Display:

Results

Viewing 121 to 150 of 10048
2015-04-14
Journal Article
2015-01-0786
Keita Arato, Teruyuki Takashima
Abstract A method to improve fuel consumption in diesel engines is to enhance their theoretical thermal efficiency by increasing their compression ratio. However, this results in an increase in heat loss due to the elevation of the concomitant in-cylinder temperature and the expansion of the impingement area between fuel spray and chamber wall. Therefore, reducing heat loss to the chamber wall is important to effectively benefit from a high compression ratio. To meet this challenge, in this study, we optimized the combustion chamber shape using the three-dimensional computational fluid dynamics (CFD) simulation software, CONVERGE. A rationale proposed by the University of Wisconsin-Madison was selected to outline the shape and combined with a multiobjective optimization software, modeFRONTIER. The calculations produced a shallow dishlike combustion chamber comprising a plateau at its center that may reduce heat loss.
2015-04-14
Journal Article
2015-01-1263
Kenichiro Ikeya, Masanobu Takazawa, Taketo Yamada, Shinrak Park, Ryutaro Tagishi
Abstract The goal of this research was to improve thermal efficiency under conditions of stoichiometric air-fuel ratio and 91 RON (Research Octane Number) gasoline fuel. Increasing compression ratio and dilution are effective means to increase the thermal efficiency of gasoline engines. Increased compression ratio is associated with issues such as slow combustion, increased cooling loss, and engine knocking. Against these challenges, a higher stroke-bore ratio (S/B ratio) and a lower effective compression ratio were tried as countermeasures. With respect to increased dilution, combustion of a high-EGR (Exhaust Gas Recirculation) was tried. High-energy ignition and optimized combustion chamber shape with high tumble port were tried as countermeasures against slow combustion and reduced ignitability due to a higher EGR rate.
2015-04-14
Journal Article
2015-01-1611
Wei Liu, Gangfeng Tan, Xuexun Guo, Jiafan Li, Yuanqi Gao, Wei Li
Abstract The hydraulic retarder is the most stabilized auxiliary braking system [1-2] of heavy-duty vehicles. When the hydraulic retarder is working during auxiliary braking, all of the braking energy is transferred into the thermal energy of the transmission medium of the working wheel. Theoretically, the residual heat-sinking capability of the engine could be used to cool down the transmission medium of the hydraulic retarder, in order to ensure the proper functioning of the hydraulic retarder. Never the less, the hydraulic retarder is always placed at the tailing head of the gearbox, far from the engine, long cooling circuits, which increases the risky leakage risk of the transmission medium. What's more, the development trend of heavy load and high speed vehicle directs the significant increase in the thermal load of the hydraulic retarder, which even higher than the engine power.
2015-04-14
Journal Article
2015-01-1661
Anthony Levillain, Pascale Brassart, Béatrice Patte-Rouland
Abstract New directives and increasing competition push OEMs to get better performances (engine power increase), along with mass and size reduction (consumption). These evolutions lead to an increase of the thermal solicitations undergo by the clutches whereas their weight must be decreased, as it is one of the main influent factor on CO2 emissions. As the compactness is even more reduced for a Double Dry Clutch (DDC), this issue is critical. In order to improve the thermal behavior of the DDC, a CFD study has been performed. The present paper will introduce the first results obtained with a validated CFD model. The computations are performed on a DDC where the air flow around the rotating parts, along with the convection and the conduction of all solid parts are modeled. Then four different cases are used to evaluate the impact of holes on the air flow path and on the thermal behavior of the different parts of the system.
2015-04-14
Journal Article
2015-01-1654
Billy G. Holland, Thomas L. McKinley, Bill R. Storkman
Abstract Cooled EGR continues to be a key technology to meet emission regulations, with EGR coolers performing a critical role in the EGR system. Designing EGR coolers that reliably manage thermal loads is a challenge with thermal fatigue being a top concern. The ability to estimate EGR cooler thermal fatigue life early in the product design and validation cycle allows for robust designs that meet engine component reliability requirements and customer expectations. This paper describes a process to create an EGR cooler thermal fatigue life model. Components which make up the EGR cooler have differing thermal responses, consequently conjugate transient CFD must be used to accurately model metal temperatures during heating and cooling cycles. Those metal temperatures are then imported into FEA software for structural analysis. Results from both the CFD and FEA are then used in a simplified numerical model to estimate the virtual strain of the EGR cooler.
2015-04-14
Journal Article
2015-01-1652
Yukikatsu Ozaki, Keisuke Sekiya
Abstract This research developed a new measurement technology for thermal analysis of the heat radiation from a hybrid transaxle case surface to the air and improved the heat radiation performance. This heat flux measurement technology provides the method to measure heat flux without wiring of sensors. The method does not have effects of wiring on the temperature field and the flow field unlike the conventional methods. Therefore, multipoint measurement of heat flux on the case surface was enabled, and the distribution of heat flux was quantified. To measure heat flux, thermal resistances made of plastic plates were attached to the case surface and the infrared thermography was used for the temperature measurement. The preliminary examination was performed to confirm the accuracy of the thermal evaluation through heat flux measurement. The oil in the transaxle was heated and the amount of heat radiation from the case surface was measured.
2015-04-14
Journal Article
2015-01-0339
Aimon Allouache, Smith Leggett, Matthew J. Hall, Ming Tu, Chad Baker, Haiyan Fateh
Abstract The performance of an organic Rankine cycle (ORC) that recovers heat from the exhaust of a heavy-duty diesel engine was simulated. The work was an extension of a prior study that simulated the performance of an experimental ORC system developed and tested at Oak Ridge National laboratory (ORNL). The experimental data were used to set model parameters and validate the results of that simulation. For the current study the model was adapted to consider a 15 liter turbocharged engine versus the original 1.9 liter light-duty automotive turbodiesel studied by ORNL. Exhaust flow rate and temperature data for the heavy-duty engine were obtained from Southwest Research Institute (SwRI) for a range of steady-state engine speeds and loads without EGR. Because of the considerably higher exhaust gas flow rates of the heavy-duty engine, relative to the engine tested by ORNL, a different heat exchanger type was considered in order to keep exhaust pressure drop within practical bounds.
2015-04-14
Journal Article
2015-01-0342
Forrest Jehlik, Eric Wood, Jeffrey Gonder, Sean Lopp
Abstract It is widely understood that cold ambient temperatures increase vehicle fuel consumption due to heat transfer losses, increased friction (increased viscosity lubricants), and enrichment strategies (accelerated catalyst heating). However, relatively little effort has been dedicated to thoroughly quantifying these impacts across a large set of real world drive cycle data and ambient conditions. This work leverages experimental dynamometer vehicle data collected under various drive cycles and ambient conditions to develop a simplified modeling framework for quantifying thermal effects on vehicle energy consumption. These models are applied over a wide array of real-world usage profiles and typical meteorological data to develop estimates of in-use fuel economy. The paper concludes with a discussion of how this integrated testing/modeling approach may be applied to quantify real-world, off-cycle fuel economy benefits of various technologies.
2015-04-14
Journal Article
2015-01-0357
Huize Li, Predrag Hrnjak
Abstract This paper presents a method of utilizing infrared images to quantify the distribution of liquid refrigerant mass flow rate in microchannel heat exchangers, which are widely used in automobile air conditioning systems. In order to achieve quantification, a relationship is built between the liquid mass flow rate through each microchannel tube and the corresponding air side capacity calculated from the infrared measurement of the wall temperature. After being implemented in a heat exchanger model, the quantification method is validated against experimental data. This method can be used for several types of heat exchangers and it can be applied to various heat exchanger designs.
2015-04-14
Journal Article
2015-01-0438
Ashley Lehman, Vesselin Stoilov, Andrzej Sobiesiak
Abstract This paper describes the application of the Fourier Amplitude Sensitivity Test (FAST) method [1] to investigate the effect of uncertainty in design parameters on the thermal system performance of vehicle underbody components. The results from this study will pinpoint the design parameters which offer the greatest opportunity for improvement of thermal system performance and reliability. In turn, this method can save engineering time and resources. An analytical model was developed for a vehicle underbody system consisting of a muffler, heat shield, and spare tire tub. The output from this model was defined as the temperature of the spare tire tub. The majority of the input parameters in this model deviate from their nominal values due to environmental factors, wear and ageing, and/or variation in the manufacturing process.
2015-04-14
Journal Article
2015-01-0440
Julio Carrera, Alfredo Navarro, Concepcion Paz, Alvaro Sanchez, Jacobo Porteiro
Recent emissions standards have become more restrictive in terms of CO2 and NOx reduction. This has been translated into higher EGR rates at higher exhaust gas temperatures with lower coolant flow rates for much longer lifetimes. In consequence, thermal load for EGR components, specially EGR coolers, has been increased and thermal fatigue durability is now a critical issue during the development. Consequently a new Thermo-Mechanical Analysis (TMA) procedure has been developed in order to calculate durability. The TMA calculation is based on a Computational Fluid Dynamics simulation (CFD) in which a boiling model is implemented for obtaining realistic temperature predictions of the metal parts exposed to possible local boiling. The FEM model has also been adjusted to capture the correct stress values by submodeling the critical areas. Life calculation is based on a Multiaxial Fatigue Model that has also been implemented in FEM software for node by node life calculation.
2015-04-14
Journal Article
2015-01-0441
Takashi Takiguchi, Yusuke Yano, Yasuhiro Takii, Nobuyuki Ohta
Abstract With demands for enhanced environmental performance such as fuel economy, the tendency has been to reduce the amount of wind introduced to the engine room to reduce drag. Meanwhile, exhaust gas temperatures are increasing in order to reduce emissions concentrations. As a result, the temperature environments for parts inside the engine room and underfloor parts are becoming harsher, and accurately understanding the temperature environments of parts is crucial in determining Engine room component layout during vehicle development and applying effective thermal countermeasures. Computational fluid dynamics (CFD) are effective for understanding complex phenomena such as heat generation and cooling. However, this paper reports the development of a method for accurately calculating the vehicle temperature distribution through identification from test results.
2015-04-14
Journal Article
2015-01-0671
Saeed Jahangirian, Ashutosh Srivastava, Seyed Alireza Hosseini, Steven Ballard, Naiqiang Wu, John Kiedaisch
Abstract Durability assessments of modern engines often require accurate modeling of thermal stresses in critical regions such as cylinder head firedecks under severe cyclic thermal loading conditions. A new methodology has been developed and experimentally validated in which transient temperature distributions on cylinder head, crankcase and other components are determined using a Conjugate Heat Transfer (CHT) CFD model and a thermal finite element analysis solution. In the first stage, cycle-averaged gas side boundary conditions are calculated from heat transfer modeling in a transient in-cylinder simulation. In the second stage, a steady-state CHT-CFD analysis of the full engine block is performed. Volume temperatures and surface heat transfer data are subsequently transferred to a thermal finite element model and steady state solutions are obtained which are validated against CFD and experimental results.
2015-04-14
Journal Article
2015-01-0149
Can Wang, Gangfeng Tan, Xuexun Guo, Zhewen Tian, Zhanwei Tian, Jiafan Li
Abstract In summer, when vehicle parks in direct sunlight, the closed cabin temperature would rise sharply, which affects the occupants step-in-car comfort Solar powered vehicle parking ventilation system adopts the solar energy to drive the original ventilator. Thus, the cabin temperature could be dramatically decreased and the riding comfort could be also improved. This research analyzed the modified crew cabin thermal transfer model. Then the performance of the solar powered ventilation system is analyzed and optimized combined with the power supply characteristics of the photovoltaic element. The storage and reuse of the solar power is achieved on condition that the cabin temperature could be steadily controlled. The research shows that, the internal temperature is mainly affected by the solar radiation intensity and the environment temperature.
2015-04-14
Journal Article
2015-01-0254
Chunjing Lin, Sichuan Xu, Zhao Li, Guofeng Chang
Abstract A passive thermal management system (TMS) using composite phase change material (PCM) for large-capacity, rectangular lithium-ion batteries is designed. A battery module consisting of six Li-ion cells connected in series was investigated as a basic unit. The passive TMS for the module has three configurations according to the contact area between cells and the composite PCM, i.e., surrounding, front-contacted and side-contacted schemes. Firstly, heat generation rate of the battery cell was calculated using the Bernardi equation based on experimentally measured heat source terms (i.e. the internal resistance and the entropy coefficient). Physical and thermal properties such as density, phase change temperature, latent heat and thermal conductivity of the composite PCM were also obtained by experimental methods. Thereafter, thermal response of the battery modules with the three TMS configurations was simulated using 3D finite element analysis (FEA) modeling in ANSYS Fluent.
2015-04-14
Journal Article
2015-01-1695
Satoki Tada, Takahiro Nagai, Naoki Shioda, Hirofumi Fujiu, Shunji Kumagai, Hideaki Abe, Yukihiro Isoda, Yoshikazu Shinohara
Abstract As an appropriate material for automotive thermoelectric generators, which directly convert waste heat of exhaust gas into electricity, we have developed Mg2(Si1-xSnx) thermoelectric materials with high thermoelectric performance. The performance is evaluated with the dimensionless figure of merit (ZT), and the ZT has been improved through the development of the fabrication process and the investigation of the optimum composition and dopant element. A novel liquid-solid reaction synthesis method incorporating hotpressing for the sample fabrication was effective in reducing the thermal conductivity. The n-type Mg2(Si0.50Sn0.50) doped with Sb attained a high ZT of 1.1 at 620 K. The p-type Mg2(Si0.25Sn0.75) doped with Li and Ag simultaneously achieved a ZT of 0.3 at 600 K. The effective maximum power of n-type thermoelectric element and that of p-type were calculated with the thermoelectromotive force and the mean resistivity.
2015-04-14
Journal Article
2015-01-0326
Takuya Yamaguchi, Yuzo Aoyagi, Noboru Uchida, Akira Fukunaga, Masayuki Kobayashi, Takayuki Adachi, Munemasa Hashimoto
Abstract In heavy duty diesel engines, the waste heat recovery has attracted much attention as one of the technologies to improve fuel economy further. In this study, the available energy of the waste heat from a high boosted 6-cylinder heavy duty diesel engine which is equipped with a high pressure loop EGR system (HPL-EGR system) and low pressure loop EGR system (LPL-EGR system) was evaluated based on the second law of thermodynamics. The maximum potential of the waste heat recovery for improvement in brake thermal efficiency and the effect of the Rankine combined cycle on fuel economy were estimated for each single-stage turbocharging system (single-stage system) and 2-stage turbocharging system (2-stage system).
2015-04-14
Technical Paper
2015-01-0337
Blago B. Minovski, Lennart Lofdahl, Peter Gullberg
Abstract The current work investigates a method in 1D modeling of cooling systems including discretized cooling package with non-uniform boundary conditions. In a stacked cooling package the heat transfer through each heat exchanger depends on the mass flows and temperature fields. These are a result of complex three-dimensional phenomena, which take place in the under-hood and are highly non-uniform. A typical approach in 1D simulations is to assume these to be uniform, which reduces the authenticity of the simulation and calls for additional calibrations, normally done with input from test measurements. The presented work employs 3D CFD simulations of complete vehicle in STAR-CCM+ to perform a comprehensive study of mass-flow and thermal distribution over the inlet of the cooling package of a Volvo FM commercial vehicle in several steady-state operating points.
2015-04-14
Technical Paper
2015-01-0335
Sandeep Makam, Christopher Dubbs, Yeliana Roosien, Feng Lin, William Resh
Abstract Due to ever-tightening CO2 regulations on passenger vehicles, it is necessary to find novel methods to improve powertrain system efficiency. These increases in efficiency should generally be cost effective so that the customer perceives that they add value. One approach for improving system efficiency has been the use of thermal energy management. For example, changing the flow of, or reusing “waste” heat from the powertrain to improve efficiency. Due to the interactions involved with thermal management, a system level approach is useful for exploring, selecting, and developing alternative solutions. It provides a structured approach to augment the right kind of synergies between subsystems and mitigate unintended consequences. However, one challenge with using these approaches early in a program is having appropriate metrics for assessing key aspects of the system behaviors.
2015-04-14
Technical Paper
2015-01-1694
Jun Li, Predrag Hrnjak
Abstract This paper presents results of the visualization of the separation in the vertical header of the automotive condenser. A prototype of a heat exchanger was made that has inlet in the middle of the header, with 21 microchannel tubes as the first pass. In the second header liquid separates and leaves through 4 microchannel tubes beneath while mostly vapor leaves through 11 microchannel tubes on the top as another exit. That way the 2nd pass has liquid below first pass and vapor above it. R134a was used in the tests. Mass flow at the inlet to the header was in the range 8.4 - 30 g/s (mass flux of 54 kg/m2·s-193 kg/m2·s) and quality at the inlet to second header was varied over a range of 0.05 to 0.25, to see their impact on the separation of two-phase flow inside the transparent header. Visualization was performed to better understand and define the physical parameters that dominate the separation phenomena.
2015-04-14
Technical Paper
2015-01-1710
Xinran Tao, Kan Zhou, Andrej Ivanco, John R. Wagner, Heath Hofmann, Zoran Filipi
Abstract The components in a hybrid electric vehicle (HEV) powertrain include the battery pack, an internal combustion engine, and the electric machines such as motors and possibly a generator. These components generate a considerable amount of heat during driving cycles. A robust thermal management system with advanced controller, designed for temperature tracking, is required for vehicle safety and energy efficiency. In this study, a hybridized mid-size truck for military application is investigated. The paper examines the integration of advanced control algorithms to the cooling system featuring an electric-mechanical compressor, coolant pump and radiator fans. Mathematical models are developed to numerically describe the thermal behavior of these powertrain elements. A series of controllers are designed to effectively manage the battery pack, electric motors, and the internal combustion engine temperatures.
2015-04-14
Technical Paper
2015-01-1712
Ram Vijayagopal, Aymeric Rousseau
Abstract Thermoelectric generators (TEGs) can be used for a variety of applications in automobiles. There is a lot of interest in using them for waste heat recovery from a fuel economy point of view. This paper examines the potential of TEGs to provide cost-effective improvements in the fuel economy of conventional vehicles and hybrid electric vehicles (HEVs). Simulation analysis is used to quantify fuel economy benefits. The paper explains how a TEG is used in a vehicle and explores the idea of improving the TEG design by introducing a thermal reservoir in the TEG model to improve the waste heat recovery. An effort is made to identify the technological and economic barriers (and their thresholds) that could prevent TEGs from becoming an acceptable means of waste heat recovery in automobiles.
2015-04-14
Journal Article
2015-01-1656
Lisa Henriksson, Peter Gullberg, Erik Dahl, Lennart Lofdahl
Abstract This article presents Computational Fluid Dynamics (CFD) simulations fo one period of a louvered fin, for a crossflow compact finned heat exchanger, where the incoming airflow was inclined relative to its core. Four inclinations were investigated: 90°, which was when the air flowed perpendicular to the heat exchanger, 60°, 30° and 10° angles relative to the vertical plane. The study included three heat exchanger designs, where two of them had symmetrical louvered fins and a thickness of 19mm and 52mm. The third had a thickness of 19mm and had the louvers angled in one direction. All heat exchangers have been simulated when the airflow entered both from above and below relative to the horizontal plane. Simulations have also been carried out when the airflow entered from the side, illustrating the heat exchanger to be angled relative to the vertical axis. Two air speeds have been investigated for each configuration, where the results were compared to experimental data.
2015-04-14
Journal Article
2015-01-1691
Manabu Matsumoto, Masayoshi Mori, Tomohide Haraguchi, Makoto Ohtani, Tomoya Kubo, Kanji Matsumoto, Hiroshi Matsuda
Abstract Exhaust heat recovery units that use a thermoelectric element generate electricity by creating a temperature difference in the thermoelectric element by heating one side and cooling the other side of the thermoelectric circuit (module). In this case, the general structure does not directly join the thermoelectric module with the heat sink, and instead presses the thermoelectric module against the heat sink using bolts or other means in order to prevent thermoelectric element damage due to the difference in linear expansion between the cooled and heated sides of the thermoelectric module. However, this poses the issues associated with a complex, heavy and expensive structure. Therefore, a new vacuum space structure was devised that houses the thermoelectric module in a vacuum chamber and presses the module against the heat sink using atmospheric pressure.
2015-04-14
Technical Paper
2015-01-1692
Walter Ferraris, Fausto Di Sciullo, Carloandrea Malvicino, Francesco Vestrelli, Fabrizio Beltramelli, Giancarlo Gotta
Abstract Automotive world is rapidly changing driven by the CO2 emission regulations [1], [2] worldwide asking for a dramatic fuel consumption reduction. The on board thermal management has a relevant role influencing the front vehicle design and sizing to assure the right heat rejection capacity and being crucial to guarantee the on board system efficiency and reliability. In this context the dual level cooling system with water cooled charge air cooling is a clear trend leading to a new generation of systems [3, 4]. This paper describes a compact solution to effectively implement a dual cooling loop system with water cooled charge air cooler and water cooled condenser on small/subcompact cars giving the opportunity to integrate additional modules (e.g. in case of hybrid powertrain) to the secondary loop.
2015-04-13
Article
Halla Visteon Climate Control Corp. (HVCC) recently began production at its new facility in Sanand, in the state of Gujarat, India. The full-line supplier of automotive thermal management solutions is using the Gujarat facility to support its growing business with global vehicle manufacturers and to cater to the requirements of OEMs in the state of Gujarat and western India.
2015-04-13
Article
Southco's Bob Straka believes the desire for increased ergonomics and streamlined, aerodynamic equipment designs are leading factors influencing the future of off-highway design.
2015-04-09
WIP Standard
J3094
Create a standard for measurement of the performance characteristics of an Internal Heat Exchanger. The standard should make it easier to innovate designs and bring improvements to this new technology.
2015-04-01
Article
GM's all-new premium flagship sedan is about 200 lb (91 kg) lighter than the BMW 5 Series but offers the interior volume of the short-wheelbase 7 Series, thanks to what is arguably the industry’s most aggressive combination of lightweight materials, forming technologies, and new joining methods in a non-exotic sedan.
2015-04-01
Journal Article
2015-01-9151
Eric S. Winkel, Daniel E. Toomey, Robert Taylor
Abstract Thoracolumbar vertebral fractures are most commonly due to compressive loading modes and associated with falls from height. Two injury metrics are generally referenced for assessing the potential for compressive thoracolumbar injury; the Dynamic Response Index (DRI) and the compressive load measured between the pelvis and lumbar spine using the Code of Federal Regulations (CFR) title 49 part 572 subpart B anthropomorphic test device (ATD). This study utilizes an ATD to investigate the injury mitigation potential of a variety of seat cushions during vertical impact in an unrestrained seated posture. ATD responses and DRI are reported for 65 vertical impacts with and without cushions from heights between 4 and 80 inches. The cushions investigated reduced ATD peak pelvic acceleration 63 +/− 11% and compressive lumbar load 42 +/− 9% on average.
Viewing 121 to 150 of 10048

Filter