Display:

Results

Viewing 151 to 23 of 23
2016-04-05
Journal Article
2016-01-0523
Lauren Abro
Abstract North American customer perception of Quality has changed over time and has shifted from Quality, Dependability, and Reliability (QDR) to Interior Sensory Quality (ISQ). ISQ is defined as the harmony of characteristics that combine to make an emotional connection to the vehicles’ interior. Vehicles need to correctly appeal to customers emotional side through providing class-leading ISQ. Hypotheses for specific interior areas were developed in order to identify key ISQ strengths, weaknesses, and preferences. These hypotheses were then tested at customer clinics held across the country. The key goals were to understand customer judgment of ISQ execution, understand customer ISQ priority, and understand customer preference of detailed component areas.
2016-04-05
Technical Paper
2016-01-0512
Chae-Hwan Hong
Polylactide (PLA), which is one of the most important biocompatible polyesters that are derived from annually renewable biomass such as corn and sugar beets, has attracted much attention for automotive parts application. The manufacturing method of PLA is the ring-opening polymerization of the dimeric cyclic ester of lactic acid, lactide. For the PLA composites including stereocomplexed with L- and D-PLA, we developed the unit processes such as fermentation, separation, lactide conversion, and polymerization. We investigated D-lactic acid fermentation with a view to obtaining the strains capable of producing D-lactic acid, and through catalyst screening test for polycondensation and depolymerization reactions, we got a new method which shortens the whole reaction time of lactide synthesis step. Poly(d-lactide) is obtained from the ring-opening polymerization of d-lactide. Also we investigated several catalysts and polymerization conditions.
2016-04-05
Technical Paper
2016-01-0564
Pengfei Lu, Chris Brace, Bo Hu
Abstract The turbo-compounding has been extensively researched as a mean of improving the overall thermal efficiency of the internal combustion engine. Many of the studies aiming to optimize the turbo-compounding system lead to the unified conclusion that this approach is more suitable for the operation under constant high load condition, while it has little effect on improving the fuel economy under low load conditions. Besides, in a traditional series turbo-compounding engine, the increased back pressure unavoidably results in a serious parasitic load to the system by increasing the resistance to the scavenging process. In order to improve this situation, a novel turbo-compounding arrangement has been proposed, in which the turbocharger was replaced by a continuously variable transmission (CVT) coupled supercharger (CVT superchargedr) to supply sufficient air mass flow rate to the engine at lower engine speeds.
2016-04-05
Technical Paper
2016-01-0555
Federico Millo, Sabino Caputo, Claudio Cubito, Antonella Calamiello, Davide Mercuri, Marcello Rimondi
The target for future cooling systems is to control the fluid temperatures and flows through a demand oriented control of the engine cooling to minimize energy demand and to achieve comfort, emissions, or service life advantages. The scope of this work is to create a complete engine thermal model (including both cooling and lubrication circuits) able to reproduce engine warm up along the New European Driving Cycle in order to assess the impact of different thermal management concepts on fuel consumption. The engine cylinder structure was modeled through a finite element representation of cylinder liner, piston and head in order to simulate the cylinder heat exchange to coolant or oil flow circuits and to predict heat distribution during transient conditions. Heat exchanges with other components (EGR cooler, turbo cooler, oil cooler) were also taken into account.
2016-04-05
Technical Paper
2016-01-0548
Estefanía Hervas-Blasco, Emilio Navarro-Peris, José Corberan, Alex Rinaldi
Abstract Nowadays, more than 50% of the fuel energy is lost in CNG Engines. While efforts to increase their efficiency have been focused mainly on the improvement of the combustion process, the combustion chamber and the reduction of friction losses, heat losses still remain the most important inefficient factor. A global strategy in which several energy recovery strategies are implemented could lead to engine improvements up to 15%. Therefore, the development of accurate models to size and predict the performance of the integrated components as well as to define an optimized control strategy is crucial. In this contribution, a model to analyze the potential of a new powertrain based on the electrification of the main auxiliaries, the integration of a kinetic energy recovery system and the exhaust gases heat recovery through a thermoelectric generator and a turbo-component is presented.
2016-04-05
Technical Paper
2016-01-1336
Hee Sang Park
Abstract Headliner module system implies that all components, including fasteners that are attached to the headliner substrate panel prior to vehicle assembly installation. The headliner substrate becomes an installation fixture which facilitates the assembly process. Since headliner module is an integration of many separate components into one more complex assembly, prior to vehicle assembly, a number of additional requirements must be considered. Many of these requirements are driven by the factors like shipping, handling and installation of a large panel with various componentry mounted for temporary installation retention or permanent retention. Substrate should be tough but, on the contrary it should be soft enough for the curtain airbag deployment. Tough substrate interferes with airbag deployment. Detachable reinforcement will enhance shipping and handling process. After installation, reinforcement can be detached from headliner module which will keep the substrate soft.
2016-04-05
Technical Paper
2016-01-0184
Toshio Murata, Tadashi Nakagawa, Hisashi Nishino, Kazunari Matsuura
In order to speed up engine coolant warm-up, the exhaust heat recirculation system collects and reuses the heat from exhaust gases by utilizing the heat exchanger. The conventional system improves actual fuel economy at the scene of the engine restart in winter season only. The heat recirculation system becomes more effective at the low outside temperature because it takes longer time to warm up engine coolant. However, the heat recirculation system becomes less effective at the high outside temperature because it takes shorter time to warm up engine coolant. Therefore, the new exhaust heat recirculation system is developed, which adopted as follows: 1) a fin-type heat exchanger in order to enhance exhaust recirculation efficiency 2) a thinner heat exchanger component and smaller amount of engine coolant capacity in the heat exchanger in order to reduce the heat mass As a result, the actual fuel economy is more improved in winter season.
2016-04-05
Journal Article
2016-01-0178
Feng Zhou, Ercan Dede, Shailesh Joshi
Abstract Rankine cycle (RC) is a thermodynamic cycle that converts thermal energy into mechanical work, which is commonly found in thermal power generation plants. Recently, there are many studies focusing on applying Rankine cycle to recover low-grade waste heat. On-road vehicles, which convert around one third of the fuel energy into useful mechanical energy for propulsion, are moving energy conversion systems that generate considerable waste heat. It was found from many research studies that Rankine cycle has a great potential to be applied to harvest waste heat from automobiles. However, different from other low-grade waste heat sources, vehicles have limited space for the RC system integration and the waste heat is relatively unstable. In the current paper, the efforts in the past few decades related to applying RC to on-road vehicles, specifically passenger cars, are reviewed.
2016-04-05
Journal Article
2016-01-0661
Yoshifumi Wakisaka, Minaji Inayoshi, Kenji Fukui, Hidemasa Kosaka, Yoshihiro Hotta, Akio Kawaguchi, Noriyuki Takada
The reduction of the heat loss from the in-cylinder gas to the combustion chamber wall is one of the key technologies for improving the thermal efficiency of internal combustion engines. This paper describes an experimental verification of the “temperature swing” insulation concept, whereby the surface temperature of the combustion chamber wall follows that of the transient gas. First, we focus on the development of “temperature swing” insulation materials and structures with the thermo-physical properties of low thermal conductivity and low volumetric heat capacity. Heat flux measurements for the developed insulation coating show that a new insulation material formed from silica-reinforced porous anodized aluminum (SiRPA) offers both heat-rejecting properties and reliability in an internal combustion engine. Furthermore, a laser-induced phosphorescence technique was used to verify the temporal changes in the surface temperature of the developed insulation coating.
2016-04-05
Technical Paper
2016-01-0664
Ahmed E. Hassaneen, Wael I. A. Aly, Gamal Bedair, Mohammed Abdussalam
Abstract The thermal performance of an ammonia-water-hydrogen absorption refrigeration system using the waste exhaust gases of an internal combustion diesel engine as energy source was investigated experimentally. An automotive engine was tested in a bench test dynamometer, with the absorption refrigeration system adapted to the exhaust pipe via a heat exchanger. The engine was tested for different torques (15 N.m, 30 N.m, and 45 N.m). The exhaust gas flow to the heat exchanger built on the generator was controlled manually using two control valves. The refrigerator reached a steady state temperature between 10 and 14.5°C about 3.5 hours after system start up, depending on engine load. The maximum coefficient of performance was 0.10 obtained for the controlled exhaust mass flow case at torque 30 Nm after 3hrs from system startup.
2016-04-05
Technical Paper
2016-01-0681
Cyrille Constensou, Vincent Collee
Abstract Increasing the efficiency of internal combustion engines is mandatory to meet ever more stringent regulations. The implementation of very high compression ratio (> 15:1) is the key to take full advantage of the association of Variable Compression Ratio (VCR) and Variable Valve Actuation (VVA) in the implementation of Miller-Atkinson cycle, leading to higher thermodynamic efficiency and thus better fuel consumption benefits. VVA systems allow differentiating geometric compression ratio and effective compression ratio. They theoretically permit to maximize expansion ratio (i.e. geometric compression ratio) while keeping an effective compression ratio in accordance with the constraints of the knocking limits, but with a limitation on the reachable maximum Brake Mean Effective Pressure (BMEP) at low compression ratio and the associated downsizing.
2016-04-05
Technical Paper
2016-01-1410
Stefan G. Grötsch, Morten Brink, Roland Fiederling, Thomas Liebetrau, Ingo Möllers, Jörg Moisel, Hermann Oppermann, Alexander Pfeuffer
Abstract A cooperation of several research partners supported by the German Federal Ministry of Research and Education proposes a new active matrix LED light source. A multi pixel flip chip LED array is directly mounted to an active driver IC. A total of 1024 pixel can be individually addressed through a serial data bus. Several of these units are integrated in a prototype headlamp to enable advanced light distribution patterns in an evaluation vehicle.
2016-04-05
Journal Article
2016-01-0521
Ronald S. Grossman
Abstract The lightweighting of auto components is a crucial strategy for OEMs to achieve increasingly challenging CAFÉ requirements. Research from MIT has found that every 10% reduction in passenger vehicle weight reduces fuel consumption by about 7%. Since fuel economy requirements have already increased by 18% from MY 2012 to 2017, the weight savings strategies that are easiest to implement have largely been exhausted. Seating is the largest interior component by weight, but the foam is often overlooked from lightweighting consideration due to the perception that higher weight, higher density seating is an important aspect of the vehicle’s comfort. It has become almost a truism that the physical properties associated with seating comfort -- load bearing, resilience, durability - are directly related to foam density. A new auxiliary blowing agent known chemically as HFO 1233zd(E) is commercially available as Solstice® LBA.
2016-04-05
Technical Paper
2016-01-0651
Masaki Harada, Takashi Yasuda, Shota Terachi, Sergio Pujols, Jason R. Spenny
Abstract Due to the recent trend emphasizing on environmental friendly, engine supercharger downsizing technology has been under development globally. In this report, the technical knowledge for high performance and high quality water-cooled CAC development is provided. For higher cooling performance, the optimum fin and tube core matrix water-cooled CAC, delivering best performance and quality have been developed. For higher reliability against thermal stress, the detail specifications of water-cooled CAC based on the transient analysis and the simulation technology have been established.
2016-04-05
Technical Paper
2016-01-0892
Oliver P. Taylor, Richard Pearson, Richard Stone
Abstract Most major regional automotive markets have stringent legislative targets for vehicle greenhouse gas emissions or fuel economy enforced by fiscal penalties. Large improvements in vehicle efficiency on mandated test cycles have already taken place in some markets through the widespread adoption of technologies such as downsizing or dieselisation. There is now increased focus on approaches which give smaller, but significant incremental efficiency benefits, such as reducing parasitic losses due to engine friction. The reduction in tail pipe CO2 emissions through the reduction of engine friction using lubricants has been reported by many authors. However, opportunities also exist to reduce the lubricant viscosity during warm up by the thermal management of the lubricant mass.
2016-03-27
Technical Paper
2016-01-1726
Pranab Das
In-cylinder Stratification controlled HCCI combustion strategy is used in this present study to investigate combustion, cycle by cycle variation and emission behaviour of HCCI-DI combustion under various operating conditions. In this present study, 80% of the fuel was injected early during the suction stroke (Pilot injection fixed at 270 deg. bTDC) allowing sufficient time to form a lean homogeneous mixture. Rest of the fuel (20%) was injected near TDC (Main injection fixed at 20 deg. bTDC) to form a cloud of rich mixture to triggers the combustion. It was found that, at higher load when premixed equivalence ratio (caused due to early injected fuel) exceeds a threshold value, combustion phasing control becomes extremely difficult. In that situation, external EGR was supplied back to the engine to control combustion phasing of HCCI-DI combustion keeping a constant stratification level.
2016-03-27
Technical Paper
2016-01-1732
Weicheng Huang
Abstract When the vehicle parks in direct sunlight conditions, the cabin will form a high-temperature thermal environment in hot weather. Drivers would turn on the air-conditioning with relatively high gear in the most conditions to reduce the cabin temperature, which could affect the life of equipment, resulting in energy waste and increasing emissions. This study adopted solar energy in the ventilation system. When the car parks the cabin blower was driven by a solar panel mounted on the car roof to discharge heat inside the cabin real time, achieving the purpose of pre-cooling. Firstly, heat transfer model and ventilation cooling model for the cabin were established according to the theory of heat transfer, and models were modified through experiments. Besides, the impact of ventilation flow rate on the pre-cooling effect was studied based on simulation analysis.
2016-03-25
WIP Standard
AIR5661A
This report provides data and general analysis methods for calculation of internal and external, pressurized and unpressurized airplane compartment pressures during rapid discharge of cabin pressure. References to the applicable current FAA and EASA rules and advisory material are provided. While rules and interpretations can be expected to evolve, numerous airplanes have been approved under current and past rules that will have a continuing need for analysis of production and field modifications, alterations and repairs. The data and basic principles provided by this report are adaptable to any compartment decompression analysis requirement.
2016-03-23
WIP Standard
J2230
This SAE Standard specifies operating procedure for the exposure of automotive interior trim materials in an outdoor behind-glass apparatus in which the temperature is controlled in a 24 h cycle. The humidity is controlled during the dark (night) portion of the cycle. Specimen preparation, test durations, and performance evaluation procedures are covered in material specifications of the different automotive manufacturers.
2016-03-19
Article
An "electronic assistant" with the capability to determine if the driver is capable of receiving information under safety critical conditions.
2016-03-16
WIP Standard
AS1046D
This standard is intended to apply to portable compressed gaseous oxygen equipment. When properly configured, this equipment is used either for the administration of supplemental oxygen, first aid oxygen or smoke protection to one or more occupants of either private or commercial transport aircraft.
2016-03-16
Standard
AS50571B
This specification covers the general requirements for red and white individual instrument lights. This document has been streamlined. Appendix A to MIL-L-5057F lists those documents required for MIL-L-5057F acquisition and is a mandatory part of MIL-L-5057F. Those documents listed in Appendix A have the same status as those referenced directly in MIL-L-5057F (first tier documents). All other documents, referenced through tiering, may be used as guidance and information to supplement MIL-L-5057F. This document’s scope is limited to lamp source designs solely. Furthermore, the use of red lighting should not be considered for new design and included within this document to support requirements for existing military aircraft that still operate with this system of lighting.
2016-03-16
Standard
AS6296
This SAE Aerospace Standard (AS) specifies minimum performance standards for Electronic Flight Information System (EFIS) displays that are head-down and intended for use in the flight deck by the flight crew in all 14 CFR Part 23, 25, 27, and 29 aircraft. This document is expected to be used by multiple regulatory agencies as the basic requirement for a technical standard order for EFIS displays.
2016-03-14
Journal Article
2016-01-9107
Jan Christoph Menken, Martin Ricke, Thomas A. Weustenfeld, Juergen Koehler
Abstract Recent attempts to find energy-efficient thermal management systems for electric and plug-in hybrid electric vehicles have led to secondary loop systems as an alternative approach to meet dynamic heating and cooling demands and to reduce refrigerant charge. The choice of refrigerant for the primary refrigeration cycle is an important issue regarding the overall system performance. In this work, an HFC refrigerant (R-134a) and a natural refrigerant (R-744) are evaluated regarding a potential use in secondary loop systems. To meet the demands of R-744 cycles such as higher system pressure, most components have to be redeveloped. Nonetheless the use of the environmentally friendly refrigerant has advantages such as better applicability and performance in heat pump systems under cold ambient conditions.
2016-03-12
Article
Jeep Design is taking seven new concept vehicles, including two interesting pickups, to the Utah off-road festival where the hardest-core Jeep enthusiasts gather annually.
2016-03-11
Standard
J2810_201603
The purpose of this SAE Standard is to provide minimum performance and operating feature requirements for the recovery of HFC-134a (R-134a) refrigerant to be returned to a refrigerant reclamation facility that will process it to the appropriate AHRI 700 Standard or allow for on-site recycling of the recovered refrigerant to SAE J2788 specifications by using SAE J2788 or SAE J3030 -certified equipment. It is not acceptable that the refrigerant removed from a mobile air-conditioning (A/C) system with this equipment be directly returned to a mobile A/C system. An identifier certified to SAE J2912 is to be used to identify the contents of the system prior to recovery of the refrigerant.
2016-03-09
WIP Standard
ARP5021B
This document provides guidance for oxygen cylinder installation on commercial aircraft based on rules and methods practiced in aerospace industry and applicable in other associations. It covers considerations for oxygen systems from beginning of project phase up to production, maintenance, and servicing. The document is focused on requirements regarding DOT approved oxygen cylinders. However, its basic rules may also be applicable to new development pertaining to use of such equipment in an oxygen environment. For information regarding oxygen cylinders itself, reference should be made to AIR825/12 also.
2016-03-08
WIP Standard
AS916C
This SAE Aerospace Standard (AS) defines the overall requirements applicable to oxygen flow indicating devices intended to operate in conjunction with an oxygen regulator and mask system. Flow indicators covered by this document are for use with pressure demand, diluter-demand and continuous flow oxygen systems.
2016-03-08
WIP Standard
AIR5742A
The scope of this document is related to the particular needs of oxygen equipment with regards to packaging and transportation. The document provides guidance for handling chemical, gaseous and liquid oxygen equipment. It summarizes national and international regulations to be taken into account for transportation on land, sea and air and provides information on classification of hazardous material. The aim of this document is to summarize information on packaging and transportation of oxygen equipment. Statements and references to regulations cited herein are for information only and should not be considered as interpretation of a law. Processes to maintain cleanliness of components and subassemblies during processing and assembly or storage of work-in-progress are outside the scope of this document.
2016-03-05
Standard
AS8049/1A
This SAE Aerospace Standard (AS) defines Minimum Performance Standards (MPS), qualification requirements, and minimum documentation requirements for side-facing seats in civil rotorcraft, transport aircraft, and general aviation aircraft. The goal is to achieve comfort, durability, and occupant protection under normal operational loads and to define test and evaluation criteria to demonstrate occupant protection when a side-facing seat/occupant/restraint system is subjected to statically applied ultimate loads and to dynamic test conditions set forth in Title 14, Code of Federal Regulations (CFR) Part 23, 25, 27, or 29. While this document addresses system performance, responsibility for the seating system is divided between the seat supplier and the installation applicant. The seat supplier’s responsibility consists of meeting all the seat system performance requirements and obtaining and supplying to the installation applicant all the data prescribed by this document.
Viewing 151 to 23 of 23

Filter