Display:

Results

Viewing 271 to 300 of 9877
2014-04-01
Technical Paper
2014-01-1866
Matthew Klein, Shijie Tong, Jae Wan Park
Abstract Optimizing the hardware design and control strategies of thermal management systems (TMS) in battery packs using large format pouch cells is a difficult but important problem due to the limited understanding of how internal temperature distributions impact the performance and lifetime of the pack. Understanding these impacts is difficult due to the greatly varying length and time scales between the coupled phenomena, causing the need for complex and computationally expensive models. Here, an experimental investigation is performed in which a set of fixed one-dimensional temperature distributions are applied across the face of a Nickel-Cobalt-Manganese (NCM) cathode lithium ion pouch cell in order to study the performance impacts. Effects on the open circuit voltage (OCV), Ohmic resistance, bulk discharge and charge resistance and instantaneous power are investigated.
2014-04-01
Journal Article
2014-01-1904
Xueyu Zhang, Andrej Ivanco, Xinran Tao, John Wagner, Zoran Filipi
This paper investigates the impact of battery cooling ancillary losses on fuel economy, and optimal control strategy for a series hybrid electric truck with consideration of cooling losses. Battery thermal model and its refrigeration-based cooling system are integrated into vehicle model, and the parasitic power consumption from cooling auxiliaries is considered in power management problem. Two supervisory control strategies are compared. First, a rule-based control strategy is coupled with a thermal management strategy; it controls power system and cooling system separately. The second is optimal control strategy developed using Dynamic Programming; it optimizes power flow with consideration of both propulsion and cooling requirement. The result shows that battery cooling consumption could cause fuel economy loss as high as 5%.
2014-04-01
Technical Paper
2014-01-1949
Xuan Wang, Ge-Qun Shu, Hua Tian, Youcai Liang, Xiangxiang Wang
Abstract Currently, the thermal efficiency of vessel diesels only reaches 48∼51%, and the rest energy is rejected to the environment in forms of exhaust, cooling water, engine oil and so on. Meanwhile, energy is required when generating electricity and fresh water that are necessary for vessels. A system that combines the ORC thermal electric generation system with the single-effect evaporating desalination system simultaneously driven by waste heat of charge air is proposed. The research object was 12S90ME-C9.2 diesel engine produced by MAN corp., and a calculation model of the system is built by MATLAB. The variation of the output power, the thermal efficiency and the freshwater production with some operational parameters of the combined system are calculated and analyzed.
2014-04-01
Technical Paper
2014-01-0014
Changxin Wang, Deguang Fang, Fuxiang Guo
Abstract To find out the main excitation sources of a bus floor's vibration, modal analysis and spectral analysis were respectively performed in the paper. First we tested the vibration modal of the bus's floor under the full-load condition, and the first ten natural frequencies and vibration modes were obtained for the source identification of the bus floor's vibration. Second the vibration characteristic of the bus floor was measured in an on-road experiment. The acceleration sensors were arranged on the bus's floor and the possible excitation sources of the bus, which includes engine mounting system, driveline system, exhaust system, and wheels. Then the on-road experiment was carefully conducted on a highway under the four kinds of test condition: in-situ acceleration, uniform velocity (90km/h, 100km/h, 110km/h, 120km/h), uniform acceleration with top gear, and stall sliding condition with neutral gear.
2014-04-01
Technical Paper
2014-01-0642
Kristian Haehndel, Angus Pere, Torsten Frank, Frieder Christel, Sylvester Abanteriba
Abstract As computational methodologies become more integrated into industrial vehicle pre-development processes the potential for high transient vehicle thermal simulations is evident. This can also been seen in conjunction with the strong rise in computing power, which ultimately has supported many automotive manufactures in attempting non-steady simulation conditions. The following investigation aims at exploring an efficient means of utilizing the new rise in computing resources by resolving high time-dependent boundary conditions through a series of averaging methodologies. Through understanding the sensitivities associated with dynamic component temperature changes, optimised boundary conditions can be implemented to dampen irrelevant input frequencies whilst maintaining thermally critical velocity gradients.
2014-04-01
Technical Paper
2014-01-0677
Saiful Bari, Shekh Rubaiyat
Abstract The heat from the exhaust gas of diesel engines can be an important heat source to provide additional power using a separate Rankine Cycle (RC) or an Organic Rankine Cycle (ORC). Water is the best working fluid for this type of applications in terms of efficiency of the RC system, availability and environmental friendliness. However, for small engines and also at part load operations, the exhaust gas temperature is not sufficient enough to heat the steam to be in superheated zone, which after expansion in the turbine needs to be in superheated zone. Ammonia was found to be an alternate working fluid for these types of applications which can run at low exhaust temperatures. Computer simulation was carried out with an optimized heat exchanger to estimate additional power with water and ammonia as the working fluids. ANSYS 14.0 CFX software was used for the simulation.
2014-04-01
Technical Paper
2014-01-0681
Shivakumar Banakar, Dirk Limperich, Ramesh Asapu, Vaishnavi Panneerselvam, Madhu Singh
Abstract Air-cooled fin and tube heat exchangers are used as a condenser in the conventional automotive Heating Ventilation & Air-Conditioning (HVAC) systems. In this study, the use of liquid cooled plate heat exchanger as a condenser in the automotive HVAC systems has been investigated. In the proposed configuration, the cabin heat absorbed by the refrigerant in HVAC system is rejected to the coolant through a liquid cooled condenser and then to the ambient air through a low temperature radiator. Hence, the proposed configuration combines heat rejection from HVAC system with a low temperature radiator circuit of power train cooling. Mixture of Ethylene glycol & Water (coolant), which is used in power train cooling system, is used as secondary fluid in the condenser.
2014-04-01
Technical Paper
2014-01-0705
Gursaran D. Mathur
Abstract Experimental studies have been conducted to determine the energy stored in vehicle's Cockpit Module (CPM) at high ambient and at high solar heat loads for a MY2012 production vehicle. Detailed analysis has been done in this paper to show the influence of energy stored in various components (e.g., Instrument panel, HVAC system, heat exchanger, wire harness, etc.) contained within the CPM unit. Experiments were conducted to show the amount of energy stored at high ambient and solar conditions.
2014-04-01
Technical Paper
2014-01-0881
Mitsuru Enomoto, Michiko Kakinuma, Nobuhito Kato, Haruo Ishikawa, Yuichiro Hirose
Abstract Design work for truck suspension systems requires multi-objective optimization using a large number of parameters that cannot be solved in a simple way. This paper proposes a process-based systematization concept for ride comfort design using a set-based design method. A truck was modeled with a minimum of 13 degrees of freedom, and suspension performance under various vehicle speeds, road surface conditions, and load amounts was calculated. The range of design parameters for the suspension, the range of performance requirements, and the optimal values within these ranges were defined based on the knowledge and know-how of experienced design engineers. The final design of the suspension was installed in a prototype truck and evaluated. The performance of the truck satisfied all the objectives and the effectiveness of the set-based design approach was confirmed.
2014-04-01
Technical Paper
2014-01-0877
Prasad Kumbhar, Ning Li, Peijun Xu, James Yang
In vehicle driving environment, the driver is subjected to the vibrations in horizontal, vertical, and fore-aft directions. The human body is very much sensitive to whole body vibration and this vibration transmission to the body depends upon various factors including road irregularities, vehicle suspension, vehicle dynamics, tires, seat design and the human body's properties. The seat design plays a vital role in the vibration isolation as it is directly in contact with human body. Vibration isolation properties of a seat depend upon its dynamic parameters which include spring stiffness and damping of seat suspension and cushion. In this paper, an optimization-based method is used to determine the optimal seat dynamic parameters for seat suspension, and cushion based on minimizing occupant's body fatigue (occupant body absorbed power). A 14-degree of freedom (DOF) multibody biodynamic human model in 2D is selected from literature to assess three types of seat arrangements.
2014-04-01
Technical Paper
2014-01-0426
Jeff D. Colwell
Abstract Results from a full-scale vehicle burn test involving a 1998 compact passenger car were used to evaluate vehicle fire dynamics and how burn patterns produced during the fire correlated with important characteristics of the fire, such as the area of origin. After the fire was initiated at the air filter in the engine compartment, the fire spread locally and, once the temperature near the origin reached about 750°C, the temperature at all but one location within the engine compartment began to increase. These temperatures continued to increase for the next 6 minutes and then a temperature gradient began to develop in the passenger compartment between the ceiling and the floor. About 5 minutes after the engine compartment became fully involved, the ceiling temperature reached about 590°C and flame spread within the passenger compartment increased. Over the next 4 minutes, the passenger compartment also became fully involved.
2014-04-01
Technical Paper
2014-01-0634
Carrie Kowsky, Edward Wolfe, Sourav Chowdhury, Debashis Ghosh, Mingyu Wang
Abstract With more vehicles adopting fuel-saving engine start-stop routines and with the number of hybrid and electric vehicles on the rise, automotive A/C (air conditioning) systems are facing a challenge to maintain passenger comfort during the time when the compressor is inactive due to engine shut down. Using PCM (Phase Change Material) in the evaporator enables it to store cold when the compressor is active and release it to the cooling air stream when the compressor is not running. A unique feature of Delphi's design is that a refrigerant thermosiphon mechanism inside the evaporator drives the energy transport between the PCM and air stream. Delphi's PCM evaporator extends comfort for short duration idle stops, reduces emissions, and increases fuel economy and electric drive range.
2014-04-01
Technical Paper
2014-01-0632
Mickael Cormerais, Thierry Marimbordes, Stephane Warnery, David Chalet, Haitham Mezher, Laurent Roussel
Abstract The future environmental constraints [e.g. WLTC +RDE, CAFE, Euro 6.2, 7] for the pollutant emissions lead to new challenges for the internal combustion engine. One of the solutions to decrease the fuel consumption, the CO2 and pollutant emissions whilst keeping the same driving and thermal comforts is the engine's thermal management, in particular during the warm-up phase. Furthermore, the traditional cooling system is not designed to work at the new engine transient thermal conditions at a non-optimal temperature in terms of fuel economy and exhaust emission. This paper describes a new technology for engine cooling systems that is able to control the coolant flow and temperature in relation to the engine conditions such as load and rotational speed. With a no flow in crankcase cooling strategy and a high engine temperature regulation, the Active Cooling Thermomanagement Valve succeeds in decreasing the fuel consumption without deteriorating engine's performance.
2014-04-01
Journal Article
2014-01-0665
Francisco Payri, Pablo Olmeda, Jaime Martin, Ricardo Carreño
The generalization of exhaust aftertreatment systems along with the growing awareness about climate change is leading to an increasing importance of the efficiency over other criteria during the design of reciprocating engines. Using experimental and theoretical tools to perform detailed global energy balance (GEB) of the engine is a key issue for assessing the potential of different strategies to reduce consumption. With the objective of improving the analysis of GEB, this paper describes a tool that allows calculating the detailed internal repartition of the fuel energy in DI Diesel engines. Starting from the instantaneous in-cylinder pressure, the tool is able to describe the different energy paths thanks to specific submodels for all the relevant subsystems.
2014-04-01
Technical Paper
2014-01-0697
Yinhua Zheng
Abstract This paper addresses various ways to determine vehicle dual AC system charge level. Traditionally, either checking charge level plateau and/or using the certain condenser outlet subcooling magnitude are adopted to determine AC system charge level. It is challenging to determine refrigerant charge level in the following scenarios: (1) Some AC systems do not exhibit the flatted charge plateau. (2) The condenser outlet subcooling continues to rise. (3) The system has the requirements to run both front and aux evaporators, front evaporator only and aux evaporator only. It was found that compressor compression ratio of absolute discharge pressure to absolute suction pressure always presents the bath tub curve for all AC systems. When the system reaches the optimal charge level, the evaporator air outlet temperatures show the stable trend. In addition to the traditional condenser subcooling method, few approaches are presented in the paper.
2014-04-01
Technical Paper
2014-01-0695
Mingyu Wang, Debashis Ghosh, Edward Wolfe, Kuo-huey Chen, Jeffrey Bozeman
Abstract Traditional vehicle air conditioning systems are designed to cool the entire cabin to provide passenger comfort. Localized cooling, on the other hand, focuses on keeping the passenger comfortable by creating a micro climate around the passenger. Such a system also easily adapts to the number of passengers in the car and enables zonal control. The net impact of the localized cooling is that equivalent comfort can be achieved at reduced HVAC energy consumption rate. The present paper reports on a vehicle implementation of localized cooling using Thermoelectric Devices and the resulting energy saving.
2014-04-01
Technical Paper
2014-01-0701
Huize Li, Predrag Hrnjak
Abstract The effect of lubricant on distribution is investigated by relating the flow regime in the horizontal inlet header and the corresponding infrared image of the evaporator. Visualization of the flow regime is performed by high-speed camera. R134a is used as the refrigerant with PAG 46 as lubricant, forming foam in all flow regimes. Quantitative information including foam location, foam layer thickness is obtained using a matlab-based video processing program. Oil circulation rate effect on flow regime is analyzed quantitatively.
2014-04-01
Technical Paper
2014-01-0699
Sandip Pawar, Upender Rao Gade, Atish Dixit, Suresh Babu Tadigadapa, Sambhaji Jaybhay
Abstract The objective of the work presented in this paper is to provide an overall CFD evaluation and optimization study of cabin climate control of air-conditioned (AC) city buses. Providing passengers with a comfortable experience is one of the focal point of any bus manufacturer. However, detailed evaluation through testing alone is difficult and not possible during vehicle development. With increasing travel needs and continuous focus on improving passenger experience, CFD supplemented by testing plays an important role in assessing the cabin comfort. The focus of the study is to evaluate the effect of size, shape and number of free-flow and overhead vents on flow distribution inside the cabin. Numerical simulations were carried out using a commercially available CFD code, Fluent®. Realizable k - ε RANS turbulence model was used to model turbulence. Airflow results from numerical simulation were compared with the testing results to evaluate the reliability.
2014-04-01
Technical Paper
2014-01-0673
Charles Sprouse III, Christopher Depcik
Abstract Significant progress towards reducing diesel engine fuel consumption and emissions is possible through the simultaneous Waste Heat Recovery (WHR) and Particulate Matter (PM) filtration in a novel device described here as a Diesel Particulate Filter Heat Exchanger (DPFHX). This original device concept is based on the shell-and-tube heat exchanger geometry, where enlarged tubes contain DPF cores, allowing waste heat recovery from engine exhaust and allowing further energy capture from the exothermic PM regeneration event. The heat transferred to the working fluid on the shell side of the DPFHX becomes available for use in a secondary power cycle, which is an increasingly attractive method of boosting powertrain efficiency due to fuel savings of around 10 to 15%. Moreover, these fuel savings are proportional to the associated emissions reduction after a short warm-up period, with startup emissions relatively unchanged when implementing a WHR system.
2014-04-01
Technical Paper
2014-01-0671
Can Yang, Hui Xie, Shengkai Zhou
Abstract The RCS (Rankine cycle system) used to recover the exhaust gas energy from internal combustion engines has been regarded as one of the most promising ways to achieve higher efficiency. However, it is a big challenge to keep the RCS still in good performance under variable driving cycle. This paper aims at revealing the reasons resulting in the low efficiency under driving cycle, comparing to that under steady-state condition. The dynamic operating process of the RCS under driving cycle is analyzed, and then the RCS applied on an 11.6L heavy duty diesel engine is modeled. Based on that, the dynamic performance of the RCS under an actual driving cycle is discussed. The results indicate that the average efficiency under a piece of Tianjin bus driving cycle is as low as 3.63%, which is less than half of that (7.77%) under the rated point (1300rpm and 50%load). The reasons leading to the low efficiency under driving cycle is interpreted from three aspects.
2014-04-01
Technical Paper
2014-01-1198
Noboru Uchida, Akira Fukunaga, Hideaki Osada, Kazuaki Shimada
Abstract Heat loss reduction could be one of the most promising methods of thermal efficiency improvement for modern diesel engines. However, it is difficult to fully transform the available energy derived from a reduction of in-cylinder heat loss into shaft work, but it is rather more readily converted into higher exhaust heat loss. It may therefore be favorable to increase the effective expansion ratio of the engine, thereby maximizing the brake work, by transforming more of the enthalpy otherwise remaining at exhaust valve opening (EVO) into work. In general, the geometric compression ratio of a piston cylinder arrangement has to increase in order to achieve a higher expansion ratio, which is equal to a higher thermodynamic compression ratio.
2014-04-01
Technical Paper
2014-01-1268
Dimitrios Angelos Mitakos, Christopher Blomberg, Yuri M. Wright, Peter Obrecht, Bruno Schneider, Konstantinos Boulouchos
Abstract The heat release of the low temperature reactions (LTR or cool-flame) under Homogeneous Charge Compression Ignition (HCCI) combustion has been quantified for five candidate fuels in an optically accessible Rapid Compression Expansion Machine (RCEM). Two technical fuels (Naphthas) and three primary reference fuels (PRF), (n-heptane, PRF25 and PRF50) were examined. The Cetane Numbers (CN) of the fuels range from 35 to 56. Variation of the operating parameters has been performed, in regard to initial charge temperature of 383, 408, and 433K, exhaust gas recirculation (EGR) rate of 0%, 25%, and 50%, and equivalence ratio of 0.29, 0.38, 0.4, 0.53, 0.57, and 0.8. Pressure indication measurements, OH-chemiluminescence imaging, and passive spectroscopy were simultaneously implemented. In our previous work, an empirical, three-stage, Arrhenius-type ignition delay model, parameterized on shock tube data, was found to be applicable also in a transient, engine-relevant environment.
2014-04-01
Technical Paper
2014-01-1946
Youcai Liang, Gequn Shu, Hua Tian, Haiqiao Wei, Xingyu Liang, Mingru Zhao
Abstract Cogeneration system has become a valuable alternative approach for cascade waste heat recovery (WHR). In this paper, a novel electricity-cooling cogeneration system (ECCS) based on organic Rankine cycle-absorption refrigeration cycle (ORC-ARC) combined system is proposed to recover the waste heat of marine engine. ORC was adopted in the higher temperature cycle, in which alternatives D4, MDM and MM were selected as the working fluids. An ARC was adopted in the lower temperature cycle to recover the heat of the working fluid at the regenerator outlet in ORC. It aims to satisfy refrigeration requirement aboard ship, in which a binary solution of ammonia-water is used as the working pairs. Electricity output, cooling capacity, total exergy output, primary energy ratio (PER) and exergy efficiency are chosen as the objective functions.
2014-04-01
Journal Article
2014-01-1834
Scott Peck, Aditya Velivelli, Wilko Jansen
Integration of advanced battery systems into the next generation of hybrid and electric vehicles will require significant design, analysis, and test efforts. One major design issue is the thermal management of the battery pack. Analysis tools are being developed that can assist in the development of battery pack thermal design and system integration. However, the breadth of thermal design issues that must be addressed requires that there are a variety of analysis tools to address them efficiently and effectively. A set of battery modeling tools has been implemented in the thermal modeling software code PowerTHERM. These tools are coupled thermal-electric models of battery behavior during current charge and discharge. In this paper we describe the three models in terms of the physics they capture, and their input data requirements. We discuss where the capabilities and limitations of each model best align with the different issues needed to be addressed by analysis.
2014-04-01
Journal Article
2014-01-0669
Tibor Kiss, Jason Lustbader
The operation of air conditioning (A/C) systems is a significant contributor to the total amount of fuel used by light-and heavy-duty vehicles. Therefore, continued improvement of the efficiency of these mobile A/C systems is important. Numerical simulation has been used to reduce the system development time and to improve the electronic controls, but numerical models that include highly detailed physics run slower than desired for carrying out vehicle-focused drive cycle-based system optimization. Therefore, faster models are needed even if some accuracy is sacrificed. In this study, a validated model with highly detailed physics, the “Fully-Detailed” model, and two models with different levels of simplification, the “Quasi-Transient” and the “Mapped-Component” models, are compared. The Quasi-Transient model applies some simplifications compared to the Fully-Detailed model to allow faster model execution speeds.
2014-04-01
Journal Article
2014-01-0686
Mingyu Wang, Edward Wolfe, Debashis Ghosh, Jeffrey Bozeman, Kuo-huey Chen, Taeyoung Han, Hui Zhang, Edward Arens
Traditional vehicle air conditioning systems condition the entire cabin to a comfortable range of temperature and humidity regardless of the number of passengers in the vehicle. The A/C system is designed to have enough capacity to provide comfort for transient periods when cooling down a soaked car. Similarly for heating, the entire cabin is typically warmed up to achieve comfort. Localized heating and cooling, on the other hand, focuses on keeping the passenger comfortable by forming a micro climate around the passenger. This is more energy efficient since the system only needs to cool the person instead of the entire cabin space and cabin thermal mass. It also provides accelerated comfort for the passenger during the cooling down periods of soaked cars. Additionally, the system adapts to the number of passengers in the car, so as to not purposely condition areas that are not occupied.
2014-04-01
Journal Article
2014-01-0687
Rupesh Sonu Kakade
We propose a composite thermal model of the vehicle passenger compartment that can be used to predict and analyze thermal comfort of the occupants of a vehicle. Physical model is developed using heat flow in and out of the passenger compartment space, comprised of glasses, roof, seats, dashboard, etc. Use of a model under a wide variety of test conditions have shown high sensitivity of compartment air temperature to changes in the outside air temperature, solar heat load, temperature and mass flow of duct outlet air from the climate control system of a vehicle. Use of this model has subsequently reduced empiricism and extensive experimental tests for design and tuning of the automatic climate control system. Simulation of the model allowed several changes to the designs well before the prototype hardware is available.
2014-04-01
Journal Article
2014-01-0630
Mark Scibilia, Tim Giberson
As fuel prices continue to rise automotive manufacturers continue to push their suppliers to provide technology that improves the potential fuel efficiency of their applications. In addition there is an increasing trend towards smaller, lighter and more compact vehicles to mitigate the automotive carbon footprint. These movements necessitated the development of a new compact, low mass, variable displacement compressor to match the requirements for these smaller and more efficient vehicles. The new Delphi MVC, or Miniature Variable Compressor, meets these requirements by integrating the high efficiency of our latest swashplate variable compressor design into a compact and lightweight package. This design can be offered in a range of displacements from 80 to 100cc and can be offered as either internally or externally controlled to support the customer's needs.
2014-04-01
Journal Article
2014-01-0648
Steve De Vos, Kristian Haehndel, Torsten Frank, Frieder Christel, Sylvester Abanteriba
Modern exhaust systems contain not only a piping network to transport hot gas from the engine to the atmosphere, but also functional components such as the catalytic converter and turbocharger. The turbocharger is common place in the automotive industry due to their capability to increase the specific power output of reciprocating engines. As the exhaust system is a main heat source for the under body of the vehicle and the turbocharger is located within the engine bay, it is imperative that accurate surface temperatures are achieved. A study by K. Haehndel [1] implemented a 1D fluid stream as a replacement to solving 3D fluid dynamics of the internal exhaust flow. To incorporate the 3D effects of internal fluid flow, augmented Nusselt correlations were used to produce heat transfer coefficients. It was found that the developed correlations for the exhaust system did not adequately represent the heat transfer of the turbocharger.
2014-04-01
Journal Article
2014-01-0851
Yousof Azizi, Vaidyanadan Sundaram, Patricia Davies, Anil Bajaj
Flexible polyurethane foam is the main cushioning element used in car seats. Optimization of an occupied seat's static and dynamic behavior requires models of foam that are accurate over a wide range of excitation and pre-compression conditions. In this research, a method is described to estimate the parameters of a global model of the foam behavior from data gathered in a series of impulse tests at different settling points. The estimated model is capable of describing the responses gathered from all the impulse tests using a unique set of parameters. The global model structure includes a nonlinear elastic term and a hereditary viscoelastic term. The model can be used to predict the settling point for each mass used and, by expanding the model about that settling point, local linear models of the response to impulsive excitation can be derived. From this analysis the relationship between the local linear model parameters and the global model parameters is defined.
Viewing 271 to 300 of 9877

Filter