, the numerical model was intended to make it possible to investigate the interaction of the heat losses and knock occurrence. The present paper consists of Part 1 and 2.
2014-04-01
Journal Article
2014-01-1076
Peter Eilts, Claude-Pascal Stoeber-Schmidt
A model for the calculation of heat release in direct injection Diesel engines is presented. It needs only one engine-specific experimental parameter. In the form the model is presented here it is limited to the medium and upper load range, where Diesel combustion is mainly mixing controlled. The development of the model is based on data from medium speed engines. The applicability to automotive engines is shown in some examples. The model is based on the theory of single phase turbulent jets. Starting from the balance of momentum and fuel mass flow the stationary part of the jet can be calculated. The propagation of the front of the unsteady jet is determined from a continuity consideration. Heat release is calculated based on the assumptions of the Simple Chemically Reacting System (SCRS). Fuel that is mixed with air is assumed to be burnt instantaneously.
2014-04-01
Journal Article
2014-01-1094
Johann C. Wurzenberger, Tomaz Katrasnik
This works presents a real-time capable simulation model for dual fuel operated engines. The computational performance is reached by an optimized filling and emptying modeling approach applying tailored models for in-cylinder combustion and species transport in the gas path. The highly complex phenomena taking place during Diesel and gasoline type combustion are covered by explicit approaches supported by testbed data. The impact of the thermodynamic characteristics induced by the different fuels is described by an appropriate set of transport equations in combination with specifically prepared property databases. A thermodynamic highly accurate 6-species approach is presented. Additionally, a 3-species and a 1-species transport approach relying on the assumption of a lumped fuel are investigated regarding accuracy and computational performance. The comparison of measured and simulated pressure and temperature traces shows very good agreement.
2014-04-01
Journal Article
2014-01-1101
Arnon Poran, Moris Artoul, Moshe Sheintuch, Leonid Tartakovsky
This paper describes a model for the simulation of the joint operation of internal combustion engine (ICE) with methanol reformer when the ICE is fed by the methanol steam reforming (SRM) products and the energy of the exhaust gases is utilized to sustain endothermic SRM reactions. This approach enables ICE feeding by a gaseous fuel with very favorable properties, thus leading to increase in the overall energy efficiency of the vehicle and emissions reduction. Previous modeling attempts were focused either on the performance of ICE fueled with SRM products or on the reforming process simulation and reactor design. It is clear that the engine performance is affected by the composition of the reforming products and the reforming products are affected by the exhaust gas temperature, composition and flow rate.
Viewing 181 to 210 of 9877

Filter