Display:

Results

Viewing 91 to 120 of 10400
2016-04-24
Article
Consortium of OEMs and suppliers worked on all fronts, while the SAE Interior Climate Control Committee reopened a suite of draft standards to prepare for possible importation of cars with R-744: CO2 as a refrigerant.
2016-04-21
WIP Standard
AS8049/1B
This SAE Aerospace Standard (AS) defines Minimum Performance Standards (MPS), qualification requirements, and minimum documentation requirements for side-facing seats in civil rotorcraft, transport aircraft, and general aviation aircraft. The goal is to achieve comfort, durability, and occupant protection under normal operational loads and to define test and evaluation criteria to demonstrate occupant protection when a side-facing seat/occupant/restraint system is subjected to statically applied ultimate loads and to dynamic test conditions set forth in Title 14, Code of Federal Regulations (CFR) Part 23, 25, 27, or 29. While this document addresses system performance, responsibility for the seating system is divided between the seat supplier and the installation applicant. The seat supplier’s responsibility consists of meeting all the seat system performance requirements and obtaining and supplying to the installation applicant all the data prescribed by this document.
2016-04-19
Article
Experts see a loss of motorist trust if cyber attacks are possible. Common command for automotive service is one example of dangers that must be addressed.
2016-04-17
Article
As Airbus looks to launch new-engine option (neo) aircraft, it has announced it is also launching a new cabin brand it calls “Airspace by Airbus.”
2016-04-08
Magazine
Software's role continues to expand Design teams use different technologies to create new software and link systems together. Emissions regulations and engine complexity With the European Commission announcing a Stage V criteria emissions regulation for off-highway, scheduled to phase-in as earlly as 2019, there will be an end to a brief era of harmonized new-vehicle regulations. Will this affect an already complex engine development process? Evaluating thermal design of construction vehicles CFD simulation is used to evaluate two critical areas that address challenging thermal issues: electronic control units and hot air recirculation.
2016-04-07
WIP Standard
ARP6199A
This SAE Aerospace Recommended Practice (ARP) provides an approach for determining which parts on aircraft seats are non-traditional, large, non-metallic panels that need to meet the test requirements of 14CFR Part 25 Appendix F, Parts IV & V.
2016-04-07
Magazine
Defying the disruptors and driving innovation Four top engineering executives discuss how their "traditional" companies are finding new technology opportunities and business growth amid the start-ups-and are even doing some disrupting themselves. Preparing for a 48-volt revival The quest to improve fuel economy is not waning, nor is the desire to achieve higher mpg through the use of just the right lightweight material for the right vehicle application. Additive manufacturing enhances GTDI pistons Selective Laser Melting may help manufacture future gasoline-engine pistons with enhanced heat-transfer properties and reduced weight.
2016-04-05
Technical Paper
2016-01-0900
Sijia Zheng, Wen Fan
Abstract About 40% of the fuel energy in an internal combustion engine is lost as exhaust heat. Thermoelectric generators (TEGs) can recover the heat energy in the exhaust gas, improving the fuel efficiency of the vehicle and reducing emissions. In this study, a method of setting up TEG model using real testing data is proposed; model of a TEG-based vehicle power system is built; and the potential of the TEGs to improve the fuel efficiency of conventional vehicles and hybrid electric vehicles (HEVs) is examined by integrating the TEG into the vehicle power bus as a second generator. Firstly, output power model of one thermoelectric module is constructed in MATLAB/Simulink according to testing data, which is convenient and convincing. Then the model of TEG system is built using Matlab/Simulink software, taking the temperature distribution of the heat exchanger into consideration.
2016-04-05
Technical Paper
2016-01-1370
Vali Farahani, Salamah Maaita, Aditya Jayanthi
Abstract During the course of automobile Instrument Panel (IP) design development, the occupant head impact CAE simulation on IP are routinely performed to validate FMVSS201 requirements. Based on FMVSS201 requirements, the potential head impact zones on the IP are first identified. Then, the head impact zones are used to locate the various target points that must be impacted on IP. Once the critical target locations on IP are chosen, there are several computational steps that are required to calculate impact angles and head form (HF) center of rotation in reference to target points. Then, CAE engineer performs a repetitive process that involves positioning each individual HF with proper impact angle, assigning initial velocity to HF, and defining surface contacts within the finite element model (FEM). To simplify these lengthy manual steps, a commercially available software HyperMesh® CAE software tool is used to automate these steps.
2016-04-05
Technical Paper
2016-01-1311
Tsuyoshi Kanuma, Katsumi Endo, Fumiaki Maruoka, Hiroshi Iijima, Makoto Kawamura, Keisuke Nakazawa, Eiki Yanagawa
Abstract 1 The vane-type rotary compressor of a heating, ventilating, and air conditioning system (HVAC system) is simple and compact but may emit noise due to the collision between the vanes and the cylinder wall. Several studies have been conducted on this chattering noise, with a focus on the noise associated with the compressor revolution speed, temperature, suction pressure, and exhaust pressure. However, such investigations are not sufficient to reveal the behavior of the vane movement in its entirety. To minimize the chattering noise, the details of the mechanism of such vane-operating noise must be investigated by analyzing the behavior of the vanes as a function of time. The vanes move according to the balance between the front and rear pressures. This report describes a novel visualization technique with which to monitor the motion of a vane under given operating conditions. In addition, a method of measuring the pressure affecting the movement of the vanes is discussed.
2016-04-05
Technical Paper
2016-01-1313
Brian Pinkelman, Woo-Keun Song
Abstract Most methods of vibration analysis focus on measuring the level of vibration. Some methods like ISO-2631 weigh vibration level based on human sensitivity of location, direction, and frequency. Sound can be similarly measured by sound pressure level in dB. It may also be weighted to human frequency sensitivity such as dBA but sound and noise analysis has progressed to measure sound quality. The characteristic and the nature of the sound is studied; for example equal or near equal sound levels can provide different experiences to the listener. Such is the question for vibration; can vibration quality be assessed just as sound quality is assessed? Early on in our studies, vibration sensory experts found a difference in 4 seats yet no objective measurement of vibration level could reliably confirm the sensory experience. Still these particular experiences correlated to certain verbal descriptors including smoothness/roughness.
2016-04-05
Technical Paper
2016-01-1683
Blago B. Minovski, Lennart Lofdahl, Peter Gullberg
Abstract Presented are results from numerical investigations of buoyancy driven flow in a simplified representation of an engine bay. A main motivation for this study is the necessity for a valid correlation of results from numerical methods and procedures with physical measurements in order to evaluate the accuracy and feasibility of the available numerical tools for prediction of natural convection. This analysis is based on previously performed PIV and temperature measurements in a controlled physical setup, which reproduced thermal soak conditions in the engine compartment as they occur for a vehicle parked in a quiescent ambient after sustaining high thermal loads. Thermal soak is an important phenomenon in the engine bay primarily driven by natural convection and radiation after there had been a high power demand on the engine. With the cooling fan turned off and in quiescent environment, buoyancy driven convection and radiation are the dominating modes of heat transfer.
2016-04-05
Technical Paper
2016-01-1512
Jeya Padmanaban, Roger Burnett, Andrew Levitt
Abstract This paper updates the findings of prior research addressing the relationship between seatback strength and likelihood of serious injury/fatality to belted drivers and rear seat occupants in rear-impact crashes. Statistical analyses were performed using 1995-2014 CY police-reported crash data from seventeen states. Seatback strength for over 100 vehicle model groupings (model years 1996-2013) was included in the analysis. Seatback strength is measured in terms of the maximum moment that results in 10 inches of seat displacement. These measurements range from 5,989 in-lbs to 39,918 in-lbs, resulting in a wide range of seatback strengths. Additional analysis was done to see whether Seat Integrated Restraint Systems (SIRS) perform better than conventional belts in reducing driver and rear seat occupant injury in rear impacts. Field data shows the severe injury rate for belted drivers in rear-impact crashes is less than 1%.
2016-04-05
Technical Paper
2016-01-1504
Monica Lynn Haumann Jones, Sheila Ebert-Hamilton, Matthew Reed
Abstract Law enforcement officers (LEO) make extensive use of vehicles to perform their jobs, often spending large portions of a shift behind the wheel. Few LEO vehicles are purpose-built; the vast majority are modified civilian vehicles. Data from the field indicate that LEO suffer from relatively high levels musculoskeletal injury that may be due in part to poor accommodation provided by their vehicles. LEO are also exposed to elevated crash injury risk, which may be exacerbated by a compromise in the performance of the occupant restraint systems due to body-borne equipment. A pilot study was conducted to demonstrate the application of three-dimensional anthropometric scanning and measurement technology to address critical concerns related to vehicle design. Detailed posture and belt fit data were gathered from five law enforcement officers as they sat in the patrol vehicles that they regularly used and in a mockup of a mid-sized vehicle.
2016-04-05
Technical Paper
2016-01-1443
Nazan Aksan, Lauren Sager, Sarah Hacker, Benjamin Lester, Jeffrey Dawson, Matthew Rizzo
Abstract We examined relative effectiveness of heads-up visual displays for lane departure warning (LDW) 39 younger to middle aged drivers (25-50, mean = 35 years) and 37 older drivers (66-87, mean = 77 years). The LDW included yellow “advisory” visuals in the center screen when the driver started drifting toward the adjacent lane. The visuals turned into red “imminent” when the tires overlapped with the lane markers. The LDW was turned off if the driver activated the turn signal. The visuals could be easily segregated from the background scene, making them salient but not disruptive to the driver’s forward field of view. The visuals were placed adjacent to the left and right lane markers in the lower half of the center screen.
2016-04-05
Technical Paper
2016-01-1444
Shayne McConomy, Johnell Brooks, Paul Venhovens, Yubin Xi, Patrick Rosopa, John DesJardins, Kevin Kopera, Kathy Lococo
Abstract The research objective was to measure and understand the preferred seat position of older drivers and younger drivers within their personal vehicles to influence recommended practices and meet the increased safety needs of all drivers. Improper selection of driver’s seat position may impact safety during a crash event and affect one’s capacity to see the roadway and reach the vehicle’s controls, such as steering wheel, accelerator, brake, clutch, and gear selector lever. Because of the stature changes associated with ageing and the fact that stature is normally distributed for both males and females, it was hypothesized that the SAE J4004 linear regression would be improved with the inclusion of gender and age terms that would provide a more accurate model to predict the seat track position of older drivers. Participants included 97 older drivers over the age of 60 and 20 younger drivers between the ages of 30 to 39.
2016-04-05
Technical Paper
2016-01-1436
K. Han Kim, Sheila Ebert-Hamilton, Matthew Reed
Abstract Automotive seats are commonly described by one-dimensional measurements, including those documented in SAE J2732. However, 1-D measurements provide minimal information on seat shape. The goal of this work was to develop a statistical framework to analyze and model the surface shapes of seats by using techniques similar to those that have been used for modeling human body shapes. The 3-D contour of twelve driver seats of a pickup truck and sedans were scanned and aligned, and 408 landmarks were identified using a semi-automatic process. A template mesh of 18,306 vertices was morphed to match the scan at the landmark positions, and the remaining nodes were automatically adjusted to match the scanned surface. A principal component (PC) analysis was performed on the resulting homologous meshes. Each seat was uniquely represented by a set of PC scores; 10 PC scores explained 95% of the total variance. This new shape description has many applications.
2016-04-05
Technical Paper
2016-01-1437
Giorgio Previati, Massimiliano Gobbi, Giampiero Mastinu
Abstract The paper is focused on both the subjective and the objective ride comfort evaluation of farm tractors. The experimental measurement of the relevant accelerations occurring at the tractor body, at the cabin and at the seat was performed on a number of different farm tractors. A subjective rating of the ride comfort level was performed by considering five different drivers. The comfort index was computed according with ISO 2631 and other standards. The acceleration of the seated subject was computed by means of a proper mechanical model of a farm tractor and derived at different positions on the subject body. It turned out that the acceleration of the lower torso was particularly relevant for establishing a matching between the subjective perception and the objective measurement and computation. A number of indices have been derived from the measured data which are able to correlate the subjective driver feeling with the measured accelerations.
2016-04-05
Technical Paper
2016-01-1438
Alexander Siefert
Abstract The objective evaluation of occupant comfort is a complex task where numerous aspects such as posture, pressure distribution, internal tissue loads, handling of steering wheel or gear shift have to be taken into consideration. Currently the standard evaluation procedures are hardware tests with human subjects, who are sensitive to all these aspects. However, the reproducibility of subjective tests for the comparison of design variants is a questionable issue and the costs for each test cycle with new prototypes are very high. As an alternative, numerical approaches using human body models such as AnyBody [1], CASIMIR [2] or RAMSIS [3] are applied. Here the issue of reproducibility does not exist and only little effort is required to investigate new setups. However, the disadvantage is that each approach focuses only on one specific aspect of occupant comfort, while in reality the emotions of the occupant are always a combination of all impressions.
2016-04-05
Technical Paper
2016-01-1429
Jangwoon Park, Sheila Ebert-Hamilton, K. Han Kim, Monica Jones, Byoung-Keon Park, Matthew Reed
Abstract This paper reports on the development and validation of an automated seat-dimension extraction system that can efficiently and reliably measure SAE J2732 (2008) seat dimensions from 3D seat scan data. The automated dimension-extraction process consists of four phases: (1) import 3D seat scan data along with seat reference information such as H-point location, back and cushion angles, (2) calculate centerline and lateral cross-section lines on the imported 3D seat scan data, (3) identify landmarks on the centerline and cross-section lines based on the SAE J2732 definitions, and (4) measure seat-dimensions using the identified landmarks. To validate the automated seat measurements, manually measured dimensions in a computer-aided-design (CAD) environment and automatically extracted ones in the current system were compared in terms of mean discrepancy and intra- and inter-observer standard deviations (SD).
2016-04-05
Technical Paper
2016-01-1430
Se Jin Park, Murali Subramaniyam, Seoung Eun Kim, Tae Hyun Kim, Hee Su Sin, Dong Hag Seo, Hyu Hyeong Nam, Jeong Cheol Lee
Abstract Seating comfort is associated with the various factors, and one of the principal components of a vehicle environment which can affect passenger’s comfort is vibration. The seat design plays a vital role in the vibration isolation. In recent years, automotive seat designers are paying more attention for the improvement of seat cushion properties. This paper provides information about a new automotive seat concept that use double-wall 3D air-mat in cushion along with foam cushion in the seat cushion system. To test the developed seat on vibration isolation characteristics, seating comfort, and ride quality experiments have been performed. This research is divided into two parts. At first, the newly developed seat tested on the motion simulator. In study 2, road tests were performed on the national highway. Two tri-axial accelerometers were used to measure acceleration at the foot and hip in two different seats (seat with and without double-wall 3D air-mat).
2016-04-05
Technical Paper
2016-01-1431
Subramanian Premananth, Ganesh Dharmar, Hareesh Krishnan, Riyaz Mohammed
Abstract Virtual assessment of an occupant postural ergonomics has become an essential part of vehicle development process. To design vehicle for different market is one of the primary reason for manufacturers using digital tools to address the specific needs of the target market including cultural background, road and traffic conditions. RAMSIS is a widely used software for creating digital human models (DHM) of different target population which allows manufacturers to assess design with unique customer requirements in product design. Defining these requirements with RAMSIS human module helped development team to accurately define occupant targets such as occupant space, visibility and reachability etc. Occupant behavior and usage scenario are factors which are unique to target market and they influence the occupant posture and usage pattern inside the vehicle.
2016-04-05
Technical Paper
2016-01-1432
Alexander Siefert
Abstract Predicting the vibration comfort is a difficult challenge in seat design. There is a broad range of requirements as the load cases strongly vary, representing different excitation levels, e.g. cobblestones or California roads. Another demand is the driver expectation, which is different for a pickup and a sports car. There are several approaches for assessing the vibrations of occupants while driving. One approach is the evaluation of comfort by integral quantities like the SEAT value, taking into account a weighting based on the human body sensitivity. Another approach is the dimension of perception developed by BMW, which is similar to psychoacoustics as the frequency range is separated with respect to occurring vibration phenomena. The seat transmissibility is in the focus of all activities. In the frequency range it defines the relation between the input at the seat slides and the output at the interface of human body and trim.
2016-04-05
Technical Paper
2016-01-1433
Gregory Schaupp, Julia Seeanner, Casey Jenkins, Joseph Manganelli, Sarah Hennessy, Constance Truesdail, Lindsay Swift, Paul Venhovens, Johnell Brooks
Abstract The ability to independently transfer into and out of a vehicle is essential for many wheelchair users to achieve driving independence. This paper presents the results of an exploratory study that investigated the transfer strategies of wheelchair users who drive from their driver’s seat and not from their wheelchair. The goal of this study was to identify typical ingress and egress motions as well as “touch points” of wheelchair users transferring into and out of the driver’s seat. While motion databases exist for the ingress and egress of able-bodied drivers, this study provides insight on drivers with physical disabilities. Twenty-five YouTube videos of wheelchair users who transferred into and out of their own sedans were analyzed.
2016-04-05
Technical Paper
2016-01-1336
Hee Sang Park
Abstract Headliner module system implies that all components, including fasteners that are attached to the headliner substrate panel prior to vehicle assembly installation. The headliner substrate becomes an installation fixture which facilitates the assembly process. Since headliner module is an integration of many separate components into one more complex assembly, prior to vehicle assembly, a number of additional requirements must be considered. Many of these requirements are driven by the factors like shipping, handling and installation of a large panel with various componentry mounted for temporary installation retention or permanent retention. Substrate should be tough but, on the contrary it should be soft enough for the curtain airbag deployment. Tough substrate interferes with airbag deployment. Detachable reinforcement will enhance shipping and handling process. After installation, reinforcement can be detached from headliner module which will keep the substrate soft.
2016-04-05
Technical Paper
2016-01-1204
Dongchang Pan, Sichuan Xu, Chunjing Lin, Guofeng Chang
Abstract As one of the most crucial components in electric vehicles, power batteries generate abundant heat during charging and discharging processes. Thermal management system (TMS), which is designed to keep the battery cells within an optimum temperature range and to maintain an even temperature distribution from cell to cell, is vital for the high efficiency, long calendar life and reliable safety of these power batteries. With the desirable features of low system complexity, light weight, high energy efficiency and good battery thermal uniformity, thermal management using composite phase change materials (PCMs) has drawn great attention in the past fifteen years. In the hope of supplying helpful guidelines for the design of the PCM-based TMSs, this work begins with the summarization of the most commonly applied heat transfer enhancement methods (i.e., the use of thermally conductive particles, metal fin, expanded graphite matrix and metal foam) for PCMs by different researchers.
2016-04-05
Technical Paper
2016-01-1238
Paul Karoshi, Karin Tieber, Christopher Kneissl, Georg Peneder, Harald Kraus, Martin Hofstetter, Jurgen Fabian, Martin Ackerl
Abstract In hybrid electric vehicles (HEV), the operation strategy strongly influences the available system power, as well as local exhaust emissions. Predictive operation strategies rely on knowledge of future traction-force demands. This predicted information can be used to balance the battery’s state of charge or the engine’s thermal system in their legal operation limits and can reduce peak loads. Assuming the air and rolling drag-coefficient to be constant, the desired vehicle velocity, vehicle-mass and longitudinal driving resistances determine the vehicle’s traction-force demand. In this paper, a novel methodology, combining a history-based prediction algorithm for estimating future traction-force demands with the parameter identification of road grade angle and vehicle mass, is proposed. It is solely based on a route-history database and internal vehicle data, available on its on-board communication and measuring systems.
2016-04-05
Technical Paper
2016-01-1355
Jeffrey R. Hodgkins, Walter Brophy, Thomas Gaydosh, Norimasa Kobayashi, Hiroo Yamaoka
Abstract Current vehicle acoustic performance prediction methods, CAE (computer aided engineering) or physical testing, have some difficulty predicting interior sound in the mid-frequency range (300 to 1000 Hz). It is in this frequency range where the overall acoustic performance becomes sensitive to not only the contributions of structure-borne sources, which can be studied using traditional finite element analysis (FEA) methods, but also the contribution of airborne noise sources which increase proportional to frequency. It is in this higher frequency range (>1000 Hz) that physical testing and statistical CAE methods are traditionally used for performance studies. This paper will discuss a study that was undertaken to test the capability of a finite element modeling method that can accurately simulate air-borne noise phenomena in the mid-frequency range.
2016-04-05
Technical Paper
2016-01-0823
Jason Miwa, Darius Mehta, Chad Koci
Abstract Increasingly stringent emissions regulations require that modern diesel aftertreatment systems must warm up and begin controlling emissions shortly after startup. While several new aftertreatment technologies have been introduced that focus on lowering the aftertreatment activation temperature, the engine system still needs to provide thermal energy to the exhaust for cold start. A study was conducted to evaluate several engine technologies that focus on improving the thermal energy that the engine system provides to the aftertreatment system while minimizing the impact on fuel economy and emissions. Studies were conducted on a modern common rail 3L diesel engine with a custom dual loop EGR system. The engine was calibrated for low engine-out NOx using various combustion strategies depending on the speed/load operating condition.
2016-04-05
Technical Paper
2016-01-1295
Atsushi Itoh, ZongGuang Wang, Toshikazu Nosaka, Keita Wada
Abstract Without engine noise, the cabin of an electric vehicle is quiet, but on the other hand, it becomes easy to perceive refrigerant-induced noise in the automotive air-conditioning (A/C) system. When determining the A/C system at the design stage, it is crucial to verify whether refrigerant-induced noise occurs in the system or not before the real A/C systems are made. If refrigerant-induced noise almost never occurs during the design stage, it is difficult to evaluate by vehicle testing at the development stage. This paper presents a 1D modeling methodology for the assessment of refrigerant-induced noise such as self-excitation noise generated by pressure pulsation through the thermal expansion valve (TXV). The GT-SUITE commercial code was used to develop a refrigerant cycle model consisting of a compressor, condenser, evaporator, TXV and the connecting pipe network.
Viewing 91 to 120 of 10400

Filter