Display:

Results

Viewing 271 to 300 of 10063
2014-10-01
Magazine
Propulsion: Energy Sources Flying on vegetation Avionics/Electronics Avionics heat up, in a good way Unmanned Vehicles Reaching the benchmark in secure unmanned vehicle software Thermal Management Submersion and directed flow cooling technology for military applications RF & Microwave Technology Airborne antenna considerations for C-Band telemetry systems Software-designed system improves wireless test speed and coverage
2014-09-30
Article
Brose is manufacturing different vehicle mechatronic systems from its recently renovated New Boston, MI, plant.
2014-09-30
Technical Paper
2014-01-2429
C Venkatesan, V Faustino, S Arun, S Ravi Shankar
Abstract The automotive industry needs sustainable seating products which offer good climate performance and superior seating comfort. The safety requirement is always a concern for current seating systems. The life of the present seating system is low and absorbs moisture over a period of time which affects seat performance (cushioning effect). Recycling is one of the major concerns as far as polyurethane (PU) is concerned. This paper presents the development of an alternative material which is eco-friendly and light in weight. Thermoplastic Polyolefin (PO) materials were tried in place PU for many good reasons. It is closed cell foam which has better tear and abrasion resistance. It doesn't absorb water and has excellent weathering resistance. Also it has a better cushioning effect and available in various colours. Because of superior tear resistance, it is possible to eliminate upholstery and would reduce system level cost.
2014-09-30
Technical Paper
2014-01-2343
Manfei Bai, Gangfeng Tan, Yadong Deng, Wenying Wang, Hui Yan
Abstract To make full use of engine exhaust heat and further improve the utilization of the energy efficiency of the heavy truck, thermoelectric module is used to contribute to thermoelectric power generation. The hot-end temperature of the module varies with the engine operating condition because it is connected with the exhaust pipe. The cold-end of the thermoelectric module is mainly cooled by engine cooling system. Increasing the temperature difference between the hot-end and cold-end of the thermoelectric module is a good way to improve the thermoelectric conversion efficiency. For the poor controllability of the hot-end temperature of the thermoelectric module, this study puts forward by lowering the cold-end temperature of the thermoelectric module so as to ensure the improvement of the thermoelectric conversion efficiency. The cooling circle for the cold-end of the thermoelectric module which is independent of the engine cooling system is built.
2014-09-30
Technical Paper
2014-01-2395
Gurunathan Varun Kumar, Meer Reshma Sheerin, Vedachalam Saravana Prabu, Kallikadan Jean, Chaitanya Rajguru, Murugesan Dinesh, Andrew Croft
Abstract Automotive climate control systems are evolving at a rapid pace to meet the overall vehicle requirements and the user expectations for comfort and convenience. This poses a challenge in the product development life cycle of multi-platform vehicle systems with respect to development time and optimal performance in the Heating, Ventilation and Air Conditioning (HVAC) system. This paper proposes rapid HVAC plant model design and development using simplified one-dimensional (1D) simulation models for fast simulations. The specific accuracy limitations of such a simplified model are overcome using limited three-dimensional computational fluid dynamics (3D CFD) modelling. User-level control strategy is developed in an integrated simulation environment that includes a reference 1D model and a control algorithm simulator. The simulation data is used to study and analyse the temperature and airflow distribution in the system.
2014-09-30
Technical Paper
2014-01-2406
Marco Carriglio, Alberto Clarich, Rosario Russo, Enrico Nobile, Paola Ranut
Abstract The main purpose of this study is the development of an innovative methodology for Heat Exchangers (HE) design to replace the conventional design procedures. The new procedure is based on the definition of a software package managed by modeFRONTIER, a multi-objective optimization software produced by ESTECO, able to create HE virtual models by targeting several objectives, like HE performance, optimal use of material, HE minimal weight and size and optimal manufacturability. The proposed methodology consists first in the definition of a workflow for the automatic CFD simulation of a parametric model of a periodic HE cellular element.
2014-09-30
Technical Paper
2014-01-2341
Salvador Sermeno, Eric Bideaux, Tessa Morgan, Duc Nguyen
Abstract Vehicle thermal management covers the engineering field of solutions that maintain the complete vehicle in acceptable operating conditions regarding component and fluid temperatures in an engine. The maximum efficiency rating of a Diesel engine reaches up to 45%. In order to improve the fuel efficiency of the vehicle one can reduce the losses generated by the cooling system. Ideally, the full motive force of the engine should be used for propulsion and new and more efficient energy sources have to be explored to power the secondary systems (cooling, compressed air…). This paper introduces a dynamic programming algorithm which is used to determine the maximum gains during operation for a given architecture of the cooling system of a Heavy Duty Truck. The algorithm, based in Bellman principle, will determine the best control trajectory for the pump and the fan according to energetic and control goals (fuel economy, regulation of temperature…).
2014-09-30
Technical Paper
2014-36-0172
Angela Harris, Ellen Lee, Walmir Peraro, Sandro Nunes, Cristiane Gonçalves, Andrea Latado
Abstract The microcellular foam injection molding process for thermoplastic materials provides design flexibility and cost savings opportunities not found in conventional injection molding. This process allows for plastic part design with material wall thickness optimized for functionality. The combination of density reduction and design for functionality can result in material and weight savings of up to 20%. With the correct equipment configuration, mold design, and processing conditions, these microcellular voids are uniform in size and distribution. The use of microcellular foam molding provides significant reductions in cycle time, material consumption, injection pressure, and clamp tonnage. In this work, a physical foam molding process, MuCell, is applied to a polypropylene (PP) composite.
2014-09-30
Technical Paper
2014-36-0214
F.J. Huera-Huarte, X. Cort, E. Aramburu, X. Vizcaino, L. Casto
Abstract DPIV (Digital Particle Image Velocimetry) measurements of the HVAC (Heat, Ventilation and Air Conditioning) system aerodynamics inside the compartment of a passenger car will be presented. The measurements were carried out in a commercial version of a car. No modifications were made to the car other than substituting the doors on the passenger side for transparent acrylic sheets. In DPIV the flow is seeded with particles with size in the order of microns and the flow is illuminated by a planar pulsed laser sheet. The particles scatter the light and one or more high speed cameras, synchronized with the laser pulses, record images of the illuminated particles. Image processing of the obtained images allows the calculation of the velocity flow field. The seeding for these experiments was produced using a custom made Laskin nozzle atomizer and olive oil.
2014-09-30
Technical Paper
2014-36-0220
Francisco Ganzarolli, Alexandre Tibério J. de C. Leal
Abstract The definition of the ride attribute is very difficult because it is part of human perception during driving. For vehicle dynamics work, have details of what is good or what is bad considering driving comfort, usually, induces some controversial opinions. In this work, the use of a single accelerometer is shown as a tool to characterize the basic vehicle vibrational behavior and so support the correlation between human perception and the resulting ride comfort presented. By using PSD theory, it is possible to “see” how the vehicle vibrates and so have a better understanding of where in the vehicle is located a possible issue and how to fix it. In a more advanced point of view is possible to characterize each vehicle with a ride “personality”, this meaning how each brand and model behave and so how vehicle behave to the consumer approve or complain about it..
2014-09-30
Technical Paper
2014-36-0219
Marcos Colombini, Teo Rocha
Abstract Product Design is a process of creating new product by an organization or business entity for its customer. Being part of a stage in a product life cycle, it is very important that the highest level of effort is being put in the stage. The Design for Six Sigma (DFSS) methodology consists of a collection of tools, needs-gathering, engineering, statistical methods, and best practices that find use in product development. DFSS has the objective of determining the needs of customers and the business, and driving those needs into the product solution so created. In this paper the DFSS methodology is employed to develop the optimal solution to enhance sound transmission loss in a vehicle front of dash pass-through. An integrated approach using acoustic holography and beamforming Noise Source Identification (NSI) techniques is presented as a manner to improve sound insulation during vehicle development.
2014-09-30
Technical Paper
2014-36-0412
Denis Rodrigues Figueira de Castro, Erik Telles Pascoal
Abstract This paper intends to study the feasibility about to use photovoltaic components in a car for energizing the compressor of an automotive air conditioning system. For this, we compared the performance of two different photovoltaic components used for this purpose: photovoltaic modules applied in a rigid substrates and thin film, applied in a flexible substrates. The study motivation are, while the photovoltaic air-conditioning is operating, to fuel saving, to increase the vehicle performance, to improve the greenhouse levels of gas emissions and to propose a new option of product, which is not available in the Brazilian market at this moment. The evaluations showed that the most viable proposal is to use thin film instead of photovoltaic modules.
2014-09-30
Technical Paper
2014-36-0243
Celso R. Lima, Christopher D. Prazeres
Abstract On Current Automotive Application, including Brazil, there are significant initiatives to reduce fuel consumption and emissions, like INOVAR Auto and others worldwide. There are several initiatives for Hybrid vehicles, electrical vehicles and other fuel cell energy vehicles, besides the additional energy supply in order to reduce the fuel energy consumption and consequently the emissions. The vehicle features represents a huge part of energy consumption, because the generator needs to feed all of those features. To reduce this energy required from generator and consequently from vehicle accessory drive and engine itself, we are aiming to reuse one of the bigger energy wasted on vehicle combustion engine, the thermal one. For that end, the Thermal Energy Generator is applied on major heat sources and convert the thermal energy through electrical energy due to “See-beck effect cells”.
2014-09-30
Journal Article
2014-01-2325
Michael Franke, Shirish Bhide, Jack Liang, Michael Neitz, Thomas Hamm
Abstract Exhaust emission reduction and improvements in energy consumption will continuously determine future developments of on-road and off-road engines. Fuel flexibility by substituting Diesel with Natural Gas is becoming increasingly important. To meet these future requirements engines will get more complex. Additional and more advanced accessory systems for waste heat recovery (WHR), gaseous fuel supply, exhaust after-treatment and controls will be added to the base engine. This additional complexity will increase package size, weight and cost of the complete powertrain. Another critical element in future engine development is the optimization of the base engine. Fundamental questions are how much the base engine can contribute to meet the future exhaust emission standards, including CO2 and how much of the incremental size, weight and cost of the additional accessories can be compensated by optimizing the base engine.
2014-09-26
WIP Standard
AIR4766/2A
This SAE Aerospace Information Report (AIR) provides information on aircraft cabin air quality, including: - Airborne contaminant gases, vapors, and aerosols. - Identified potential sources. - Comfort, health and safety issues. - Airborne chemical measurement. - Regulations and standards. - Operating conditions and equipment that may cause aircraft cabin contamination by airborne chemicals (including Failure Conditions and normal Commercial Practices). - Airborne chemical control systems. It does not deal with airflow requirements.
2014-09-17
WIP Standard
J2297
This SAE Standard applies to dyes intended to be introduced into a mobile air-conditioning system refrigerant circuit for the purpose of allowing the application of ultraviolet leak detection. In order to label any product(s) they shall meet SAE J2297, and the certification process as described in SAE J2911 must be followed and the documentation described in the appendix shall be submitted to SAE.
2014-09-17
WIP Standard
J2670
This SAE standard applies to any and all additives and chemical solutions intended for aftermarket use in the refrigerant circuit of vehicle air-conditioning systems with belt-driven compressors, except as noted below. This standard provides testing and acceptance criteria for determining the stability and compatibility of additives and flushing materials (solutions) with A/C system materials and components, that may be intended for use in servicing or operation of vehicle air conditioning systems. This standard does not provide test criteria for additive, compressor lubricant, or flushing solution effectiveness; such testing is the responsibility of the additive and/or solution manufacturer/supplier. This standard does not cover additives or flushing materials for electrically driven compressors. The use of additives with electrically driven compressors might cause electrical shorting and compressor failure.
2014-09-16
Technical Paper
2014-01-2117
Michael L. Zierolf, Thomas Brinson, Andrew Fleming
Abstract Recent emphasis on optimization of engine technologies with ancillary subsystems such as power and thermal management has created a need for integrated system modeling. These systems are coupled such that federated design methods may not lead to the most synergetic solution. Obtaining an optimal design is often contingent on developing an integrated model. Integrated models, however, can involve combining complex simulation platforms into a single system of systems, which can present many challenges. Model organization and configuration control become increasingly important when orchestrating various models into a single simulation. Additionally, it is important to understand such details as the interface between models and signal routing to ensure the integrated behavior is not contaminated or biased. This paper will present some key learnings for model integration to help alleviate some of the challenges with system-based modeling.
2014-09-16
Technical Paper
2014-01-2111
Shweta Sanjeev, Goutham Selvaraj, Patrick Franks, Kaushik Rajashekara
Abstract The transition towards More Electric Aircraft (MEA) architectures has challenges relating to integration of power electronics with the starter generator system for on-engine application. To efficiently operate the power electronics in the hostile engine environment at high switching frequency and for better thermal management, use of silicon carbide (SiC) power devices for a bi-directional power converter is examined. In this paper, development of a 50 kVA bi-directional converter operating at an ambient temperature of about 2000C is presented. The design and operation of the converter with details of control algorithm implementation and cooling chamber design are also discussed.
2014-09-16
Technical Paper
2014-01-2171
Matthew R. Cerny, Keith Joerger
Abstract This paper identifies critical and relevant variable/adaptive cycle turbine engine and propulsion subsystem technologies for future next generation aviation systems. A comprehensive evaluation of key technology drivers associated with the development and demonstration of advanced Adaptive Power and Thermal Management System (APTMS) technologies applicable to next generation platforms is addressed. Specifically, the paper explores energy optimization through dynamic mission based simulations of an advanced hybrid air cycle / vapor cycle APTMS architecture combining multiple traditionally federated subsystem functions including auxiliary power, environmental control, emergency power, and engine start.
2014-09-16
Technical Paper
2014-01-2160
Wei Wu, Yeong-Ren Lin, Louis Chow
Abstract In this paper, we address the thermal management issues which limit the lifespan, specific power and overall efficiency of an air-cooled rotary Wankel engine used in Unmanned Air Vehicles (UAVs). Our goal is to eliminate the hot spots and reduce the temperature gradients in the engine housing and side plates by aggressive heat spreading using heat pipes. We demonstrate by simulation that, for a specific power requirement, with heat spreading and more effective heat dissipation, thermal stress and distortion can be significantly reduced, even with air cooling. The maximum temperature drop was substantial, from 231°C to 129°C. The temperature difference (measure of temperature uniformity) decreased by 8.8 times (from 159°C to 18°C) for a typical UAV engine. Our heat spreaders would not change the frontal area of the engine and should have a negligible impact on the installed weight of the propulsion assembly.
2014-09-16
Technical Paper
2014-01-2191
Mark Donovan, Pedro Del valle
As aviation enters the future, new technologies and philosophies are required to keep up with ever changing demands and increased market competition. Aircraft designers are required to come up with new and innovative ways to optimise systems and improve efficiencies. Onboard thermal management is an area that can take advantage of several new technologies to do just that. This paper is based on the development project “Advanced Thermal Management in Aeronautics” (ATMIA). Project ATMIA focuses on the use of Loop Heat Pipes (LHPs) in the aeronautical industry, specifically their onboard feasibility and the unique requirements found on an aeronautical platform such as those due to vibrations, gravitational forces and the need for disassembly due to maintenance. LHPs are passive two-phase devices that allow free-energy heat transportation between certain subsystems without needing additional power consumption.
2014-09-16
Technical Paper
2014-01-2189
Andrew Slippey, Michael Ellis, Bruce Conway, Hyo Chang Yun
Abstract Carbon fiber reinforced polymer (CFRP) composite material is an attractive structural material in applications where mass is critical. The carbon fiber matrix provides strength comparable to steel with only 25% of the density. The CFRP sheet can often also be made thinner than metal with similar mechanical properties, further increasing the mass savings. However, thermal challenges have arisen with the increased use of composites. In the area of electronics enclosures, traditional metal structures conduct and spread heat over large surfaces, but composites act as insulation. Heat generated by components causes internal temperatures to rise and has detrimental impact on the performance and reliability of the electronics. A method is proposed and tested that utilizes constant conductance heat pipes (CCHPs) that penetrate through the CFRP walls. The CCHPs are capable of transporting significant heat energy through a limited cross-section with a minimal temperature penalty.
2014-09-16
Technical Paper
2014-01-2152
Pedro Del valle, Pablo Blazquez Munoz
Abstract Advance thermal management systems are being developed to optimise the energy balance within aircraft. This is being done in parallel to the concept of the More Electrical Aircraft (MEA) which has been developing throughout the last decades. The objective of such complex systems is to use efficiently the hot and cold sources available within the air vehicle to reduce the engine fuel consumption. A reduction of electrical power consumption, minimisation of weight, optimisation of aircraft aerodynamics (for example RAM inlets area minimisation) and the reduction of bleed air from engine all result in a fuel consumption saving. Any thermal management system to optimise energy consumption implies complex and advanced systems. This requires a high engineering effort to design and integrate the system within an aircraft due to the large quantity of variables and interfaces that need to be taken into account.
2014-09-16
Technical Paper
2014-01-2203
Daniel Schlabe, Jens Lienig
Abstract This paper describes a novel Thermal Management Function (TMF) and its design process developed in the framework of the Clean Sky project. This TMF is capable of calculating optimized control signals in real-time for thermal management systems by using model-based system knowledge. This can be either a physical model of the system or a data record generated from this model. The TMF provides control signals to the air and vapor cycle which are possible sources of cooling power, as well as load reduction or shedding signals. To determine an optimal cooling split between air cycle, vapor cycle, and its associated ram air channels, trade factors are being used to make electrical power offtake and ram air usage (i.e. drag) comparable, since both have influence on fuel consumption. An associated development process is being elaborated that enables a fast adaptation of the TMF to new architectures and systems.
2014-09-16
Technical Paper
2014-01-2202
Gene Tu, Wei Shih, Walter Yuen
Abstract To meet pulse power mode component cooling application needs, we developed, fabricated and tested a concept to use energy storage material and phase change material to enhance the heat dissipation of a conventional heat sink. Test results demonstrated the ESM/PCM heat sink has unique thermal performance. Under the same working condition, the peak temperature of ESM/PCM heat sink is 1.5°C lower than of a conventional heat sink. An optimized design can lead to a significant weight reduction for the heat sink in applications with high peak load and low duty power cycle power.
2014-09-16
Technical Paper
2014-01-2201
Fan Frank Wang
Abstract This article is about the issues associated with the published thermal data from commercial off the shelf (COTS) component manufacturers. Some of the published electrical component thermal data can be confusing and/or misleading. This article discusses the possibility of wrong design decisions that can be made using published COTS thermal data. There are two major issues of the published thermal data associated with the use of COTS components. One is the published ambient temperature rating. Another is the published thermal resistance. This paper will discuss these two major issues in details and provide mitigation suggestions.
2014-09-16
Technical Paper
2014-01-2225
Hidefumi Saito, Shoji Uryu, Norio Takahashi, Noriko Morioka, Hitoshi Oyori
Abstract To improve an energy optimization issue of ECS for MEA, we propose our concept in which ACS is replaced with VCS. A VCS is generally evaluated as auxiliary or limited cooling system of an aircraft. Cooling demand of commercial aircraft usually becomes large due to ventilation air at hot day conditions. In case of using conventional VCS for whole cooling demand, the ECS becomes too heavy as aircraft equipment. Though ACS's light weight is advantageous, the issue that VCS will be available for aircraft ECS is important for saving energy. ECS of commercial aircraft should work for three basic functions, i.e. pressurization, ventilation, and temperature control. The three functions of the ECS for bleed-less type of MEA can be distributed among equipment of the ECS. MDFAC works for pressurization and ventilation. Therefore, we should select appropriate system for only temperature control.
2014-09-16
Technical Paper
2014-01-2161
Alireza R. Behbahani, Alex Von Moll, Robert Zeller, James Ordo
Abstract Modern propulsion system designers face challenges that require that aircraft and engine manufacturers improve performance as well as reduce the life-cycle cost (LCC). These improvements will require a more efficient, more reliable, and more advanced propulsion system. The concept of smart components is built around actively controlling the engine and the aircraft to operate optimally. Usage of smart components intelligently increases efficiency and system safety throughout the flight envelope, all while meeting environmental challenges. This approach requires an integration and optimization, both at the local level and the system level, to reduce cost. Interactions between the various subsystems must be understood through the use of modeling and simulation. This is accomplished by starting with individual subsystem models and combining them into a complete system model. Hierarchical, decentralized control reduces cost and risk by enabling integration and modularity.
2014-09-16
Technical Paper
2014-01-2190
Michael Ellis, William Anderson, Jared Montgomery
Under a program funded by the Air Force Research Laboratory (AFRL), Advanced Cooling Technologies, Inc. (ACT) has developed a series of passive thermal management techniques for cooling avionics. Many avionics packages are often exposed to environment temperatures much higher than the maximum allowable temperatures of the electronics. This condition prevents the rejection of waste heat generated by these electronics to the surrounding environment and results in significant ambient heat gain. As a result, heat must be transported to a remote sink. However, sink selection aboard modern aircraft is limited at best. Often, the only viable sink is aircraft fuel and, depending on mission profile, the fuel temperature can become too high to effectively cool avionics. As a result, the electronic components must operate at higher than intended temperatures during portions of the mission profile, which reduces component lifetime and significantly increases the probability of failure.
Viewing 271 to 300 of 10063

Filter