Criteria

Text:
Content:
Display:

Results

Viewing 1 to 5 of 5
2012-05-22
Video
This study evaluates utilizing an accelerated test method that correlates customer interaction with a vehicle seat where bagginess and wrinkling is produced. The evaluation includes correlation from warranty returns as well as test vehicle results for test verification. Consumer metrics will be discussed within this paper with respect to potential application of this test method, including but not limited to JD Power ratings. The intent of the test method is to aid in establishing appropriate design parameters of the seat trim covers and to incorporate appropriate design measures such as tie downs and lamination. This test procedure was utilized in a Design for Six Sigma (DFSS) project as an aid in optimizing seat parameters influencing trim cover performance using a Design of Experiment approach. Presenter Lisa Fallon, General Motors LLC
2011-12-12
Video
The present paper provides a general review of trends in vehicle information display designs, specifically dashboards, noting that the purpose of those dashboard displays is to provide information that allows for safe and lawful operation of those vehicles. Presenter William H. Havins, Ph.D., Havins Designs
2011-12-05
Video
Traditionally, an in-vehicle map consists of only one type of data, tailored for a single user function. For example, the navigation maps contain spatial information about the roads. Presenter Peter Nordin, Linkļæ½ping University
2011-12-05
Video
Advanced vehicular thermal management system can improve engine performance, minimize fuel consumption, and reduce emissions by harmoniously operating computer-controlled servomotor components. In this paper, a neural network-based optimal control strategy is proposed to regulate the engine temperature through the advanced cooling system. Presenter Asma Al Tamimi, Hashemite University
2011-11-07
Video
The three major challenges in the power electronics in hybrid and electric vehicles are: System cost, power density and reliability. High temperature power device and packaging technologies increases the power density and reliability while reducing system cost. Advanced Silicon devices with synthesized high-temperature packaging technologies can achieve junction temperature as high as 200C (compared to the present limitation of 150C) eliminating the need for a low-temperature radiator and therefore these devices reduces the system cost. The silicon area needed for a power inverter with high junction temperature capability can be reduced by more than 50 - 75% thereby significantly reducing the packaging space and power device and package cost. Smaller packaging space is highly desired since multiple vehicle platforms can share the same design and therefore reducing the cost further due to economies of scale.
Viewing 1 to 5 of 5

    Filter

    • Video
      5