Display:

Results

Viewing 121 to 150 of 10086
2015-04-14
Technical Paper
2015-01-0329
Mark Hepokoski, Allen Curran, Richard Burke, John Rugh, Larry Chaney, Clay Maranville
Abstract Reliable assessment of occupant thermal comfort can be difficult to obtain within automotive environments, especially under transient and asymmetric heating and cooling scenarios. Evaluation of HVAC system performance in terms of comfort commonly requires human subject testing, which may involve multiple repetitions, as well as multiple test subjects. Instrumentation (typically comprised of an array of temperature sensors) is usually only sparsely applied across the human body, significantly reducing the spatial resolution of available test data. Further, since comfort is highly subjective in nature, a single test protocol can yield a wide variation in results which can only be overcome by increasing the number of test replications and subjects. In light of these difficulties, various types of manikins are finding use in automotive testing scenarios.
2015-04-14
Technical Paper
2015-01-0328
Wilko Jansen, Joe Amodeo, Sam Wakelam, Kamalesh Bhambare
Abstract The level of infotainment in today's vehicles and the customer expectation of the functionality imply a significant effort is required on thermal management of the systems, to guarantee their full operation under all operating conditions. The worst case thermal conditions the system will get exposed to are caused by solar loading on the cabin or heat up as a result of cabin heating. Simulation of a solar load driven case will be discussed in this paper. The long soak conditions during these tests result in the modelling requirement for long natural convection periods. This is creating a challenge for the conventional CFD simulations in turnaround time. New simulation methodology has resulted in significant speed up enabling these fully transient simulations in a reasonable turnaround time to enable programme support. A two phase approach to simulating this problem is proposed in this paper.
2015-04-14
Technical Paper
2015-01-0351
Jason A. Lustbader, Cory Kreutzer, Steven Adelman, Skip Yeakel, John Zehme
Abstract Annual fuel use for long-haul truck rest period idling is estimated at 667 million gallons in the United States. The U.S. Department of Energy's National Renewable Energy Laboratory's CoolCab project aims to reduce heating, ventilating, and air conditioning (HVAC) loads and resulting fuel use from rest period idling by working closely with industry to design efficient long-haul truck climate control systems while maintaining occupant comfort. Enhancing the thermal performance of cab/sleepers will enable smaller, lighter, and more cost-effective idle reduction solutions. In order for candidate idle reduction technologies to be implemented at the original equipment manufacturer and fleet level, their effectiveness must be quantified. To address this need, a number of promising candidate technologies were evaluated through experimentation and modeling to determine their effectiveness in reducing rest period HVAC loads.
2015-04-14
Technical Paper
2015-01-0350
Zhi Li, Gangfeng Tan, Jing Cai, Zhongjie Yang, YiRui Wang, Haobo Xu
Abstract The vehicle engine exhaust wastes heat. For the conventional scheme, the hot-end of the thermoelectric module is connected with the exhaust pipe, while the cold-end is cooled through the vehicle engine cooling cycle. The variation of vehicle engine operating conditions brings the instability of the hot-end temperature, which affects the power generation performance of thermoelectric materials and increases the damage risk to the thermoelectric materials caused by the high temperature. This research adopts the heat transfer oil circulation as the intermediate fluid to absorb the dynamic heat flux of the vehicle engine exhaust so as to release the heat steadily to the hot-end of the thermoelectric module. The thermal characteristics of the target diesel vehicle engine exhaust gas are evaluated based on the experimental data firstly.
2015-04-14
Technical Paper
2015-01-0347
Logesh Shankar Somasundaram, S Sriraman, Rakesh Verma
The paper aims at numerically modeling the flow and thermal processes occurring in an agricultural tractor using Computational Fluid Dynamics (CFD) and determines the comfort level of the tractor operator during working condition. The motive of the investigation is to develop and demonstrate capabilities of CFD as an automotive analysis tool. The work describes a methodology that significantly stream lines the process of thermal flow taking place in a tractor by utilizing state-of-the art computer simulation of air flow and heat transfer. The numerical investigation carried out with a three-dimensional geometry of the vehicle assembly and the measurements were taken from the vehicle. The geometry created with Pro/Engineer formed the domain for the automatically generating discretized grid contained the majority of the main components within the underhood environment.
2015-04-14
Technical Paper
2015-01-0348
Chuqi Su, Meng Xu, Naiqiang Tong, Yulian Chen
Abstract The potential for automotive exhaust-based thermoelectric generator (TEG) has been increasing with continuously advances in thermoelectric technology. In this paper, the thermal deformation of the TEG system is studied on the basis of the surface temperature distribution of the heat exchanger. The simulation result shows that thermoelectric modules (TMs) on different positions have different thermal performance which can significantly influence the power generation efficiency of the system. Meanwhile, in terms of the working performance of TMs, the clamping mechanism is considered to have some effects on both the cold side and the hot side of TEG. Following the simulation, bench tests are carried out to confirm the reasonability of the simulation results.
2015-04-14
Technical Paper
2015-01-0344
Yingchao Zhang, Weijiang Meng, Tao Chen, Yong Hao, Wei Ding
Abstract It is known that the automobile cabin thermal comfort, could keep the driver and passengers feel better which has a great effect on traffic safety. In this paper, to the FAW truck cab, we did some researches about automobile cabin thermal comfort. Our plan is to calculate the air flow distribution and the temperature in steady and transient state when there is warm or cool air flow. The heating and cooling experiment methods standard of cabin are based on the national standard and the automobile industry standard of China. Then the numerical simulation process becomes very important. So we used the commercial CFD code- STAR-CCM+ for study in this paper. Firstly, Geometry Clean up. Secondly, Wrap and Remesh, we chose the internal surface at the wrap surface of cabin and air conditioning pipes, then we remesh the surface. Thirdly, generate the volume mesh which is polyhedral mesh, and the number of the volume mesh is 9.4 millions.
2015-04-14
Technical Paper
2015-01-0346
Lei Dongxu, Minli Bai, Jizu Lv, Peng Wang, Chengzhi Hu, Yuyan Wang
Abstract Due to the latent heat of vaporization, the efficiency of boiling heat transfer is several times and even dozens of times higher than that of the convection heat transfer. With the improvement of power density of the engine, there are more requirements for engine cooling system design. It has been confirmed that the subcooled boiling did exist in the engine cooling. If boiling heat transfer can be reasonablely used, we can achieve the objective of enhancing heat transfer without changing the existing structure. In this paper, in order to quantitatively research the subcooled boiling in the engine, we simulated the subcooled boiling in the analog channel with the Euler multiphase model, found the importance of the turbulent dispersion. In additon, we explored the applicability of existing models to subcooled boiling, and compared the results with the experiment.
2015-04-14
Technical Paper
2015-01-0340
Jan Eller, Thomas Binner, Heinrich Reister, Nils Widdecke, Jochen Wiedemann
Abstract Collective life-cycle data is needed when developing components like elastomer suspension mounts. Life-time prediction is only possible using thermal load frequency distributions. In addition to current extreme load cases, the Idle Load Case is examined at Mercedes-Benz Car Group as a collective load case for Vehicle Thermal Management (VTM) numerical simulations in early development stages. It combines validation opportunities for HVAC, cooling and transmission requirements in hot-country-type ambient conditions. Experiments in climatic wind tunnels and coupled 3D CFD and heat transfer simulations of the Idle Load Case have been performed. Measurements show steady conditions at the end of the load case. Decoupling of the torque converter, changes in ambient temperature and the technical implementation of a wind barrier for still air conditions exhibit influence on component-level results. Solar load, however, does not significantly change the examined component temperatures.
2015-04-14
Technical Paper
2015-01-0341
Georg Rauch, Johannes Lutz, Martin Werner, Sagar Gurwara, Peter Steinberg
Abstract This paper introduces an innovative approach, named synergetic 1D-3D-Coupling, by using synergy effects of 1D and 3D simulation in order to bring down modeling and simulation efforts. At the same time the methodology sustains the spatial resolution of a 3D model. This goal is reached by reducing the 3D fluid side with its time consuming continuity, momentum, energy and turbulence equations to a simple but precise 1D model. Because of the solid structure staying three dimensional, heat flux direction and spatial resolution have 3D accuracy but short calculation times due to the simple heat diffusion equation to be solved. The 1D model is represented by an automatically generated equation system which is capable of considering transient effects. The energy transfer between 1D fluid model and 3D structure model is realized through a neutral 1D-3D-coupling program and the application of the fluid element specific Nusselt correlations.
2015-04-14
Technical Paper
2015-01-0337
Blago B. Minovski, Lennart Lofdahl, Peter Gullberg
Abstract The current work investigates a method in 1D modeling of cooling systems including discretized cooling package with non-uniform boundary conditions. In a stacked cooling package the heat transfer through each heat exchanger depends on the mass flows and temperature fields. These are a result of complex three-dimensional phenomena, which take place in the under-hood and are highly non-uniform. A typical approach in 1D simulations is to assume these to be uniform, which reduces the authenticity of the simulation and calls for additional calibrations, normally done with input from test measurements. The presented work employs 3D CFD simulations of complete vehicle in STAR-CCM+ to perform a comprehensive study of mass-flow and thermal distribution over the inlet of the cooling package of a Volvo FM commercial vehicle in several steady-state operating points.
2015-04-14
Technical Paper
2015-01-0727
Udayakumar Rajamanickam, Anshul Singhal, Miller Jothi
Abstract This paper aims at Fiber Reinforced Panel or FRP mold and panel manufacturing of body panel and driver seat for a Formula Society of Automotive Engineers or FSAE racecar. The competition involves designing a Formula 1 type car that lays the standards for a high performance-racing car [1]. This calls for a high Power: Weight ratio. The rules of the competition ensure a mandatory use of an air restrictor with an engine of a maximum capacity of 600cc to reduce the power of the engines [2]. Hence, to compensate for the loss of power the target now shifts to minimizing the car's weight without compromising the strength. The body panel and driver's seat are two most valuable parts as the first adds elegance and aerodynamics to the car while the latter makes it comfortable for the driver to drive the car under high lateral load shifts. Weight reduction in this area is easier as strength is not the dominating factor.
2015-04-14
Technical Paper
2015-01-0717
Anindya Deb, G S Venkatesh, Ashok Mache
Abstract The usage of lightweight materials such as plastics and their derivatives continues to increase in automobiles driven by the urgency for weight reduction. For structural performance, body components such as A-pillar or B-pillar trim, instrument panel, etc. have to meet various requirements including resistance to penetration and energy absorption capability under impact indentation. A range of plain and reinforced thermoplastics and thermosetting plastics has been considered in the present study in the form of plates which are subject to low velocity perforation in a drop-weight impact testing set-up with a rigid cylindrical indenter fitted to a tup. The tested plates are made of polypropylene (PP), nanoclay-reinforced PP of various percentages of nanoclay content, wood-PP composites of different volume fractions of wood fiber, a jute-polyester composite, and a hybrid jute-polyester reinforced with steel.
2015-04-14
Technical Paper
2015-01-0733
Nichole Verwys, Jesse Fritcher, Thomas DeMass
Abstract Dark, high gloss decorative finishes (i.e. piano black) are gaining increased application and demand in vehicle interiors; due to interior stylists' desire for this look. One significant concern with this trend is that scratches, and other appearance related defects such as orange peel (waviness), are more apparent to the customer. To address this issue, a highly scratch-resistant 2K clearcoat formulation was developed to minimize visible surface scratches, while also yielding minimal orange peel and exceptional DOI (distinctness of image); all while being applied using typical application techniques in the part finishing market. This output was accomplished by first benchmarking the consumer electronics market for appearance and scratch resistance, and then setting targets through that research.
2015-04-14
Technical Paper
2015-01-0661
Jianwang Shao, Xian Wu, Na Wei, Ding Wang, Guoming Deng, Ming Xu
Abstract An increasing demand for vehicle noise control has been proposed and at the same time, vehicle weight and fuel economy have become critical for the automotive industry. The methodology of statistical energy analysis (SEA) is used to balance both light weight and high noise insulation performance. In this paper, the vehicle dash and floor sound package systems, which are two of the major paths for vehicle interior noise, are studied and optimized by CAE and testing technology. Two types of sound packages which are the conventional insulation system and the lightweight one are chosen for the vehicle dash and floor system. The vehicle dash and floor systems are modeled by SEA and the transmission loss (TL) of the dash and floor system is analyzed, respectively. Several influence factors of the TL are also analyzed, such as sound package coverage, the leaks, etc.
2015-04-14
Technical Paper
2015-01-1334
Shreyas Shingavi, Pankaj Bhirud, Abhishek Ranjan
Abstract Safety and Comfort are the core requirements of the automotive seating systems. Number of the occupants, determines type of the seating system requirement. The second row seat often needs to fold and slide, to allow the passenger to enter inside the car. Folding second row seat will also allow accommodating larger length cargo. The over folding of seat is controlled by hard stop mechanism. The hard stop mechanism generally consists of the seat arm stopper at back seat and hard stop located at base of the seat. These stoppers will limit the further motion of back seat. The folding speed of back seat is governed by various factors e.g. adjacent seat foam/structure friction, location, structural mass of seat etc. The scope of the paper is to evaluate various folding speeds of the back seat. Its effects are evaluated for the stresses and fatigue life of the hard stop components.
2015-04-14
Technical Paper
2015-01-1230
Ahmed Imtiaz Uddin, Jerry Ku
Abstract It is well known that thermal management is a key factor in design and performance analysis of Lithium-ion (Li-ion) battery, which is widely adopted for hybrid and electric vehicles. In this paper, an air cooled battery thermal management system design has been proposed and analyzed for mild hybrid vehicle application. Computational Fluid Dynamics (CFD) analysis was performed using CD-adapco's STAR-CCM+ solver and Battery Simulation Module (BMS) application to predict the temperature distribution within a module comprised of twelve 40Ah Superior Lithium Polymer Battery (SLPB) cells connected in series. The cells are cooled by air through aluminum cooling plate sandwiched in-between every pair of cells. The cooling plate has extended the cooling surface area exposed to cooling air flow. Cell level electrical and thermal simulation results were validated against experimental measurements.
2015-04-14
Technical Paper
2015-01-1457
Aditya Belwadi, Richard Hanna, Audrey Eagle, Daniel Martinez, Julie Kleinert, Eric Dahle
Abstract Automotive interior design optimization must balance the design of the vehicle seat and occupant space for safety, comfort and aesthetics with the accommodation of add-on restraint products such as child restraint systems (CRS). It is important to understand the range of CRS dimensions so that this balance can be successfully negotiated. CRS design is constantly changing. In particular, the introduction of side impact protection for CRS as well as emphasis on ease of CRS installation has likely changed key design points of many child restraints. This ever-changing target creates a challenge for vehicle manufacturers to assure their vehicle seats and occupant spaces are compatible with the range of CRS on the market. To date, there is no accepted method for quantifying the geometry of child seats such that new designs can be catalogued in a simple, straightforward way.
2015-04-14
Technical Paper
2015-01-1189
Satyam Panchal, Scott Mathewson, Roydon Fraser, Richard Culham, Michael Fowler
Abstract A major challenge in the development of the next generation electric and hybrid electric vehicle (EV and HEV) technology is the control and management of heat generation and operating temperatures. Vehicle performance, reliability and ultimately consumer market adoption are integrally dependent on successful battery thermal management designs. In addition to this, crucial to thermal modeling is accurate thermo-physical property input. Therefore, to design a thermal management system and for thermal modeling, a designer must study the thermal characteristics of batteries. This work presents a purely experimental thermal characterization of thermo-physical properties of a lithium-ion battery utilizing a promising electrode material, LiFePO4, in a prismatic pouch configuration. In this research, the thermal resistance and corresponding thermal conductivity of prismatic battery materials is evaluated.
2015-04-14
Technical Paper
2015-01-1341
Hisaki Sugaya, Yoshiyuki Tosa, Kazuo Imura, Hiroyuki Mae
Abstract The explicit methods analysis solver LS-DYNA was used to create technology for simulating airbag deployment and plastic airbag lid tear-away in the front passenger seat. The present study clarified the mechanical properties and the transitions in fracture pattern of the material at low temperature plastic this way, an appropriate modeling method was developed and the prediction accuracy of the simulation of airbag lid tear-away on deployment was increased. Tensile testing of the material was carried out where there were differences in thickness of the tear-away section and the fracture characteristics were determined. A material model was created by analyzing changes in fracture characteristics and collapse patterns, taking into consideration the effects of strain and strain rate localization on fracture strain as well as ductile-brittle fracture transition. Next, airbags were subjected to the impactor testing.
2015-04-14
Technical Paper
2015-01-1394
Alessandro Naddeo, Marco Apicella, Davide Galluzzi
Abstract General comfort can be defined as the measure of the “level of wellbeing” perceived by humans when interacting with a working environment. The state of the art for comfort/discomfort evaluation shows the need for an objective method to evaluate both “effects on the internal body” and “perceived effects” when considering the perception of comfort. Medical studies show that each joint has its own natural resting posture. In this posture, our muscles are completely relaxed or at minimum levels of strain. The body's geometrical configuration corresponds to the natural resting position of arms/legs/neck etc. From this starting point, the authors experimented to develop and built postural-comfort curves for each degree of freedom (DOF) of upper-limb joints. These curves are regular, and do not show any kind of discontinuity. Software (CA-Man®) was developed to analyze different postures and calculate a postural comfort index for the entire upper body.
2015-04-14
Technical Paper
2015-01-0343
Carlo N. Grimaldi, Claudio Poggiani, Alessandro Cimarello, Matteo De Cesare, Giovanni Osbat
Abstract The emissions limits of CO2 for vehicles are becoming more stringent with the aim of reducing greenhouse gas emissions and improve fuel economy. The New European Driving Cycle (NEDC) is adopted to measure emissions for all new internal combustion engines in the European Union, and it is performed on cold vehicle, starting at a temperature of 22°C ± 2°C. Consequently, the cold-start efficiency of internal combustion engine is becoming of predominant interest. Since at cold start the lubricant oil viscosity is higher than at the target operating temperature, the consequently higher energy losses due to increased frictions can substantially affect the emission cycle results in terms of fuel consumption and CO2 emissions. A suitable thermal management system, such as an exhaust-to-oil heat exchanger, could help to raise the oil temperature more quickly.
2015-04-14
Technical Paper
2015-01-0336
Amey Karnik, Daniel Pachner, Adrian M. Fuxman, David Germann, Mrdjan Jankovic, Christopher House
Abstract Numerous studies describe the fuel consumption benefits of changing the powertrain temperature based on vehicle operating conditions. Actuators such as electric water pumps and active thermostats now provide more flexibility to change powertrain operating temperature than traditional mechanical-only systems did. Various control strategies have been proposed for powertrain temperature set-point regulation. A characteristic of powertrain thermal management systems is that the operating conditions (speed, load etc) change continuously to meet the driver demand and in most cases, the optimal conditions lie on the edge of the constraint envelope. Control strategies for set-point regulation which rely purely on feedback for disturbance rejection, without knowledge of future disturbances, might not provide the full fuel consumption benefits due to the slow thermal inertia of the system.
2015-04-14
Technical Paper
2015-01-0349
Suvankar Manna, Yogendra Singh Kushwah
With stringent requirements of fuel efficiency and emissions, the airflow and thermal management within the under-hood environment is gaining significance day by day. While adequate airflow is required for cooling requirements under various vehicle operating conditions, it is also necessary to optimize it for reduced cooling drag and fan power. Hence, the need of the day is to maximize cooling requirements of Condenser, Radiator, CAC and other heat exchangers with minimal power consumption. To achieve this objective and due to the complicated nature of 3D flow phenomenon within the under-hood environment, it is useful to perform 3D CFD studies during preliminary stages to shorten design time and improve the quality and reliability of product design. In this paper we present the results from a CFD under-hood analysis that was carried out for design, development and optimization of a CRFM (Condenser, Radiator and Fan Module).
2015-04-14
Technical Paper
2015-01-0335
Sandeep Makam, Christopher Dubbs, Yeliana Roosien, Feng Lin, William Resh
Abstract Due to ever-tightening CO2 regulations on passenger vehicles, it is necessary to find novel methods to improve powertrain system efficiency. These increases in efficiency should generally be cost effective so that the customer perceives that they add value. One approach for improving system efficiency has been the use of thermal energy management. For example, changing the flow of, or reusing “waste” heat from the powertrain to improve efficiency. Due to the interactions involved with thermal management, a system level approach is useful for exploring, selecting, and developing alternative solutions. It provides a structured approach to augment the right kind of synergies between subsystems and mitigate unintended consequences. However, one challenge with using these approaches early in a program is having appropriate metrics for assessing key aspects of the system behaviors.
2015-04-14
Technical Paper
2015-01-1236
John Jaranson, Meraj Ahmed
Abstract The Multi Material Lightweight Vehicle (MMLV) developed by Magna International and Ford Motor Company is a result of a US Department of Energy project DE-EE0005574. The project demonstrates the lightweighting potential of a five passenger sedan, while maintaining vehicle performance and occupant safety. Prototype vehicles were manufactured and limited full vehicle testing was conducted. The MMLV vehicle design, comprised of commercially available materials and production processes, achieved a 364kg (23.5%) full vehicle mass reduction, enabling the application of a 1.0-liter three-cylinder engine resulting in a significant environmental benefit and fuel reduction. This paper describes the concept design, prototyping, and validation for interior subsystems of the MMLV. Case studies are presented for two of the interior subsystems: the instrument panel/cross-car beam (IP/CCB) and the front seat structures.
2015-04-14
Technical Paper
2015-01-1752
Alex Melin, David Kittelson, William Northrop
Abstract In recent years, there has been growing interest in alternative cycles to the standard 4-stroke Otto engine for improving efficiency and lowering emissions of spark-ignition engines. One proposed concept is the 5-stroke engine which uses two types of cylinders, a combustion cylinder and an expansion cylinder with a transfer port between them. Excess pressure in the combustion cylinder can be further expanded by using a second expansion cylinder to harness additional work. The expansion cylinder runs on a two-stroke cycle, allowing the use of two combustion cylinders to one expansion cylinder in a three cylinder configuration to increase efficiency. Previous work has investigated the performance of prototype 5-stroke engines compared to 1-D modeling results; none have conducted a thorough study on the interactions of various design parameters.
2015-04-14
Technical Paper
2015-01-1279
Pengfei Lu, Chris Brace, Bo Hu
Abstract After years of study and improvement, turbochargers in passenger cars now generally have very high efficiency. This is advantageous, but on the other hand, due to their high efficiency, only a small portion of the exhaust energy is needed for compressing the intake air, which means further utilization of waste heat is restricted. From this point of view, a turbo-compounding arrangement has significant advantage over a turbocharger in converting exhaust energy as it is immune to the upper power demand limit of the compressor. However, with the power turbine being located in series with the main turbine, power losses are incurred due to the higher back pressure which increases the pumping losses. This paper evaluates the effectiveness that the turbo-compounding arrangement has on a 2.0 litres gasoline engine and seeks to draw a conclusion on whether the produced power is sufficient to offset the increased pumping work.
2015-04-14
Technical Paper
2015-01-1604
Tianwei (Thomas) Wang, John R. Wagner
Abstract Smart thermal management systems can positively impact the performance, fuel economy, and reliability of internal combustion engines. Advanced cooling systems typically feature multiple computer controlled actuators - a three way smart valve, a variable speed pump, and a variable speed electric radiator fan(s). To investigate the contributions of these electro-mechanical devices, a scale multifunction test bench was constructed which integrated these actuators, accompanying system sensors, and a controllable engine thermal load with real time data acquisition and control hardware/software. This paper presents a series of experimental studies that focus on the engine's thermal transient response to various actuators input control combinations. The test results established a basis for several key operating conclusions.
2015-04-14
Technical Paper
2015-01-1301
Naoki Yoneya, Masaru Yamasaki, Atsushi Yamanaka, Kentaro Mikawa, Hidefumi Iwaki, Isao Doi
Abstract We developed a thermal calculation 1D simulator for an electric valve timing control system (VTC). A VTC can optimize the open and close timing of the intake and exhaust valves depending on the driving situation. Since a conventional VTC is driven hydraulically, the challenges are response speed and operation limit at low temperature. Our company has been developing an electric VTC for quick response and expansion of operating conditions. Currently, it is necessary to optimize the motor and reduction gear design to balance quicker response with downsizing. Therefore, a coupled simulator that can calculate electricity, mechanics, control, and thermo characteristics is required. In 1D simulation, a thermal network method is commonly used for thermal calculation. However, an electric VTC is attached to the end of a camshaft; therefore, determining thermal resistances is difficult.
Viewing 121 to 150 of 10086

Filter