Display:

Results

Viewing 91 to 120 of 9784
Technical Paper
2014-04-01
Venkat Pisipati, Srikanth Krishnaraj, Edgar Quinto Campos
Abstract Motor vehicle safety standards are getting to be more demanding with time. For automotive interiors, instrument panel (IP) head impact protection is a key requirement of the Federal Motor Vehicle Safety Standard (FMVSS) 201. To ensure compliance of this requirement, head impact tests are conducted at 12 and 15 mph for performance verification. Computer simulation has become more prevalent as the primary development tool due to the significant reduction in time and cost that it offers. LS-DYNA is one of the most commonly used non-linear solvers in the automotive industry, particularly for safety related simulations such as the head impact of automotive interiors. LS-DYNA offers a wide variety of material models, and material type 024 (MAT 024, piecewise linear plasticity) is one of the most popular ones [1]. Although it was initially developed for metals, it is commonly used for polymers as well. LS-DYNA also offers several other material models specifically developed to simulate polymers, such as material types 019, 089, 123, to name a few.
Technical Paper
2014-04-01
Ayse Ademuwagun, Joel Myers
Abstract Coconut shell and torrefied wood are bio-sourced and renewable materials that can be used as fillers in various polymer matrices. Torrefied wood material can be produced from numerous cellulose based materials, such as wood, sunflower hulls, flax shive, hemp and oat hulls. These bio-fillers would replace talc and glass bubbles which are not a renewable resource. Additionally, the implementation of torrefied wood and coconut would reduce the carbon footprint and improve sustainability of Hyundai and Kia vehicles, improving customer perception of our product line. In this study, coconut and torrefied wood filled polypropylene properties are tested for a HVAC Case application.
Technical Paper
2014-04-01
Mohammed K Billal, Vinothkumar Subramani, Mohan Rao, Tim Potok
Abstract An automotive cockpit module is a complex assembly, which consists of components and sub-systems. The critical systems in the cockpit module are the instrument panel (IP), the floor console, and door trim assemblies, which consist of many plastic trims. Stiffness is one of the most important parameters for the plastic trims' design, and it should be optimum to meet all the three functional requirements of safety, vibration and durability. This paper presents how the CAE application and various other techniques are used efficiently to predict the stiffness, and the strength of automotive cockpit systems, which will reduce the product development cycle time and cost. The implicit solver is used for the most of the stiffness analysis, and the explicit techniques are used in highly non-linear situations. This paper also shows the correlations of the CAE results and the physical test results, which will give more confidence in product design and reduce the cost of prototype testing.
Technical Paper
2014-04-01
Ram Iyer, Jin Zhou, Li Lu, Jeffrey Webb, Qaiser Khan
Abstract A CAE simulation methodology was developed to predict the warpage and shape deviation from nominal in finished plastic sub-assemblies that are joined using Infra-Red (IR), hot-plate or vibration welding processes. An automotive glove box bin and door sub-assembly was used to develop the methodology. It was seen that part warpage from injection molding and welding causes warpage in final assembled product which results in gaps and the consequent loss in quality of appearance. The CAE simulation methodology included prediction of the part warpage with residual stress from the injection molding process, use the post-molded shape as an initial part condition for the welding process, and simulation of the welding process itself. The welding process simulation included fixturing of the parts in the welding process, localized heating in the case of an IR welding process, fusion of the parts at the weld locations and thermal creep resulting in long term stress and shape relaxation of the part.
Technical Paper
2014-04-01
Ashok Mache, Anindya Deb, G.S. Venkatesh
Abstract Natural fiber-based composites such as jute-polyester composites have the potential to be more cost-effective and environment-friendly substitutes for glass fiber-reinforced composites which are commonly found in many applications. In an earlier study (Mache and Deb [1]), jute-polyester composite tubes of circular and square cross-sections were shown to perform competitively under axial impact loading conditions when compared to similar components made of bidirectional E-glass fiber mats and thermo-setting polyester resin. For jute-reinforced plastic panels to be feasible solutions for automotive interior trim panels, laminates made of such materials should have adequate perforation resistance. In the current study, a systematic characterization of jute-polyester and glass-polyester composite laminates made by compression molding is at first carried out under quasi-static tensile, compressive and flexural loading conditions. Low velocity impact perforation tests at speeds of around 4 m/s are then performed in an instrumented drop-weight testing device on square plates extracted from the same laminates.
Technical Paper
2014-04-01
Sergii Bogomolov, Vit Dolecek, Jan Macek, Antonin Mikulec, Oldrich Vitek
Abstract The mass and overall dimensions of massively downsized engines for very high bmep (up to 35 bar) cannot be estimated by scaling of designs already available. Simulation methods coupling different levels of method profoundness, as 1-D methods, e.g., GT Suite/GT Power with in-house codes for engine mechanical efficiency assessment and preliminary design of boosting devices (a virtual compressor and a turbine), were used together with optimization codes based on genetic algorithms. Simultaneously, the impact of optimum cycle on cranktrain components dimensions (especially cylinder bore spacing), mass and inertia force loads were estimated since the results were systematically stored and analyzed in Design Assistance System DASY, developed by the authors for purposes of early-stage conceptual design. General thermodynamic cycles were defined by limiting parameters (bmep, burning duration, engine speed and turbocharger efficiency only). The unprejudiced assessment was based on variability of any other engine design feature.
Technical Paper
2014-04-01
Noboru Uchida, Akira Fukunaga, Hideaki Osada, Kazuaki Shimada
Abstract Heat loss reduction could be one of the most promising methods of thermal efficiency improvement for modern diesel engines. However, it is difficult to fully transform the available energy derived from a reduction of in-cylinder heat loss into shaft work, but it is rather more readily converted into higher exhaust heat loss. It may therefore be favorable to increase the effective expansion ratio of the engine, thereby maximizing the brake work, by transforming more of the enthalpy otherwise remaining at exhaust valve opening (EVO) into work. In general, the geometric compression ratio of a piston cylinder arrangement has to increase in order to achieve a higher expansion ratio, which is equal to a higher thermodynamic compression ratio. It is still necessary to overcome constraints on peak cylinder pressure, and other drawbacks, before applying higher expansion ratios to current high-boost, high brake mean effective pressure (BMEP), and high exhaust gas recirculation (EGR) diesel engines.
Technical Paper
2014-04-01
Essam F. Abo-Serie, Mohamed Sherif, Dario Pompei, Adrian Gaylard
Abstract A potentially important, but inadequately studied, source of passengers' exposure to pollutants when a road vehicle is stationary, with an idling engine, results from the ingestion of a vehicle's own exhaust into the passenger compartment through the HVAC intake. We developed and applied a method to determine the fraction of a vehicle's exhaust entering the cabin by this route. Further the influence of three parameters: ambient tail-wind speed, vehicle ground clearance and tail pipe angle, is assessed. The study applies Computational Fluid Dynamic (CFD) simulation to the distribution of exhaust gasses around a vehicle motorized with a 2.2 liter Diesel engine. The simulation employs efficient meshing techniques and realistic loading conditions to develop a general knowledge of the distribution of the gasses in order to inform engineering design. The results show that increasing tail-wind velocity, tail-pipe angle and ground clearance reduces the presence of CO and NO at the HVAC intake.
Technical Paper
2014-04-01
Alaa El-Sharkawy
Abstract Computational tools have been extensively applied to predict component temperatures before an actual vehicle is built for testing [1, 2, 3, 4, and 5]. This approach provides an estimate of component temperatures during a specific driving condition. The predicted component temperature is compared against acceptable temperature limits. If violations of the temperature limits are predicted, corrective actions will be applied. These corrective actions may include adding heat shields to the heat source or to the receiving components. Therefore, design changes are implemented based on the simulation results. Sensitivity analysis is the formal technique of determining most influential parameters in a system that affects its performance. Uncertainty analysis is the process of evaluating the deviation of the design from its intended design target. In the case of thermal protection, uncertainty analysis is applied in order to determine the variation of the calculated component temperature around its nominal value.
Technical Paper
2014-04-01
Kristian Haehndel, Anthony Jefferies, Markus Schlipf, Torsten Frank, Frieder Christel, Sylvester Abanteriba
Abstract At the rear of the vehicle an end acoustic silencer is attached to the exhaust system. This is primarily to reduce noise emissions for the benefit of passengers and bystanders. Due to the location of the end acoustic silencer conventional thermal protection methods (heat shields) through experimental means can not only be difficult to incorporate but also can be an inefficient and costly experience. Hence simulation methods may improve the development process by introducing methods of optimization in early phase vehicle design. A previous publication (Part 1) described a methodology of improving the surface temperatures prediction of general exhaust configurations. It was found in this initial study that simulation results for silencer configurations exhibited significant discrepancies in comparison to experimental data. This was mainly due to the inability to represent complex fluid flows through the components of the silencer, which was greatly simplified in the simulation models and software utilised.
Technical Paper
2014-04-01
Gianluca Montenegro, Augusto Della Torre, Angelo Onorati, Dalia Broggi, Gerd Schlager, Christian Benatzky
Abstract This work proposes a focus on the simulation of a rotative volumetric expander via a CFD code. A customized application of OpenFOAMĀ® has been developed to handle the particular motion of the calculation grid. The model uses a mesh to mesh interpolation technique, switching from a calculation grid to the new one on the basis of mesh quality considerations performed on the fly. This particular approach allows to account for the presence of leakages occurring between the stator and blade tips and also occurring at the top and bottom of the vanes. The fluid considered is the refrigerant R245fa, whose particular properties have been determined resorting to the NIST database. Experimental data, measured at different conditions of mass flow and fluid temperature, are compared to calculation results. Moreover, the CFD analysis has allowed the estimation of the influence of the leakage mass flow occurring at the tip of the vanes on the overall machine performances.
Technical Paper
2014-04-01
Shi-Ing Chang, Iman Goldasteh, Salamah Maaita, Gursaran Mathur
Abstract The performance of an automobile engine depends on the adequate heat rejection through the radiator assembly. Despite of the existence of well-known theoretical models for various heat transfer applications, design of heat exchanger devices demands tremendous experimental work and effort. This study concerns the use of computational fluid dynamics (CFD) to analyze the heat transfer and fluid flow in finned tube heat exchangers which are widely used in automotive industries. Here, two different types of the finned tube heat exchangers were studied using the Star-CCM+ commercial CFD package. Because of the symmetric nature of the geometry, only a single fin was considered in simulations. Two different designs of finned tube heat exchanger were considered in the analysis and major attention was given to the fin configurations, louvers number and louvers angle. Although the contact surface of the fin to the coolant tube is different, the thermal performance was not affected under present steady state analysis.
Technical Paper
2014-04-01
Jiazhen Ling, Magnus Eisele, Hongtao Qiao, Vikrant Aute, Yunho Hwang, Reinhard Radermacher
Abstract As a potential replacement to traditional automotive R134a direct expansion (DX) systems, a secondary-loop system allows for the usage of flammable but low-GWP refrigerants such as propane (R290). However, as the secondary-loop system has an additional layer of thermal resistance, the cycle's transient behavior and cabin thermal comfort during pull-down and various driving cycles may be different from traditional DX systems. This paper presents a Modelica-based model to simulate both steady-state and transient operation of automotive secondary-loop systems. The model includes a lumped cabin component and a secondary-loop automotive air-conditioning system component. The air-conditioning system component consists of a condenser, a compressor, an expansion device, a coolant plate type heat exchanger, a coolant to air heat exchanger and a coolant pump. The developed model was validated against both steady-state and transient experimental data for an R290 secondary-loop system. The steady-state comparison demonstrates a 7.5% deviation of air-side COP compared to the experimental data.
Technical Paper
2014-04-01
Michael Fritz, Frank Gauterin, Justus Wessling
Abstract Steadily rising energy prices and increasingly strict emissions legislation enforce the development of measures that increase efficiency of modern vehicles. An important contribution towards more efficient vehicles is the introduction of measures regarding auxiliary units. These measures increase the gross efficiency of a vehicle and therefore also the vehicle's range. Among the auxiliary power units of a vehicle like a long-haul truck, the refrigerant compressor generally consumes the biggest amount of energy. Therefore, it is reasonable to focus efficiency-increasing efforts on optimizing the A/C system. An important tool used in the development of optimization approaches is the simulation of the relevant systems. This allows a cost-optimized evaluation of the optimization approaches and also lets the engineer compare multiple variations of these approaches within a short period of time. For a significant evaluation of the potentials to be expected by implementation of different measures and variations optimizing the A/C system, it is necessary to simulate these under several climatic conditions.
Technical Paper
2014-04-01
Vinod Kumar Srinivasa, Renjith S, Biswadip Shome
Abstract Increasing demands on engine power to meet increased load carrying capacity and adherence to emission norms have necessitated the need to improve thermal management system of the vehicle. The efficiency of the vehicle cooling system strongly depends on the fan and fan-shroud design and, designing an optimum fan and fan-shroud has been a challenge for the designer. Computational Fluid Dynamics (CFD) techniques are being increasingly used to perform virtual tests to predict and optimize the performance of fan and fan-shroud assembly. However, these CFD based optimization are mostly based on a single performance parameter. In addition, the sequential choice of input parameters in such optimization exercise leads to a large number of CFD simulations that are required to optimize the performance over the complete range of design and operating envelope. As a result, the optimization is carried out over a limited range of design and operating envelope only. In this paper, a Design of Experiments (DoE) based CFD approach has been used to optimize the fan and fan-shroud design of a cooling pack system.
Technical Paper
2014-04-01
Fabien Rabeau, Sebastien Magand
Abstract Thermal management is a key issue to minimize fuel consumption while dealing with pollutant emissions. It paves the way for developing new methods and tools in order to assess the effects of warm up phase with different drivetrains architectures and to define the most suitable solution to manage oil and coolant temperatures. DEVICE (Downsized hybrid Diesel Engine for Very low fuel ConsumptIon and CO2 Emissions) project consists in designing hybrid powertrain to cut off significantly CO2 emissions. It combines a 2-cylinder engine with an electric motor and a 7-gear dual clutch transmission. Hybridization and downsizing offer a great improvement of fuel economy and it is valuable to study their effects on thermal management. Hence, a dedicated AMESim platform is developed to model the fluids temperatures as well as the energy balance changes due to the powertrain architecture. After using a 4-cylinder reference engine to validate the model, the warm up phase (comparing hot and cold start NEDC) leads to a 12% fuel consumption penalty with DEVICE powertrain.
Technical Paper
2014-04-01
Felix Regin A, Abhinav Agarwal, Niraj Kumar Mishra
Abstract Increased engine thermal load, front end styling and compact vehicle requirements have led to significant challenges for vehicle front end designer to provide innovative thermal management solutions. The front end cooling module design which consists of condenser, radiator, fan and intercooler is an important part of design as it ensures adequate heat removal capacity of radiator over a wide range of operating conditions to prevent overheating of engine. The present study describes the optimization of cooling air flow opening in the front end using CFD methodology of a typical passenger car. The predicted vehicle system resistance curve and coolant inlet temperature to the radiator are used for the selection of cooling modules and to further optimize the front end cooling opening area. This leds to the successful optimization of the front end, selection of cooling modules with significant cost savings by reducing prototype testing and design cycle time.
Technical Paper
2014-04-01
Kristian Haehndel, Angus Pere, Torsten Frank, Frieder Christel, Sylvester Abanteriba
Abstract As computational methodologies become more integrated into industrial vehicle pre-development processes the potential for high transient vehicle thermal simulations is evident. This can also been seen in conjunction with the strong rise in computing power, which ultimately has supported many automotive manufactures in attempting non-steady simulation conditions. The following investigation aims at exploring an efficient means of utilizing the new rise in computing resources by resolving high time-dependent boundary conditions through a series of averaging methodologies. Through understanding the sensitivities associated with dynamic component temperature changes, optimised boundary conditions can be implemented to dampen irrelevant input frequencies whilst maintaining thermally critical velocity gradients. A sub-module derived from real vehicle geometry was utilised to evaluate a series of alternative averaging schemes (consisting of steady-state CFD points) in comparison to full CFD transient conditions.
Technical Paper
2014-04-01
Carrie Kowsky, Edward Wolfe, Sourav Chowdhury, Debashis Ghosh, Mingyu Wang
Abstract With more vehicles adopting fuel-saving engine start-stop routines and with the number of hybrid and electric vehicles on the rise, automotive A/C (air conditioning) systems are facing a challenge to maintain passenger comfort during the time when the compressor is inactive due to engine shut down. Using PCM (Phase Change Material) in the evaporator enables it to store cold when the compressor is active and release it to the cooling air stream when the compressor is not running. A unique feature of Delphi's design is that a refrigerant thermosiphon mechanism inside the evaporator drives the energy transport between the PCM and air stream. Delphi's PCM evaporator extends comfort for short duration idle stops, reduces emissions, and increases fuel economy and electric drive range. In this paper, the design aspects of a thermosiphon based PCM cold storage evaporator are described and the performance and operation of the PCM evaporator in a MAC (Mobile Air Conditioning) system discussed.
Technical Paper
2014-04-01
Huize Li, Predrag Hrnjak
Abstract This paper presents an experimental study of lubricant effect on the performance of microchannel evaporators in a typical MAC system. R134a is used as the refrigerant with PAG46 lubricant. The increase of oil circulation rate elevates the pressure drop of the evaporator. The specific enthalpy change in evaporator decreases with increasing oil circulation rate, while refrigerant distribution appears to be more uniform as indicated by infrared images of the evaporator surface temperatures. Thus mass flow rate increases.
Technical Paper
2014-04-01
Devin Furse, SeKil Park, Lee Foster, Simon Kim
Abstract An innovative system has been developed to remotely monitor and record customer usage patterns of the Hyundai Genesis HVAC system in real time by smartphone. The data monitored includes dozens of HVAC-related parameters, including driver and passenger set temperature, blower setting, mode and intake position, internal software parameters, etc. This information and understanding of real-world usage of American customers enables design and test engineers to better satisfy customer demands for automatic temperature control performance. This study identifies areas in need of improvement Preliminary findings of this study suggest that auto mode usage is highest in mild temperatures and lowest in hot soaking conditions. In hot soak conditions (above 35C cabin temperature), the majority of American customers manually control the temperature and blower speed.
Technical Paper
2014-04-01
Pengyi Cui, Bin Xu
Abstract Air purifier has been prevalently used in the passenger vehicle cabins to reduce in-cabin UltraFine Particle (UFP) concentration. In this study, Computational Fluid Dynamics (CFD) was applied to simulate the in-cabin UFP transport and distribution under different ventilation modes with different characteristics of the air purifier. Ventilation settings, air purifier settings, and air purifier location were identified as the important factors determining the in-cabin UFP distribution and transport. Downward ventilation airflow direction and smaller ventilation air velocity can be considered by the drivers for a lower in-cabin UFP concentration. Upward airflow direction from the air purifier's inlet and larger air velocity were recommended since it led up to 50% in-cabin UFP reduction. Air purifier installed at middle ceiling of the cabin develops the most efficient airflow for UFP removal. Explicit relationships between in-cabin UFP distribution and the air purifier settings were presented as a reference to facilitate cabin air purifier design for more efficient in-cabin UFP removal.
Technical Paper
2014-04-01
Shivakumar Banakar, Dirk Limperich, Ramesh Asapu, Vaishnavi Panneerselvam, Madhu Singh
Abstract Air-cooled fin and tube heat exchangers are used as a condenser in the conventional automotive Heating Ventilation & Air-Conditioning (HVAC) systems. In this study, the use of liquid cooled plate heat exchanger as a condenser in the automotive HVAC systems has been investigated. In the proposed configuration, the cabin heat absorbed by the refrigerant in HVAC system is rejected to the coolant through a liquid cooled condenser and then to the ambient air through a low temperature radiator. Hence, the proposed configuration combines heat rejection from HVAC system with a low temperature radiator circuit of power train cooling. Mixture of Ethylene glycol & Water (coolant), which is used in power train cooling system, is used as secondary fluid in the condenser. Primarily, work done involves design of a liquid cooled condenser, determining boundary conditions for the coolant circuit and evaluation of overall performance of the refrigeration cycle in the HVAC system at various operating conditions.
Technical Paper
2014-04-01
Kevin Cheung, Erich Becker
Abstract Vehicles with a large cabin volume incorporate two HVAC units to provide comfort to the front and rear cabin. Each HVAC unit can generate independent airflow volume, temperature, and airflow direction. A new HVAC unit was developed to achieve the performance and functionality of two HVAC units. A unique HVAC construction was used to achieve independent front and rear airflow volume, temperature, and airflow direction distribution. This integrated front and rear HVAC unit provides additional packaging space for other vehicle components and reduces the overall number of HVAC system components.
Technical Paper
2014-04-01
Kambiz Jahani, Sajjad Beigmoradi
Abstract Adequate visibility through the automobile windscreen is a critical aspect of driving, most often at very low temperatures when ice tends to be formed on the windscreen. The geometry of the existing defroster system needs to be improved in the vehicles, with the main aim of substantial increase in air mass flow reaching the windscreen through defroster nozzles and appropriate velocity distribution over the windscreen, while respecting all packaging constraints. The reason of this study is to investigate the windscreen deicing behavior of a vehicle by means of Computational Fluid Dynamics (CFD) with the main concern of improving deicing process by design an appropriate defroster. Two different defrosters with completely different geometry are considered for this purpose. A detailed full interior model of an existing vehicle is created via CAE tools. A transient simulation is performed and results are extracted to show how a proper design of the defroster will lead to considerable improve in deicing process.
Technical Paper
2014-04-01
Neal Lawrence, Stefan Elbel
Abstract Two-phase ejectors are devices capable of recovering the expansion power that is lost by the throttling process in air conditioning cycles, resulting in improved system performance. High-pressure fluids such as CO2 have received the majority of attention in two-phase ejector studies in recent years due to the fluid's high throttling loss and high potential for improvement. However, low-pressure working fluids such as R134a, commonly used in automotive applications, have received considerably less attention owing to their lower recovery potential. While the two fluids have very different properties, both offer the potential for noticeable COP improvement with ejector cycles. Thus, understanding the operation and performance of ejectors with both fluids can be important to the design of ejector air conditioning cycles. This paper compares available experimental data for the performance of two-phase ejectors using CO2 and R134a. CO2 ejectors are capable of recovering a greater amount of power than R134a due to CO2's larger throttling loss as well as the ability of CO2 ejectors to recover a larger portion of the available power.
Technical Paper
2014-04-01
Andrew P. Roberts, Richard Brooks, Philip Shipway, Robert Gilchrist, Ian Pegg
Abstract The thermal efficiency of an internal combustion engine at steady state temperatures is typically in the region of 25-35%[1]. In a cold start situation, this reduces to be between 10% and 20% [2]. A significant contributor to the reduced efficiency is poor performance by the engine lubricant. Sub optimal viscosity resulting from cold temperatures leads to poor lubrication and a subsequent increase in friction and fuel consumption. Typically, the engine lubricant takes approximately twenty minutes [3] to reach steady state temperatures. Therefore, if the lubricant can reach its steady state operating temperature sooner, the engine's thermal efficiency will be improved. It is hypothesised that, by decoupling the lubricant from the thermal mass of the surrounding engine architecture, it is possible to reduce the thermal energy loss from the lubricant to the surrounding metal structure in the initial stages of warm-up. Using a bespoke oil flow rig described in the methodology section of this paper, it has been demonstrated that the addition of a 2 mm thick nylon tube, increases the maximum temperature differential between the lubricant and surrounding metal by 145% and reduces the energy losses from the gallery by 50%.
Technical Paper
2014-04-01
Jason Aaron Lustbader, Cory Kreutzer, Matthew A. Jeffers, Steven Adelman, Skip Yeakel, Philip Brontz, Kurt Olson, James Ohlinger
Abstract Cab climate conditioning is one of the primary reasons for operating the main engine in a long-haul truck during driver rest periods. In the United States, sleeper cab trucks use approximately 667 million gallons of fuel annually for rest period idling. The U.S. Department of Energy's National Renewable Energy Laboratory's (NREL) CoolCab Project works closely with industry to design efficient thermal management systems for long-haul trucks that minimize engine idling and fuel use while maintaining occupant comfort. Heat transfer to the vehicle interior from opaque exterior surfaces is one of the major heat pathways that contribute to air conditioning loads during long-haul truck daytime rest period idling. To quantify the impact of paint color and the opportunity for advanced paints, NREL collaborated with Volvo Group North America, PPG Industries, and Dometic Environmental Corporation. Initial screening simulations using CoolCalc, NREL's rapid HVAC load estimation tool, showed promising air-conditioning load reductions due to paint color selection.
Technical Paper
2014-04-01
Can Yang, Hui Xie, Shengkai Zhou
Abstract The RCS (Rankine cycle system) used to recover the exhaust gas energy from internal combustion engines has been regarded as one of the most promising ways to achieve higher efficiency. However, it is a big challenge to keep the RCS still in good performance under variable driving cycle. This paper aims at revealing the reasons resulting in the low efficiency under driving cycle, comparing to that under steady-state condition. The dynamic operating process of the RCS under driving cycle is analyzed, and then the RCS applied on an 11.6L heavy duty diesel engine is modeled. Based on that, the dynamic performance of the RCS under an actual driving cycle is discussed. The results indicate that the average efficiency under a piece of Tianjin bus driving cycle is as low as 3.63%, which is less than half of that (7.77%) under the rated point (1300rpm and 50%load). The reasons leading to the low efficiency under driving cycle is interpreted from three aspects. Firstly, effects of the optimizing criterions are studied.
Technical Paper
2014-04-01
Takatoshi Furukawa, Masaaki Nakamura, Koichi Machida, Kiyohiro Shimokawa
Abstract In heavy duty (HD) trucks cruising on expressway, about 60% of input fuel energy is wasted as losses. So it is important to recover them to improve fuel economy of them. As a waste heat recovery system, a Rankine cycle generating system was selected. And this paper mainly reports it. In this study, engine coolant was determined as main heat source, which collected energies of an engine cooling, an EGR gas and an exhaust gas, for collecting stable energy as much as possible. And the exergy of heat source was raised by increase coolant temperature to 105 deg C. As for improving the system efficiency, saturation temperature difference was expanded by improving performance of heat exchanger and by using high pressure turbine. And a recuperator which exchanges heat in working fluid between expander outlet and evaporator inlet was installed to recover the heat of working fluid at turbine generator. Then a working fluid pump was improved to reduce power consumption of the system. And Hydro-fluoro-ether was selected as suitable working fluid for the system for vehicles.
Viewing 91 to 120 of 9784

Filter

  • Article
    549
  • Book
    14
  • Collection
    17
  • Magazine
    338
  • Technical Paper
    7422
  • Subscription
    4
  • Standard
    1440