Display:

Results

Viewing 151 to 180 of 10014
2015-01-14
Technical Paper
2015-26-0156
Anil Kumar Jaswal, MV Rajasekhar, J Perumal, Samir Rawte
Abstract This paper details the methodology used to prevent Thermal events in a vehicle at design and development stages which can lead to vehicle fire or Thermal events. Vehicle Safety is always been in prime focus for designers while introducing newer products in markets for the customers. It is now common to see vehicles catching on fire in roads and in parking places leading to destruction of the surroundings as well as hazard to the passengers. Thermal events can take place due to the heat dissipated by the heat emitters such as Engine, Turbo, Alternator, Exhaust System etc. So the most critical area where Thermal event can take place are under hood which includes the complete engine compartment and under body. The extent of fire depends on the fire source, characteristics of the materials used in constructing and furnishing the vehicle.
2015-01-14
Technical Paper
2015-26-0151
Ganesh Dharmar, Hareesh Krishnan, Riyaz Mohammed, Ravichandrika Bhamidipati
Abstract Recent trends in vehicle occupant protection have led to renewed interest in the perception of Roominess such as headroom, shoulder room and foot room etc. Occupants head room in vehicles is currently measured using tools, procedures and definitions described in SAE J1052 and J1100. “Head Position Contours” defined in SAE J1052 are useful in establishing accommodation requirements for head space [1]. With respect to the Indian Anthropometry database, the head position contour as per SAE J1052 will not be appropriate with Indian population. With this objective in mind a head movement envelope is generated using the software - RAMSIS Digital manikin. RAMSIS is widely used by Automobile Manufacturers for Digital Human Modeling. The head movement envelope is a collation of different movements of head during driving condition.
2015-01-14
Technical Paper
2015-26-0235
Raju P Soudatti, Ragunathan Amarnath, Ramesh Harish
Abstract Generally it is observed that in city buses most of the time, passenger seat fails at the seat mounting area in buses which are used for more than 3 years. This fatigue failure doesn't get captured either in Anchorage Test or Limited Vibration Test. Passenger seats' durability should be equal to vehicle life which is 10L km or 12 Years of life span. Physical testing on the vibration test rig is time consuming and costly. Most of the time machine availability for testing will be an issue, to validate alternate seat proposals. So there is a need to establish a correlation between physical testing and CAE simulation so that alternate proposals can be easily and quickly verified using CAE alone. This paper deals with the verification and validation of passenger seat in buses for life cycle requirement, through various methodologies adopted from data collection, CAE verification and physical validation to simulate real-time environment.
2015-01-14
Technical Paper
2015-26-0234
Ramesh Pathuri, Yuvraj Patil, Prasanna Vyankatesh Nagarhalli
Abstract This paper presents a method for Mobile Air Conditioning cool down simulation of passenger car with Multi Air Zone Cabin Model. This approach allows the prediction of zone wise (head, body and foot) temperature and humidity distribution in the cabin for parameter studies for transient analysis. The complete simulation model is set up in the 1D code. The same cabin model can deal with multiple inlets into the cabin, solar radiation, and other loads on Air Conditioning (AC) system and also allows detailed definition of cabin walls, like doors, floor, roof and windows. 3D air flow pattern within the cabin has been captured by diffusion fields and mass flow field. For a given flow field, these data are generated by conducting cabin air flow analysis in 3D Computational Fluid Dynamics (CFD). The simulation was done along with AC system, consisting of evaporator, compressor, condenser, thermostatic expansion device and connecting pipe network.
2015-01-14
Technical Paper
2015-26-0196
Soujanya C, V Sundaram, Sathish Kumar S
Abstract Cooling system is one of the important systems of an engine to maintain the optimum coolant temperature across engine and its components. Analysis of cooling system at initial phase of product development will help in optimum design of the system and there by achieving better performance of engine. For this purpose the traditional method followed is to run several bench tests and to analyze the engine performance and repeat the bench tests for validating any design changes. This results in increased lead time of engine development and overall cost. To reduce the lead time as well as reduce the overall cost, 1D (one dimension) simulation tools place a major role. Simulation of engine cooling system with special kind of engine coolant water jacket is challenging. It is difficult to achieve the simulation results close to bench test due to complexity of the system.
2015-01-14
Technical Paper
2015-26-0210
Nilesh Daithankar, Kishor D Udawant, Nagesh Voderahobli Karanth
Abstract This paper presents a methodology for predicting thermal comfort inside Midibus cabin with an objective to modify the Heating, Ventilation and Air Conditioning (HVAC) duct design and parametric optimization in order to have improved thermal comfort of occupant. For this purpose the bus cavity is extracted from baseline CAD model including fully seated manikins with various seating positions. Solar Load has been considered in the computational model and passenger heat load is considered as per BSR/ASHRAE 55-1992R standard. CFD simulation predicted the air temperature and velocity distribution inside passenger cabin of the baseline model. The experimental measurements have been carried out as per the guidelines set in APTA-BT-RP-003-07 standard.
2015-01-14
Journal Article
2015-26-0136
Deepak Mahajan, Arnab Sandilya, Lokesh Khandelwal, Sameer Srivastava
Abstract Automotive floor carpet serves the purpose of insulating airborne noises like road-tire noise, transmission noise, fuel pump noise etc. Most commonly used automotive floor carpet structure is- molded sound barrier (PE, vinyl etc.) decoupled from the floor pan with an absorber such as felt. With increasing customer expectations and fuel efficiency requirements, the NVH requirements are increasing as well. The only possible way of increasing acoustic performance (Specifically, Sound Transmission Loss, STL) in the mentioned carpet structure is to increase the barrier material. This solution, however, comes at a great weight penalty. Theoretically, increasing the number of decoupled barrier layers greatly enhances the STL performance of an acoustic packaging for same weight. In practice, however, this solution presents problems like- ineffectiveness at lower frequencies, sudden dip in performance at modal frequencies.
2015-01-13
WIP Standard
J1052
This SAE Recommended Practice describes head position contours and procedures for locating the contours in a vehicle. Head position contours are useful in establishing accommodation requirements for head space and are required for several measures defined in SAE J1100. Separate contours are defined depending on occupant seat location and the desired percentage (95 and 99) of occupant accommodation. This document is primarily focused on application to Class A vehicles (see SAE J1100), which include most personal-use vehicles (passenger cars, sport utility vehicles, pick-up trucks). A procedure for use in Class B vehicles can be found in Appendix B.
2015-01-12
Standard
ARP5740
This SAE Aerospace Recommended Practice (ARP) addresses the information content for the electronic presentation of data linked weather Meteorological (MET) information used in the cockpit. It defines guidelines for the electronic presentation of MET information (including text, graphics, textures, icons, and symbology) to the flight crew. This ARP is applicable to certified equipment for the electronic display (whether installed or portable) of MET information in the cockpit. This ARP also provides a set of symbols that illustrate the depiction of data linked MET information on flight deck display systems such as Navigation Displays, Multi-function Displays, and Electronic Flight Bags. These recommendations complement standard symbology guidelines for airborne applications already in existence (see reference section for applicable documents).
2015-01-08
Standard
J1658_201501
This SAE Recommended Practice applies to refrigerant blends (multicomponent refrigerants) intended for use as retrofit refrigerants to replace CFC-12 (R-12) in mobile air-conditioning (A/C) systems. Since the composition of non-azeotropic refrigerant mixtures changes as refrigerant is lost, either through the vapor phase or the liquid phase, the method of charging A/C systems is important. The purpose of this document is to determine the proper refrigerant phase, liquid or vapor, for system charging by relating system performance changes to the charging method. This document is complete only when combined with the requirements of SAE J1657.
2015-01-08
Standard
J1791_201501
This SAE standard applies to self-propelled driver operated sweepers and scrubbers as defined in SAE J2130-1. 1.1 Purpose The purpose of this document is to establish the basic requirements associated with controls and displays for dual position driving controls as depicted in a typical installation shown in Figure 1. The control layout illustrated being of a conventional installation as associated with a normal on-road vehicle having a steering wheel to steer the machine and foot pedals to control the speed and braking functions. The document elaborates the requirements for an originally built machine with two driving positions but also where a proprietary commercial truck chassis is converted from a single driving position, it also advises recommendations in design, construction and safety related elements.
2014-12-31
Standard
AIR1358C
This Aerospace Information Report (AIR) indicates those dimensions, deemed critical by the manufacturer to assure proper mating of disconnect hose fittings. The dimensions are critical, but not necessarily complete, in defining these fittings since there are other criteria which must also be met.
2014-12-28
Standard
ARP6256
This document is a guide to the application of magnesium alloys to aircraft interior components including but not limited to aircraft seats. It provides background information on magnesium, its alloys and readily available forms such as extrusions and plate. It also contains guidelines for “enabling technologies” for the application of magnesium to engineering solutions including: machining, joining, forming, cutting, surface treatment, flammability issues, and designing from aluminum to magnesium.
2014-12-23
Article
Plastic composite parts outnumber bio-based material vehicle applications, but "green" projects are making inroads by overcoming various hurdles.
2014-12-22
WIP Standard
J548/1
This SAE Standard applies only to spark plugs used for ground vehicles and stationary engines. This document is intended to serve as a guide to dimensions common to the majority of current production spark plugs and future applications. It is not the intent of this document to prohibit the manufacture of spark plugs having dimensions differing from those presented. Many applications exist which require specialized or nonstandard spark plugs. It is recommended that this document be used in spark plug design and engine applications wherever possible. Whenever design situations arise that prevent the use of one of these standard spark plugs, a spark plug manufacturer should be contacted for guidance. Figures 1 to 13 and Tables 1A to 6 show typical configurations of unshielded and shielded spark plug designs, their dimensional characteristics, installation, threaded hole, and spark plug thread sizes.
2014-12-19
WIP Standard
J2911
This SAE Standard provides manufacturers, testing facilities and providers of technician training with a procedure for certifying compliance with the appropriate standards. Manufacturers or seller who advertise their products as Certified to an SAE J standard shall follow this procedure. Certification of a product is voluntary; however, this certification process is mandatory for those advertising meeting SAE Standard(s) requirements. Only certifying to this standard allows those claiming compliance to advertise that their product (unit), component, or service meets all requirements of the specific SAE standard. Certification of compliance to this and the appropriate standard and use of the SAE label on the product shall only be permitted after all the required information has been submitted to SAE International and it has been posted on the SAE web site.
2014-12-16
Article
Ford recently unveiled its Sync 3 in-car infotainment system that will launch in select vehicles next year. In this episode of SAE Eye on Engineering, Senior Editor Lindsay Brooke looks at Ford's new system and its improvements over the previous version. 
2014-12-15
Article
Thermo Pro 90 and Thermo Pro 50 engine-off coolant heating systems from Webasto are designed for use in specialty commercial vehicles and off-highway equipment.
2014-12-11
Standard
J2912_201412
This SAE Standard applies to refrigerant identification equipment to be used for identifying refrigerant HFC-134a (R-134a) and HFO-1234yf (R-1234yf) refrigerant when servicing a mobile A/C system or for identifying refrigerant in a container to be used to charge a mobile A/C system. Identification of other refrigerants is the option of the equipment manufacturer, although it shall not misidentify refrigerants, per 3.2.
2014-12-03
Standard
J1948_201412
This SAE Recommended Practice provides a standardized test procedure for heavy-duty truck sleeper berth restraints to determine whether they meet the FMCSR 393.76(h) requirements.
2014-12-03
Standard
J1522_201412
This SAE Recommended Practice describes two-dimensional 95th percentile truck driver side view, seated stomach contours for horizontally adjustable seats (see Figure 1). There is one contour and three locating lines to accommodate male-to-female ratios of 50:50, 75:25, and 90:10 to 95:5.
2014-12-03
Standard
J1521_201412
This SAE Recommended Practice describes two-dimensional, 95th percentile truck driver, side view, seated shin-knee contours for both the accelerator operating leg and the clutch operating leg for horizontally adjustable seats (see Figure 1). There is one contour for the clutch shin-knee and one contour for the accelerator shin-knee. There are three locating equations for each curve to accommodate male-to-female ratios of 50:50, 75:25, and 90:10 to 95:5.
2014-12-02
Article
Toyota today called for a coordinated industry-wide joint initiative to independently test Takata airbag inflators that have been the subject of recent recalls by several automakers. "By combining our collective efforts behind a coordinated, comprehensive testing program, we believe we can achieve greater results.
2014-12-01
Standard
AS5452B
This SAE Aerospace Standard (AS) will specify what type night vision goggles are required, minimum requirements for compatible crew station lighting, aircraft exterior lighting such as anticollision lights and position/navigation lights that are "NVG compatible." Also, this document is intended to set standards for NVG utilization for aircraft so that special use aircraft such as the Coast Guard, Border Patrol, Air Rescue, Police Department, Medivacs, etc., will be better equipped to chase drug smugglers and catch illegal immigrants, rescue people in distress, reduce high-speed chases through city streets by police, etc. Test programs and pilot operator programs are required. For those people designing or modifying civil aircraft to be NVG compatible, the documents listed in 2.1.3 are essential.
2014-11-25
Book
The Automotive Seating Systems Report from IHS SupplierBusiness takes an in-depth look at the global seating market including the key changes currently underway in the industry and what the future holds for this sector. The report considers in-house seat manufacture and supply chain developments along with advances in safety, comfort and convenience. Fitment rates for various seat features such as powered and memory functions, lumbar support and massage have been increasing and will continue to do so as vehicle interiors become “smarter”. Much of the technology in today’s seats is electric or electronically driven, and can be remotely controlled via links on the dashboard or controllers located throughout the vehicle. The market is opening up to New Tier 1 suppliers as well as Tier 2 and specialist niche technology players, all of whom will intensify the competition for supplying the world’s leading seating companies.
2014-11-23
WIP Standard
AS8040C
This SAE Aerospace Standard (AS) covers combustion heaters used in the following applications: a. Cabin heating (all occupied regions and windshield heating) b. Wing and empennage anti-icing c. Engine and accessory heating (when heater is installed as part of the aircraft) d. Aircraft de-icing
2014-11-19
Standard
J782_201411
This recommended practice is a source of information for body and trim engineers and represents existing technology in the field of on-highway vehicle seating systems. It provides a more uniform system of nomenclature, definitions of functional requirements, and testing methods of various material components of motor vehicle seating systems.
2014-11-18
WIP Standard
ARP6337
Define and develop test parameters, test methods, measurements, and acceptable performance criteria for composite aircraft seat structures.
2014-11-18
Magazine
Oil debris monitoring in aero engines In a gas turbine engine, small particles or "chips" are generated at the point of wear, serving as an advanced warning that catastrophic failure will occur if the wear is not addressed. Health monitoring systems, such as oil debris monitoring, are used to find these small particles so that the wear can be resolved before it's too late. Indigenous powertrain development Customer needs and expectations on drivability, fuel economy, and safety has pushed Indian and multinational OEMs to think about the development of powertrains and gearboxes for local needs with global standards. The next wave of crash simulation As computing speed has improved and software itself has made significant speed and performance gains with each release, modeling tools are now quick enough to build high-quality, large, high-detail vehicle models in a very efficient manner.
2014-11-17
Article
Among the many premium interior features in the 2015 Hyundai Genesis is a “world-first” safety technology—an in-cabin CO2 sensor control system, located under the glove box, that combats occupant drowsiness.
Viewing 151 to 180 of 10014

Filter