Display:

Results

Viewing 121 to 150 of 10063
2015-04-14
Technical Paper
2015-01-1457
Aditya Belwadi, Richard Hanna, Audrey Eagle, Daniel Martinez, Julie Kleinert, Eric Dahle
Abstract Automotive interior design optimization must balance the design of the vehicle seat and occupant space for safety, comfort and aesthetics with the accommodation of add-on restraint products such as child restraint systems (CRS). It is important to understand the range of CRS dimensions so that this balance can be successfully negotiated. CRS design is constantly changing. In particular, the introduction of side impact protection for CRS as well as emphasis on ease of CRS installation has likely changed key design points of many child restraints. This ever-changing target creates a challenge for vehicle manufacturers to assure their vehicle seats and occupant spaces are compatible with the range of CRS on the market. To date, there is no accepted method for quantifying the geometry of child seats such that new designs can be catalogued in a simple, straightforward way.
2015-04-14
Technical Paper
2015-01-1122
Kengo Yabe, Toru Inagaki, Takashi Kondo
Abstract Seat vibration when a vehicle is idling or in motion is an issue in automobile development. In order to reduce this vibration, dynamic damper or inertia mass is widely used. These countermeasures increases vehicle's weight and causes bad fuel-efficiency. Some new ways to reduce the vibration without weight increase are needed. One of that is the floating seat. Seat vibration has been reduced by controlling seat resonance frequencies. In order to control resonance frequency, the structures of the seat-mounting unit are replaced with floating structures using rubber bushings. It was demonstrated that partially replacing the mounting unit with floating structures makes it possible to control the resonance frequencies of the entire seat. The issue of balancing vibration reduction with strength and durability and crash safety performance caused by the fitting of rubber bushings to the seat-mounting unit was addressed using stopper structures optimized for each type of input.
2015-04-14
Journal Article
2015-01-1184
Satyam Panchal, Scott Mathewson, Roydon Fraser, Richard Culham, Michael Fowler
Abstract The performance, life cycle cost, and safety of electric and hybrid electric vehicles (EVs and HEVs) depend strongly on their energy storage system. Advanced batteries such as lithium-ion (Li-ion) polymer batteries are quite viable options for storing energy in EVs and HEVs. In addition, thermal management is essential for achieving the desired performance and life cycle from a particular battery. Therefore, to design a thermal management system, a designer must study the thermal characteristics of batteries. The thermal characteristics that are needed include the surface temperature distribution, heat flux, and the heat generation from batteries under various charge/discharge profiles. Therefore, in the first part of the research, surface temperature distribution from a lithium-ion pouch cell (20Ah capacity) is studied under different discharge rates of 1C, 2C, 3C, and 4C.
2015-04-14
Technical Paper
2015-01-1189
Satyam Panchal, Scott Mathewson, Roydon Fraser, Richard Culham, Michael Fowler
Abstract A major challenge in the development of the next generation electric and hybrid electric vehicle (EV and HEV) technology is the control and management of heat generation and operating temperatures. Vehicle performance, reliability and ultimately consumer market adoption are integrally dependent on successful battery thermal management designs. In addition to this, crucial to thermal modeling is accurate thermo-physical property input. Therefore, to design a thermal management system and for thermal modeling, a designer must study the thermal characteristics of batteries. This work presents a purely experimental thermal characterization of thermo-physical properties of a lithium-ion battery utilizing a promising electrode material, LiFePO4, in a prismatic pouch configuration. In this research, the thermal resistance and corresponding thermal conductivity of prismatic battery materials is evaluated.
2015-04-14
Technical Paper
2015-01-1341
Hisaki Sugaya, Yoshiyuki Tosa, Kazuo Imura, Hiroyuki Mae
Abstract The explicit methods analysis solver LS-DYNA was used to create technology for simulating airbag deployment and plastic airbag lid tear-away in the front passenger seat. The present study clarified the mechanical properties and the transitions in fracture pattern of the material at low temperature plastic this way, an appropriate modeling method was developed and the prediction accuracy of the simulation of airbag lid tear-away on deployment was increased. Tensile testing of the material was carried out where there were differences in thickness of the tear-away section and the fracture characteristics were determined. A material model was created by analyzing changes in fracture characteristics and collapse patterns, taking into consideration the effects of strain and strain rate localization on fracture strain as well as ductile-brittle fracture transition. Next, airbags were subjected to the impactor testing.
2015-04-14
Technical Paper
2015-01-1394
Alessandro Naddeo, Marco Apicella, Davide Galluzzi
Abstract General comfort can be defined as the measure of the “level of wellbeing” perceived by humans when interacting with a working environment. The state of the art for comfort/discomfort evaluation shows the need for an objective method to evaluate both “effects on the internal body” and “perceived effects” when considering the perception of comfort. Medical studies show that each joint has its own natural resting posture. In this posture, our muscles are completely relaxed or at minimum levels of strain. The body's geometrical configuration corresponds to the natural resting position of arms/legs/neck etc. From this starting point, the authors experimented to develop and built postural-comfort curves for each degree of freedom (DOF) of upper-limb joints. These curves are regular, and do not show any kind of discontinuity. Software (CA-Man®) was developed to analyze different postures and calculate a postural comfort index for the entire upper body.
2015-04-14
Journal Article
2015-01-0339
Aimon Allouache, Smith Leggett, Matthew J. Hall, Ming Tu, Chad Baker, Haiyan Fateh
Abstract The performance of an organic Rankine cycle (ORC) that recovers heat from the exhaust of a heavy-duty diesel engine was simulated. The work was an extension of a prior study that simulated the performance of an experimental ORC system developed and tested at Oak Ridge National laboratory (ORNL). The experimental data were used to set model parameters and validate the results of that simulation. For the current study the model was adapted to consider a 15 liter turbocharged engine versus the original 1.9 liter light-duty automotive turbodiesel studied by ORNL. Exhaust flow rate and temperature data for the heavy-duty engine were obtained from Southwest Research Institute (SwRI) for a range of steady-state engine speeds and loads without EGR. Because of the considerably higher exhaust gas flow rates of the heavy-duty engine, relative to the engine tested by ORNL, a different heat exchanger type was considered in order to keep exhaust pressure drop within practical bounds.
2015-04-14
Technical Paper
2015-01-0343
Carlo N. Grimaldi, Claudio Poggiani, Alessandro Cimarello, Matteo De Cesare, Giovanni Osbat
Abstract The emissions limits of CO2 for vehicles are becoming more stringent with the aim of reducing greenhouse gas emissions and improve fuel economy. The New European Driving Cycle (NEDC) is adopted to measure emissions for all new internal combustion engines in the European Union, and it is performed on cold vehicle, starting at a temperature of 22°C ± 2°C. Consequently, the cold-start efficiency of internal combustion engine is becoming of predominant interest. Since at cold start the lubricant oil viscosity is higher than at the target operating temperature, the consequently higher energy losses due to increased frictions can substantially affect the emission cycle results in terms of fuel consumption and CO2 emissions. A suitable thermal management system, such as an exhaust-to-oil heat exchanger, could help to raise the oil temperature more quickly.
2015-04-14
Technical Paper
2015-01-0336
Amey Karnik, Daniel Pachner, Adrian M. Fuxman, David Germann, Mrdjan Jankovic, Christopher House
Abstract Numerous studies describe the fuel consumption benefits of changing the powertrain temperature based on vehicle operating conditions. Actuators such as electric water pumps and active thermostats now provide more flexibility to change powertrain operating temperature than traditional mechanical-only systems did. Various control strategies have been proposed for powertrain temperature set-point regulation. A characteristic of powertrain thermal management systems is that the operating conditions (speed, load etc) change continuously to meet the driver demand and in most cases, the optimal conditions lie on the edge of the constraint envelope. Control strategies for set-point regulation which rely purely on feedback for disturbance rejection, without knowledge of future disturbances, might not provide the full fuel consumption benefits due to the slow thermal inertia of the system.
2015-04-14
Journal Article
2015-01-0441
Takashi Takiguchi, Yusuke Yano, Yasuhiro Takii, Nobuyuki Ohta
Abstract With demands for enhanced environmental performance such as fuel economy, the tendency has been to reduce the amount of wind introduced to the engine room to reduce drag. Meanwhile, exhaust gas temperatures are increasing in order to reduce emissions concentrations. As a result, the temperature environments for parts inside the engine room and underfloor parts are becoming harsher, and accurately understanding the temperature environments of parts is crucial in determining Engine room component layout during vehicle development and applying effective thermal countermeasures. Computational fluid dynamics (CFD) are effective for understanding complex phenomena such as heat generation and cooling. However, this paper reports the development of a method for accurately calculating the vehicle temperature distribution through identification from test results.
2015-04-14
Technical Paper
2015-01-0349
Suvankar Manna, Yogendra Singh Kushwah
With stringent requirements of fuel efficiency and emissions, the airflow and thermal management within the under-hood environment is gaining significance day by day. While adequate airflow is required for cooling requirements under various vehicle operating conditions, it is also necessary to optimize it for reduced cooling drag and fan power. Hence, the need of the day is to maximize cooling requirements of Condenser, Radiator, CAC and other heat exchangers with minimal power consumption. To achieve this objective and due to the complicated nature of 3D flow phenomenon within the under-hood environment, it is useful to perform 3D CFD studies during preliminary stages to shorten design time and improve the quality and reliability of product design. In this paper we present the results from a CFD under-hood analysis that was carried out for design, development and optimization of a CRFM (Condenser, Radiator and Fan Module).
2015-04-14
Technical Paper
2015-01-0878
Guanzhang He, Hui Xie
Abstract The performance of three different electric turbo-compounding systems under both steady and driving cycle condition is investigated in this paper. Three configurations studied in this paper are serial turbo-compounding, parallel turbo-compounding and electric assisted turbo-compounding. The electric power, global gain of the whole system (engine and power turbine) under steady operating condition is firstly studied. Then investigation under three different driving cycles is conducted. Items including fuel consumption, engine operating point distribution and transient response performance are analyzed among which the second item is done based on statistic method combined with the results obtained under steady operating conditions. Study under steady condition indicates that electric assisted turbo-compounding system is the best choice compared with the other two systems.
2015-04-14
Technical Paper
2015-01-0335
Sandeep Makam, Christopher Dubbs, Yeliana Roosien, Feng Lin, William Resh
Abstract Due to ever-tightening CO2 regulations on passenger vehicles, it is necessary to find novel methods to improve powertrain system efficiency. These increases in efficiency should generally be cost effective so that the customer perceives that they add value. One approach for improving system efficiency has been the use of thermal energy management. For example, changing the flow of, or reusing “waste” heat from the powertrain to improve efficiency. Due to the interactions involved with thermal management, a system level approach is useful for exploring, selecting, and developing alternative solutions. It provides a structured approach to augment the right kind of synergies between subsystems and mitigate unintended consequences. However, one challenge with using these approaches early in a program is having appropriate metrics for assessing key aspects of the system behaviors.
2015-04-14
Technical Paper
2015-01-1236
John Jaranson, Meraj Ahmed
Abstract The Multi Material Lightweight Vehicle (MMLV) developed by Magna International and Ford Motor Company is a result of a US Department of Energy project DE-EE0005574. The project demonstrates the lightweighting potential of a five passenger sedan, while maintaining vehicle performance and occupant safety. Prototype vehicles were manufactured and limited full vehicle testing was conducted. The MMLV vehicle design, comprised of commercially available materials and production processes, achieved a 364kg (23.5%) full vehicle mass reduction, enabling the application of a 1.0-liter three-cylinder engine resulting in a significant environmental benefit and fuel reduction. This paper describes the concept design, prototyping, and validation for interior subsystems of the MMLV. Case studies are presented for two of the interior subsystems: the instrument panel/cross-car beam (IP/CCB) and the front seat structures.
2015-04-14
Technical Paper
2015-01-1753
Mario Vila Millan, Stephen Samuel
Abstract Stringent emission norms introduced by the legislators over the decades has forced automotive manufacturers to improve the fuel economy and emission levels of their engines continuously. Therefore, the emission levels of modern engines are significantly lower than pre-1990 engines. However, the improvement in fuel economy is marginal when compared to that of emission levels. For example, approximately 30% of total energy in the fuel is being wasted through the cooling systems in the modern engines. Therefore, thermal management systems are being developed to reduce these losses and offer new opportunities for improving the fuel economy of the vehicles. One of the new emerging technologies for thermal management is the use of nanofluids as coolant. Nanofluids are a mixture of nano-sized particles added to a base fluid to improve its thermal characteristics.
2015-04-14
Technical Paper
2015-01-1752
Alex Melin, David Kittelson, William Northrop
Abstract In recent years, there has been growing interest in alternative cycles to the standard 4-stroke Otto engine for improving efficiency and lowering emissions of spark-ignition engines. One proposed concept is the 5-stroke engine which uses two types of cylinders, a combustion cylinder and an expansion cylinder with a transfer port between them. Excess pressure in the combustion cylinder can be further expanded by using a second expansion cylinder to harness additional work. The expansion cylinder runs on a two-stroke cycle, allowing the use of two combustion cylinders to one expansion cylinder in a three cylinder configuration to increase efficiency. Previous work has investigated the performance of prototype 5-stroke engines compared to 1-D modeling results; none have conducted a thorough study on the interactions of various design parameters.
2015-04-14
Technical Paper
2015-01-1254
Daishi Takahashi, Koichi Nakata, Yasushi Yoshihara, Yukinori Ohta, Hiroyuki Nishiura
Abstract In recent years, enhancing engine thermal efficiency is strongly required. Since the maximum engine thermal efficiency is especially important for HVs, the technologies for improving engine thermal efficiency have been developed. The current gasoline engines for hybrid vehicles have Atkinson cycle with high expansion ratio and cooled exhaust gas recirculation (EGR) system. These technologies contribute to raise the brake engine thermal efficiency to more than 38%.In the near future the consumers demand will push the limit to 40% thermal efficiency. To enhance engine thermal efficiency, it is essential to improve the engine anti-knock quality and to decrease the engine cooling heat loss. To comply with improving the anti-knock quality and decreasing the cooling heat loss, it is known that the cooled EGR is an effective way.
2015-04-14
Technical Paper
2015-01-1279
Pengfei Lu, Chris Brace, Bo Hu
Abstract After years of study and improvement, turbochargers in passenger cars now generally have very high efficiency. This is advantageous, but on the other hand, due to their high efficiency, only a small portion of the exhaust energy is needed for compressing the intake air, which means further utilization of waste heat is restricted. From this point of view, a turbo-compounding arrangement has significant advantage over a turbocharger in converting exhaust energy as it is immune to the upper power demand limit of the compressor. However, with the power turbine being located in series with the main turbine, power losses are incurred due to the higher back pressure which increases the pumping losses. This paper evaluates the effectiveness that the turbo-compounding arrangement has on a 2.0 litres gasoline engine and seeks to draw a conclusion on whether the produced power is sufficient to offset the increased pumping work.
2015-04-14
Technical Paper
2015-01-1604
Tianwei (Thomas) Wang, John R. Wagner
Abstract Smart thermal management systems can positively impact the performance, fuel economy, and reliability of internal combustion engines. Advanced cooling systems typically feature multiple computer controlled actuators - a three way smart valve, a variable speed pump, and a variable speed electric radiator fan(s). To investigate the contributions of these electro-mechanical devices, a scale multifunction test bench was constructed which integrated these actuators, accompanying system sensors, and a controllable engine thermal load with real time data acquisition and control hardware/software. This paper presents a series of experimental studies that focus on the engine's thermal transient response to various actuators input control combinations. The test results established a basis for several key operating conclusions.
2015-04-14
Technical Paper
2015-01-1301
Naoki Yoneya, Masaru Yamasaki, Atsushi Yamanaka, Kentaro Mikawa, Hidefumi Iwaki, Isao Doi
Abstract We developed a thermal calculation 1D simulator for an electric valve timing control system (VTC). A VTC can optimize the open and close timing of the intake and exhaust valves depending on the driving situation. Since a conventional VTC is driven hydraulically, the challenges are response speed and operation limit at low temperature. Our company has been developing an electric VTC for quick response and expansion of operating conditions. Currently, it is necessary to optimize the motor and reduction gear design to balance quicker response with downsizing. Therefore, a coupled simulator that can calculate electricity, mechanics, control, and thermo characteristics is required. In 1D simulation, a thermal network method is commonly used for thermal calculation. However, an electric VTC is attached to the end of a camshaft; therefore, determining thermal resistances is difficult.
2015-04-14
Technical Paper
2015-01-1658
Xi Luo, Xin Yu, Marcis Jansons
Abstract As engine efficiency targets continue to rise, additional improvements must consider reduction of heat transfer losses. The development of advanced heat transfer models and realistic boundary conditions for simulation based engine design both require accurate in-cylinder wall temperature measurements. A novel dual wavelength infrared diagnostic has been developed to measure in-cylinder surface temperatures with high temporal resolution. The diagnostic has the capability to measure low amplitude, high frequency temperature variations, such as those occurring during the gas exchange process. The dual wavelength ratio method has the benefit of correcting for background scattering reflections and the emission from the optical window itself. The assumption that background effects are relatively constant during an engine cycle is shown to be valid over a range of intake conditions during motoring.
2015-04-14
Technical Paper
2015-01-1653
Kenji Matsumoto, Hironori Harada, Hiroyoshi Taniguchi, Naoki Ito
Abstract Car engine piston cooling is an important technology for improving the compression ratio and suppressing the deformation of pistons. It is well known that thermal conductivity improves dramatically through the use of heat pipes in computers and air conditioners. However, the heat pipes in general use have not been used for the cooling of engines because the flow of gas and liquid is disturbed by vibration and the thermal conductivity becomes excessively low. We therefore developed an original heat pipe and conducted an experiment to determine its heat transfer coefficient using a high-speed reciprocation testing apparatus. Although the test was based on a single heat pipe unit, we succeeded in improving the heat transfer coefficient during high-speed reciprocation by a factor of 1.6 compared to the heat transfer coefficient at standstill. This report describes the observed characteristics and the method of verification.
2015-04-14
Technical Paper
2015-01-1649
Kenji Matsumoto, Atsushi Takahashi, Tsutomu Inoue
Abstract In our preceding report [1], we showed that the thermal conductivity of a heat pipe dramatically improves during high-speed reciprocation. However, this cooling method has rarely been applied to car engine pistons because the thermal conductivity of commercially available heat pipes does not increase easily even if the pipe is subjected to high-speed reciprocation. In consideration of the data from our preceding report, we decided to investigate heat pipe designs for car engine pistons, propose an optimum design, and conduct thermal analysis of the design. As a result, we found that it is possible to transport heat from the central piston head area, where cooling is most needed, to the piston skirt area, suggesting the possibility of efficient cooling.
2015-04-14
Technical Paper
2015-01-1650
Azmi Osman, Mohd Asmu'i Hussin, Shaiful Fadzil Zainal Abidin
Abstract The drive to reduce CO2 and fuel consumption from passenger cars requires improvements from various subsystems. In particular, the ever growing importance of effective and efficient thermal management will no doubt benefit the quest for more efficient vehicle. While many established automakers have decided to increase the sophistications of the engine cooling circuits through electronics, the increase in complexity and costs are still not desirable especially for A and B passenger car segments. With this in mind, simple mechanical based cooling systems with enhanced functionalities are in high demand. To meet such demand, a simplified engine split cooling circuit previously proposed, simulated and reported seems to be promising. To further verify the indicated advantages, a prototype unit was built and physically tested using a dynamometer with motoring capability.
2015-04-14
Technical Paper
2015-01-1712
Ram Vijayagopal, Aymeric Rousseau
Abstract Thermoelectric generators (TEGs) can be used for a variety of applications in automobiles. There is a lot of interest in using them for waste heat recovery from a fuel economy point of view. This paper examines the potential of TEGs to provide cost-effective improvements in the fuel economy of conventional vehicles and hybrid electric vehicles (HEVs). Simulation analysis is used to quantify fuel economy benefits. The paper explains how a TEG is used in a vehicle and explores the idea of improving the TEG design by introducing a thermal reservoir in the TEG model to improve the waste heat recovery. An effort is made to identify the technological and economic barriers (and their thresholds) that could prevent TEGs from becoming an acceptable means of waste heat recovery in automobiles.
2015-04-14
Technical Paper
2015-01-1660
Jose Ramon Serrano, Francisco Jose Arnau, Jaime Martin, Manuel Hernandez, Benoit Lombard
Abstract This paper presents an experimental analysis on the effect of thermal insulation of engine internal walls on the performance and emissions of a heavy-duty diesel engine. Some parts of the engine, like pistons, cylinder head and exhaust manifold were thermally insulated from gas contact side in order to reduce heat losses through the walls. Each component has been analyzed, independently, and in combination with others. The results have been compared with that of the original engine configuration. The analysis focuses on NOx and, smoke emissions along with brake specific fuel consumption. In order to take advantage of the engine insulation, an optimization of the air management and injection settings was finally performed, which provided the best combination for each engine configuration.
2015-04-14
Technical Paper
2015-01-1663
Prafulla P Ghare, Hemant Khalane, Udaysingh Wakhure, Tushar Khobragade, Sandip Chaudhari, Atul Jahirabadkar
Abstract As one of the most complicated parts of an internal combustion Engine, cylinder head is directly exposed to high combustion pressures and temperatures. Cooling must be provided for the heated surfaces to avoid overheating. However over-cooling will cause lower overall efficiency and high emission. Therefore, an optimal design of the cooling system is required to maintain trouble-free operation of engine. For single cylinder naturally aspirated Compression Ignition (CI) engines, on account of space restrictions, designing of cooling jacket is very critical. Engineers invest a large amount of time and serious effort to optimize the flow through engine cooling jacket with limited detailed information of conducting flow and heat transfer. This paper therefore, investigates cooling performance of a single cylinder 510cc production diesel engine.
2015-04-14
Technical Paper
2015-01-1472
Roberto Arienti, Carlo Cantoni, Massimiliano Gobbi, Giampiero Mastinu, Mario Pennati, Giorgio Previati
Abstract The lightweight seat of a high performance car is designed taking into account a rear impact, i.e. the crash due to an impulse applied from the rear. The basic parameters of the seat structure are derived resorting to simulations of a crash with a test dummy positioned on the seat. The simulations provide the forces acting at the seat structure, in particular the forces applied at the joint between the seat cushion and the seat backrest are taken into account. Such a joint is simulated as a plastic hinge and dissipates some of the crash energy. The simulations are validated by means of indoor tests with satisfactory results. A tool has been developed for the preliminary design of lightweight seats for high performance cars.
2015-04-14
Journal Article
2015-01-0371
Rupesh Sonu Kakade, Prashant Mer
Abstract The human thermal comfort, which has been a subject of extensive research, is a principal objective of the automotive climate control system. Applying the results of research studies to the practical problems require quantitative information of the thermal environment in the passenger compartment of a vehicle. The exposure to solar radiation is known to alter the thermal environment in the passenger compartment. A photovoltaic-cell based sensor is commonly used in the automotive climate control system to measure the solar radiation exposure of the passenger compartment of a vehicle. The erroneous information from a sensor however can cause thermal discomfort to the occupants. The erroneous measurement can be due to physical or environmental parameters. Shading of a solar sensor due to the opaque vehicle body elements is one such environmental parameter that is known to give incorrect measurement.
2015-04-14
Journal Article
2015-01-0359
Satoki Uematsu, Toshiyuki Uehara, Toshiya Uchida, Gursaran D. Mathur
Abstract In last 10 years or so, a number of OEMs are designing vehicles with start-stop function to save energy and to reduce pollution. For these systems, the situations in which air-conditioning systems are used have been changing with a significant increase in adoption of idle-time reduction systems (no idling-system). Blower fan remains operating at idle condition while compressor stops in most cases for these systems. In this case, the air temperature at the vent outlets increases. The increase in the air temperature under range of thermal boundary conditions around the evaporator causes a concern of odor to occur. This paper describes and explains experimental studies on changes in heat and humidity at the air outlets according to the switching operation of compressor and root cause analyses of odor coming from air-conditioning system for vehicles with start-stop function.
Viewing 121 to 150 of 10063

Filter