Criteria

Display:

Results

Viewing 1 to 30 of 7801
2016-06-15
Technical Paper
2016-01-1810
Marie Escouflaire, Nicolas Zerbib, David Mas, Nicolas Papaxanthos, Saad Bennouna, Emmanuel Perrey-Debain, Boureima Ouedraogo, Solène Moreau, Jean Michel Ville
Abstract In the framework of noise reduction of HVAC (Heating, Ventilating and Air Conditioning) systems designed for cars, the present study deals with the numerical prediction of aeroacoustics phenomena encountered inside such devices for industrial purposes, i.e. with a reasonable CPU time. It is then proposed in this paper to assess the validity of the chaining, via Lighthill-Curle analogy, of a DES (Detached Eddy Simulation) resulting from the CFD code OpenFOAM (ESI Group) versus a RANS-LES (Large Eddy Simulation) and a BEM calculation resulting from the Vibro/Aeroacoustics software VA One (ESI Group) on an academic case of air passing through a rectangular diaphragm at a low Mach number. The BEM code being parallelized, the performances of DMP (Distributed Memory Processing) solution will also be assessed.
2016-06-15
Technical Paper
2016-01-1812
Saad Bennouna, Solène Moreau, Jean Michel Ville, Olivier Cheriaux
Abstract The noise radiated inside the car cabin depends on many sources such as the embedded equipments like the Heating, Ventilation and Air Conditioning (HVAC) module. An HVAC is a compact and complex system composed of several elements: blower, flaps, thermal exchangers, ducts… Air provided by an HVAC is blown by a blower passing through different components and then distributed to car cabin areas. Interactions between airflow and the HVAC fixed components generate noises that emerge in the car cabin. CEVAS project, managed by the automotive equipment manufacturer Valeo, is aiming to develop a prediction tool which will provide HVAC noise spectrum and sound quality data. The tool is based, in particular, on aeroacoustic characterization of individual elements and associations of elements.
2016-06-15
Technical Paper
2016-01-1814
Maxime Legros, Jean Michel Ville, Solène Moreau, Xavier Carniel, Christophe Lambourg, Guillaume Stempfel
Abstract The new requirements during the first stages of the conception of a HVAC prompt the designer to integrate the acoustic problematic increasingly upstream. The designer needs to select a coherent components’ choice in order to comply with the specifications in terms of aeraulic and acoustic performances. A tool has been created to guide the designer’s choices based on an acoustic synthesis which is a design and/or diagnosis approach used to analyze and predict the acoustic behavior of a complex system. The synthesis is developed in order to propose an approach which considers the integration effects and some interaction effects. The acoustic synthesis results are the starting point of a psycho-acoustic study providing audio samples of the prediction and indications of the HVAC acceptance by the prospective user. Also, one may compare the results of different acoustic synthesis projects to study the influence of the parameters on the acoustic prediction.
2016-06-15
Technical Paper
2016-01-1851
Arnaud Duval, Minh Tan Hoang, Valérie Marcel, Ludovic Dejaeger
Abstract The noise treatments weight reduction strategy, which consists in combining broadband absorption and insulation acoustic properties in order to reduce the weight of barriers, depends strongly on surface to volume ratio of the absorbing layers in the reception cavity. Indeed, lightweight technologies like the now classical Absorber /Barrier /Absorber layup are extremely efficient behind the Instrument Panel of a vehicle, but most of the time disappointing when applied as floor insulator behind the carpet. This work aims at showing that a minimum of 20 mm equivalent “shoddy” standard cotton felt absorption is requested for a floor carpet insulator, in order to be able to reduce the weight of barriers. This means that a pure absorbing system that would destroy completely the insulation properties and slopes can only work, if the noise sources are extremely low in this specific area, which is seldom the case even at the rear footwells location.
2016-06-15
Technical Paper
2016-01-1853
Timo Hartmann, Gregor Tanner, Gang Xie, David J. Chappell
Abstract Car floor structures typically contain a number of smaller-scale features which make them challenging for vibro-acoustic modelling beyond the low frequency regime. The floor structure considered here consists of a thin shell floor panel connected to a number of rails through spot welds leading to an interesting multi-scale modelling problem. Structures of this type are arguably best modelled using hybrid methods, where a Statistical Energy Analysis (SEA) description of the larger thin shell regions is combined with a finite element model (FEM) for the stiffer rails. In this way the modal peaks from the stiff regions are included in the overall prediction, which a pure SEA treatment would not capture. However, in the SEA regions, spot welds, geometrically dependent features and directivity of the wave field are all omitted. In this work we present an SEA/FEM hybrid model of a car floor and discuss an alternative model for the SEA subsystem using Discrete Flow Mapping (DFM).
2016-06-15
Technical Paper
2016-01-1808
Manfred Kaltenbacher, Andreas Hüppe, Aaron Reppenhagen, Matthias Tautz, Stefan Becker, Wolfram Kuehnel
The cabin noise of modern ground vehicles is highly affected by flow related noise sources. Especially in case of a stationary vehicle, fan-noise and noise generated from the outlet of the air-conditioning system may significantly reduce passenger’s comfort. Thereby, fans generate a highly turbulent flow field and can be identified as the main noise source in air conditioning units. Numerical methods such as Computational Aero Acoustics (CAA) are very capable of locating the sources of sound generation and also to predict the propagation of sound. The simulation and visualization of the occurring phenomena can contribute to a better understanding of the generation mechanisms and help to minimize unwanted noise and to optimize entire components. This contribution focuses on the Computational Fluid Dynamics (CFD) simulation of rotating parts in air conditioning units using the Arbitrary Mesh Interface (AMI), which is implemented in OpenFOAM®.
2016-06-15
Journal Article
2016-01-1778
Gesche Fender, Steffen Marburg, Fabian Duddeck
Abstract One method to lower noise in a cabin is to position damping layers on vibrating panels, thereby reducing their radiated power. To assess the damping effect, criteria like the ERP (equivalent radiated power) are widely employed, which estimate the radiated sound power of a panel without taking into account the actual complex system. Advantageously only a part of the structure has to be modeled, but the optimal solution found on the simplified model then often fails for the complete, coupled system, especially if several variants of a cabin have to be considered. Hence, it is proposed to use the structure-only optimization for identification of a set of candidate solutions for optimal positioning of damping layers. These candidate solutions used as initial designs for the coupled investigations should be well distributed in the design space to avoid being wrongly stuck in an optimum with inferior coupled performance.
2016-06-15
Technical Paper
2016-01-1780
Francesca Ronzio, Theophane Courtois
Abstract In automotive acoustics, body NVH design is traditionally carried out without considering the acoustic trim parts. Nevertheless, the vibro-acoustic interaction of body structure and insulation trim cannot be neglected in the middle frequency range, where structure borne propagation might still be dominating and where classical statistical approaches are generally not able to represent the influence of local changes in stiffness and damping. This, together with the market requirement of lightweight and more efficient sound package solutions, is leading the CAE engineers to evaluate new design approaches dedicated to vehicle components such as dash or floor systems, for which the multi-physics interaction between damping, body stiffness and trim impedance is important.
2016-06-15
Technical Paper
2016-01-1800
Xavier Carniel, Anne Sanon
Abstract The control of sound fields radiated by vibrating structures in a passenger compartment, (especially structures connected to different organs like the engine powertrain, the fan motor unit, seats, the steering column, electrical motors more and more, etc.) is among the functions of the automotive manufacturers. The absence of physical prototypes in the development phase systems led OEMs1 to use tests results obtained on benches following technical specifications from manufacturers. The transition "bench to vehicle" for vibro- acoustic behaviour sets many challenges that this standard intends to clear up. This standard specifies the experimental method to transpose the dynamic forces generated by the global movements of an active component between the vehicle and a test bench. The efforts are first measured on test benches and then transposed from test bench towards the vehicle. The standard is now a French standard (XP R 19-701) and is submitted to ISO process [1].
2016-05-01
Journal Article
2015-01-9148
Saeed Asgari, Shailendra Kaushik
Abstract A linear parameter varying (LPV) reduced order model (ROM) is used to approximate the volume-averaged temperature of battery cells in one of the modules of the battery pack with varying mass flow rate of cooling fluid using uniform heat source as inputs. The ROM runs orders of magnitude faster than the original CFD model. To reduce the time it takes to generate training data, used in building LPV ROM, a divide-and-conquer approach is introduced. This is done by dividing the battery module into a series of mid-cell and end-cell units. A mid-cell unit is composed of a cooling channel sandwiched in between two half -cells. A half-cell has half as much heat capacity as a full-cell. An end-cell unit is composed of a cooling channel sandwiched in between full-cell and a half-cell. A mass flow rate distribution look-up-table is generated from a set of steady-state simulations obtained by running the full CFD model at different inlet manifold mass flow rate samples.
2016-04-05
Journal Article
2016-01-0729
Takeshi Okamoto, Noboru Uchida
Abstract To overcome the trade-offs of thermal efficiency with energy loss and exhaust emissions typical of conventional diesel engines, a new diffusion-combustion-based concept with multiple fuel injectors has been developed. This engine employs neither low temperature combustion nor homogeneous charge compression ignition combustion. One injector was mounted vertically at the cylinder center like in a conventional direct injection diesel engine, and two additional injectors were slant-mounted at the piston cavity circumference. The sprays from the side injectors were directed along the swirl direction to prevent both spray interference and spray impingement on the cavity wall, while improving air utilization near the center of the cavity.
2016-04-05
Technical Paper
2016-01-0185
Yangjie Ji, Jiaqi Wang, Yingxiao Xu, Ziang Liu, Yongchi Zhou, Jiawei Li
Abstract As an auxiliary braking device of heavy-duty vehicle, eddy current retarder can reduce the brake failure due to the high temperature of the main brake. Nevertheless, the eddy current retarder will generate high temperature locally during the working process of it, leading to the decline of the brake power. The study on the heating characteristics of eddy current retarder is advantageous to the layout and parameter design of the liquid cooling channel of the retarder body and prolong the effective time of the auxiliary brake. In this research, a new kind of integrated eddy current retarder has been established. The thermal-magnetic coupling characteristics are studied and the laws of variation in torque output of auxiliary brake affected by the body temperature of retarder are analyzed. The boundary conditions are provided for the construction of the cooling channel. Firstly, the distribution of magnetic field and the characteristics of eddy current are simulated.
2016-04-05
Journal Article
2016-01-0186
Hyunki Sul, Taehoon Han, Mitchell Bieniek, John Hoard, Chih-Kuang Kuan, Daniel Styles
Abstract Exhaust gas recirculation (EGR) coolers are used on diesel engines to reduce peak in-cylinder flame temperatures, leading to less NOx formation during the combustion process. There is an ongoing concern with soot and hydrocarbon fouling inside the cold surface of the cooler. The fouling layer reduces the heat transfer efficiency and causes pressure drop to increase across the cooler. A number of experimental studies have demonstrated that the fouling layer tends to asymptotically approach a critical height, after which the layer growth ceases. One potential explanation for this behavior is the removal mechanism derived by the shear force applied on the soot and hydrocarbon deposit surface. As the deposit layer thickens, shear force applied on the fouling surface increases due to the flow velocity growth. When a critical shear force is applied, deposit particles start to get removed.
2016-04-05
Journal Article
2016-01-0183
Taehoon Han, Hyunki Sul, John Hoard, Chih-Kuang Kuan, Daniel Styles
Abstract Exhaust Gas Recirculation (EGR) coolers are commonly used in diesel and modern gasoline engines to reduce the re-circulated gas temperature. A common problem with the EGR cooler is a reduction of the effectiveness due to the fouling layer primarily caused by thermophoresis, diffusion, and hydrocarbon condensation. Typically, effectiveness decreases rapidly at first, and asymptotically stabilizes over time. There are several hypotheses of this stabilizing phenomenon; one of the possible theories is a deposit removal mechanism. Verifying such a mechanism and finding out the correlation between the removal and stabilization tendency would be a key factor to understand and overcome the problem. Some authors have proposed that the removal is a possible influential factor, while other authors suggest that removal is not a significant factor under realistic conditions.
2016-04-05
Journal Article
2016-01-0191
Gursaran D. Mathur
Water drainage characteristics of an evaporator changes with the age of the vehicle. This is due to the fact that with time, a part of the hydrophilic coating washes off with the moisture that condenses over the evaporator core from the air-stream. Hence, the effectiveness of the evaporator for water drainage deteriorates with the age of the vehicle. At this condition more water is retained in the evaporator as the contact angle increases. Author has conducted experiments with evaporators from multiple vehicles from different OEMs. These evaporators were analyzed to determine the effectiveness of the hydrophilic coating as a function of time or vehicle age. This is the first paper in the open literature that deals with the vehicle mileage or vehicle age with the evaporator plate contact angle and surface coating of an evaporator.
2016-04-05
Technical Paper
2016-01-0188
Elankathiravan Mathivanan, Liping Liu
In the present work, the effect of various nanofluids on convective heat transfer performance in an automotive radiator was analyzed based on measured nanofluid properties. Al2O3, TiC, SiC, MWNT (multi-walled nanotube) and SiO2 nanoparticles ranging between 1 and 100 nm in size were dispersed in distilled water to form nanofluids. An ultrasonic generator was used to provide uniform particle dispersion in the fluid and keep the mixture stable for a long period of time. The impact of various particle types and their volume concentration on fluid properties such as density, thermal conductivity and viscosity were experimentally analyzed. It is observed that the nanofluid properties increased with the increase in particle volume concentration. TiO2 nanofluids were observed to show the highest increase in density (2.6% higher than the base fluid at a 1% vol. concentration) and also the largest enhancement in thermal conductivity (7.5% augmentation at 1% concentration).
2016-04-05
Journal Article
2016-01-0189
Alaa El-Sharkawy, Ahmed Uddin
Abstract A heat pipe is a self-operating device which is capable of transferring large amounts of heat with a minimum temperature differences between the hot end (evaporator) and the cold end (condenser). However, a limited number of research work or analysis [1,2,3,4,5,6,7,8,9] has been reported in automotive industry on the applications of heat pipes in power train cooling. The advantage of a heat pipe heat exchanger is the possibility to use a more compact and lighter radiator. In addition, the proposed radiator is expected to be more robust as it is less sensitive to variations in ambient temperatures. In this paper, a proposed design for an automotive heat exchanger is investigated. The proposed design is evaluated through thermal simulation of heat pipes using various design parameters. The analysis addresses the ability of the heat exchanger to maintain engine coolant temperature at acceptable limits under different loading conditions.
2016-04-05
Technical Paper
2016-01-0187
Zizhen Yu, Gangfeng Tan, Tianming He, Xuexun Guo, MengYing Yang, Shengguang Xiong
Abstract With the improvement of occupants’ awareness on the driving safety, hydraulic retarder applications increase quickly. The traditional hydraulic retarder, on the one hand, exhausts the waste heat of transmission oil by the engine cooling system; on the other hand, the engine power should be consumed to drive the water pump and the engine cooling fan for maintaining the normal operation of the auxiliary braking system. In this study, the Organic Rankine Cycle (ORC) instead of the traditional hydraulic retarder water-cooling system is applied to achieve the effective temperature control of the hydraulic retarder, while the waste heat of transmission oil could be recovered for saving vehicle energy consumption.
2016-04-05
Technical Paper
2016-01-0182
Harish Kumar Gangwar, Ankur Sharma, S.B. Pathak, VIvek Dwivedi, Amit Nigam
Abstract Ever tightening emission limits and constant pressure for increasing engine power are resulting in increased engine operating temperature. This coupled with continuous drive for fuel economy improvement because of the stiff competition are forcing OEMs to explore alternative cooling solutions resulting in less power take off and quick response as cooling requirement shoots up. Aim of this paper is to analyze the relative benefits of incorporating a new cooling fan drive system concept over conventional viscous fan driven cooling system with step-less variable speed control independent of engine speed variation. Hydraulic fan drive system control fan rpm based on the fluid temperature as compared to air temperature in viscous coupling fan drive system. HFD system provides quick response when increase in coolant temperature is observed. HFD system in this way provide more control on fan rpm.
2016-04-05
Technical Paper
2016-01-0181
Yasuki Hirota, Ryuichi Iwata, Takafumi Yamauchi, Manabu Orihashi, Masaki Morita
Abstract In order to reduce the energy consumption of the automotive air conditioning system, adsorption heat pump (AHP) system is one of the key technologies. We have been developing compact AHP system utilizing the exhaust heat from the engine coolant system (80-100 °C), which can meet the requirements in the automotive application. However, AHP systems have not been practically used in automotive applications because of its low volumetric power density of the adsorber. The volumetric power density of the adsorber is proportional to sorption rate, packing density and latent heat. In general, the sorption rate is determined by mass transfer resistance in primary particle of an adsorbent and heat and mass transfer resistance in packed bed. In order to improve the volumetric power density of the adsorber, it is necessary to increase the production of the sorption rate and the packing density.
2016-04-05
Technical Paper
2016-01-0180
Montassar Khammassi, Thierry Marimbordes, Judicael Aubry, Bertrand Barbedette, Mickael Cormerais, Cherif Larouci, Quentin Frossard
Abstract In order to cope with new regulations and find a better compromise between fuel consumption, pollutant emissions and comfort, thermal management technologies are getting more complex. This is especially true when it requires replacing a basic passive solution with a mechatronic system. A new Active Cooling Thermal-management (ACT) valve concept has been developed to specifically replace wax thermostat while keeping the same packaging and cost range and bringing closed loop temperature control, fast response time and precision. This new module is manufactured by assembling injected thermoplastic components. By essence it leads to dimension tolerances, deformation and wear over its life. Those uncertainties and deviations have to be taken into account when the nominal part is designed to ensure part efficiency till the end of its life.
2016-04-05
Technical Paper
2016-01-0179
Meisam Mehravaran, Aurélien Levasseur, Yi Zhang, Manuel Henner
Abstract In this article, the behavior of a typical air-to-air heat exchanger (intercooler) during the thermal shock test has been recorded during which the heat exchanger is exposed to very high temperature gradients. Different CAE models have been built that have different levels of details and the sensitivity of the results to the details has been studied. Finally a comparison have been made between the results of the CAE/CFD model and the experimental data and the correlation study shows that in spite of being simple, the dual stream is very accurate and correlates pretty well with test data. Including all design details in the CAE model will not necessarily improve the accuracy of the model while adding up to the computational cost.
2016-04-05
Technical Paper
2016-01-0204
Igor Gritsuk, Yurii Gutarevych, Vasyl Mateichyk, Vladimir Volkov
Abstract The article discusses the features of applying vehicular engine heating system with phase-transitional thermal accumulator. The peculiarity of the presented system is that it uses thermal energy of exhaust gases from internal combustion engine during its operation to accumulate heat. The results of experimental studies of heating the vehicular engine are shown. The article describes the structure of information package for studying the internal combustion engine of a vehicle with heating system and thermal accumulator during the start and after-start heating. The package allows engine performance parameters and engine thermal development to be estimated from distance within intelligent transport systems. Using phase-transitional thermal accumulator in engine coolant heater system (case studied: G4GC (4FS 8.2 / 9.35) of KIA CEE'D 2.0 5MT2) reduces time for heating by 17.8 - 68.4% and fuel consumption by 19.5 - 56.25%.
2016-04-05
Technical Paper
2016-01-0205
Mattia De Rosa, Roy Douglas, Stephen Glover
Abstract The internal combustion (IC) engines exploits only about 30% of the chemical energy ejected through combustion, whereas the remaining part is rejected by means of cooling system and exhausted gas. Nowadays, a major global concern is finding sustainable solutions for better fuel economy which in turn results in a decrease of carbon dioxide (CO2) emissions. The Waste Heat Recovery (WHR) is one of the most promising techniques to increase the overall efficiency of a vehicle system, allowing the recovery of the heat rejected by the exhaust and cooling systems. In this context, Organic Rankine Cycles (ORCs) are widely recognized as a potential technology to exploit the heat rejected by engines to produce electricity. The aim of the present paper is to investigate a WHR system, designed to collect both coolant and exhausted gas heats, coupled with an ORC cycle for vehicle applications.
2016-04-05
Journal Article
2016-01-0202
Bjoern Franzke, Stefan Pischinger, Philipp Adomeit, Christof Schernus, Johannes Scharf, Tolga Uhlmann
Abstract A new approach is presented to modelling wall heat transfer in the exhaust port and manifold within 1D gas exchange simulation to ensure a precise calculation of thermal exhaust enthalpy. One of the principal characteristics of this approach is the partition of the exhaust process in a blow-down and a push-out phase. In addition to the split in two phases, the exhaust system is divided into several sections to consider changes in heat transfer characteristics downstream the exhaust valves. Principally, the convective heat transfer is described by the characteristic numbers of Nusselt, Reynolds and Prandtl. However, the phase individual correlation coefficients are derived from 3D CFD investigations of the flow in the exhaust system combined with Low-Re turbulence modelling. Furthermore, heat losses on the valve and the seat ring surfaces are considered by an empirical model approach.
2016-04-05
Technical Paper
2016-01-0203
Yadong Deng, Chunhua Liu, Panqi Chu
Abstract In order to make full use of engine exhaust heat, the thermoelectric module been used to contribute to thermoelectric power generation in the automotive. At present, the thermoelectric generators (TEGs) have been developing with continuously advances in thermoelectric technology. And almost all of the existing thermoelectric technologies are adding a gas tank to the vehicle exhaust system which increases the exhaust back pressure and occupying excessive space of the vehicle chassis. In this study, a new TEG integrated with a front silencer muffler (FMTEG) is proposed. The muffler is reshaped as the heat exchanger which has a hexagon cross-section. The water tank and clamping mechanism have been redesigned for the new heat exchanger. The FMTEG system’s dimensions are small that can well meet the installation requirements and has a good compatibility with the vehicle exhaust system.
2016-04-05
Technical Paper
2016-01-0208
Xuzhi Du, Zhigang Yang, Hua Zhou, Qiliang Li, Zheyan Jin
Abstract The effect of jet geometry on flow, heat transfer and defrosting characteristics was numerically investigated for elliptic and rectangular impinging jets on an automobile windshield. Initially, various turbulence models within the commercial computational fluid dynamics (CFD) package FLUENT were employed and validated for a single jet, and the results indicated that the impinging jet heat transfer was more accurately predicted by the SST k -ω turbulence model, which was then utilized for this study. The aspect ratios (AR) of elliptic and rectangular jets were respectively 0.5, 1.0, and 2.0, with jet-to-target spacing h/d=2, 4 and jet-to-jet spacing c/d=4, and all those situations were numerically analyzed with the same air mass flow and jet open area. It was observed that the heat transfer coefficient and defrosting performance of the inclined windshield were significantly affected by the shape of the jet, and the best results were obtained with the elliptic jet arrangements.
2016-04-05
Technical Paper
2016-01-0209
Youcai Liang
Abstract This paper presents performance of a novel ECCS (electricity-cooling cogeneration system) based on cascade utilization of the waste heat of marine engines. The cogeneration system consists of a steam Rankine cycle and an NH3-H2O absorption refrigeration cycle with an expander. The steam Rankine cycle recycles the energy of both jacket coolant and exhaust gas of engine, while the absorption refrigeration cycle is employed to recover energy of the expanded steam at the turbine outlet in Rankine cycle. The performance of the waste heat recovery system is evaluated in terms of electricity, cooling capacity, equivalent electricity and exergy efficiency. The simulation results show that the novel ECCS exhibited a maximum net electricity output of 4561 kW, a maximum cooling capacity of 3197 kW, and a maximum equivalent electricity of 5233 kW.
2016-04-05
Technical Paper
2016-01-0206
Ken T. Lan
An Air intake system (AIS) is a duct system which leads the airflow going into the internal combustion engine. Combustion requires oxygen, and the more oxygen is provided into the combustion process the more power it will produce. The lower the air temperature, the higher its density, and hence there is more oxygen in a unit volume. The quality of air entering engine can be measured with the air temperature. AIS design and routing influence the air charge temperature (ACT) at intake manifold runners and ACT is normally measured at AIS throttle body in reality. Higher ACT lead to inefficient combustion and can lead to spark retard. Optimization of AIS designs and reduction of ACT can improve engine performance and vehicle fuel economy. High ACT can be a result of two different phenomena: Recirculation - Hot air from the underhood environment ingested into the dirty side of the air intake system.
2016-04-05
Technical Paper
2016-01-0207
Ivan Arsie, Andrea Cricchio, Cesare Pianese, Vincenzo Ricciardi, Matteo De Cesare
Abstract In the last years, the research effort of the automotive industry has been mainly focused on the reduction of CO2 and pollutants emissions. In this scenario, concepts such as the engines downsizing, stop/start systems as well as more costly full hybrid solutions and, more recently, Waste Heat Recovery technologies have been proposed. These latter include Thermo-Electric Generator (TEG), Organic Rankine Cycle (ORC) and Electric Turbo-Compound (ETC) that have been practically implemented on few heavy-duty applications but have not been proved yet as effective and affordable solutions for passenger cars. The paper deals with modeling of ORC power plant for simulation analyses aimed at evaluating the opportunities and challenges of its application for the waste heat recovery in a compact car, powered by a turbocharged SI engine.
Viewing 1 to 30 of 7801