Display:

Results

Viewing 1 to 30 of 11371
2018-01-15
Article
The concept CUV's interior is one part woodworker's art show, another part vision of next-gen vehicle connectivity.
2018-01-08
WIP Standard
J1340
The testing techniques outlined in this SAE Recommended Practice were developed as part of an overall program for testing and evaluating fuel consumption of heavy duty trucks and buses. The technique outlined in this document provides a general description of the type of equipment and facility which is necessary to determine the power consumption of these engine-driven components. It is recommended that the specific operating conditions suggested throughout the test be carefully reviewed on the basis of actual data obtained on the specific vehicle operation. If specific vehicle application is not known, see SAE J1343. The purpose of this document is to provide a recommended test procedure for establishing the power consumption of an air brake compressor or an air conditioning compressor. It is intended that this test procedure be used to determine compressor power consumption over a range of operating conditions, including both the loaded and unloaded modes.
2017-12-27
WIP Standard
AIR1168/1A
The fluid flow treated in this section is isothermal, subsonic, and incompressible. The effects of heat addition, work on the fluid, variation in sonic velocity, and changes in elevation are neglected. An incompressible fluid is one in which a change in pressure causes no resulting change in fluid density. The assumption that liquids are incompressible introduces no appreciable error in calculations, but the assumption that a gas is incompressible introduces an error of a magnitude that is dependent on the fluid velocity and on the loss coefficient of the particular duct section or price of equipment. Fit 1A-1 shows the error in pressure drop resulting from assuming that air is incompressible. With reasonably small loss coefficients and the accuracy that is usually required in most calculations, compressible fluids may be treated as incompressible for velocities less than Mach 0.2.
CURRENT
2017-12-12
Standard
J1393_201712
The purpose of this SAE Recommended Practice is to establish a testing procedure to determine the performance capability of heavy duty vehicle cooling systems to meet Original Equipment Manufacturer or end user thermal specifications to ensure long term reliable vehilcle operations. The recommendations from the present document are intended for heavy-duty vehicles including, but is not limited to, on- and off-highway trucks, buses, cranes, drill rigs, construction, forestry and agricultural machines.
2017-12-12
WIP Standard
J631
This SAE Standard documents standard nomenclature in common use for various types of radiator and radiator core construction, as well as for various radiator-related accessories.
2017-12-11
Article
Suppliers are rapidly integrating smart phone technologies into aftermarket and OEM products.
2017-12-07
Article
Demands for audio system sound quality are rising, forcing new approaches for in-vehicle infotainment systems.
CURRENT
2017-12-07
Standard
AS1650E
This SAE Aerospace Standard (AS) defines the requirements for a threadless, flexible, self-bonding coupling assembly which, when installed on machined fixed cavity ferrules, provides a flexible connection for joining tubing and components in aircraft fuel, vent or other systems. This assembled coupling, hereafter referred to as the assembly, and is designed for use from −65 to +400 °F and at 125 psig nominal operating pressure. AS1650 was not designed for the new certification requirements for flammable leakage zones and fuel tanks for lightning protection and assembly redundancy. As such their use and installation may require additional efforts and equipment to support new FAA CFR compliance. The AS7510 flexible coupling should be the preferred coupling for use in flammable leakage zones and fuel tanks that require service life and functionality for lightning protection and part redundancy.
2017-12-03
Article
The use cases for three-dimensional printed automobile parts are plentiful, but production applications of the additive manufacturing process have been almost non-existent -- until now.
2017-12-01
WIP Standard
ARP1176B
This SAE Aerospace Recommended Practice (ARP) provides recommended practices for cleaning aircraft oxygen equipment such as tubing, pieces, parts (including regulator and valve parts), cylinders and ground-based equipment that may be used to support aircraft oxygen systems. This revision introduces a cleanliness coding scheme that can be referenced as a requirement, and/or referenced to identify compliance to meeting such a requirement. These methods may apply to gaseous and liquid oxygen equipment. This document specifies work area details, methods to select suitable cleaning agents, cleaning methods, test methods to verify cleanliness level, and methods of packaging the components and parts after cleaning. Technicians designated to clean oxygen equipment must be qualified and trained to clean oxygen equipment. This ARP is applicable to metallic and non-metallic parts.
2017-11-30
Magazine
Meeting truck autonomy hurdles head-on Combining sensors, inter-vehicle communications and controllers poses major challenges in the effort to bring greater levels of automation to commercial trucking. Simulation key to additive manufacturing analysis Advanced simulation tools help to optimize 3D printing processes before physical build. Making the case for battery-electric fleet power Battery systems edge closer to a tipping point as commercial and heavy-duty fleets broaden their application. Electrified forklifts go big Hoist Liftruck brings full electrification to some of the biggest forklift trucks, motivated only in part by regulatory pressures.
CURRENT
2017-11-21
Standard
AIR5867
This report revises ARD50015 document to the AIR format. This report, as was the original, is intended to complement ARP1420C and AIR1419C documents issued by the SAE S-16 Committee on spatial total-pressure distortion. These previous documents addressed only total-pressure distortion and excluded total temperature distortion. The subject of inlet total temperature distortion is addressed in this report with some background and identification of the problem area. The status of past efforts is reviewed, and an attempt is made to define where we are today. Deficiencies, voids, and limitations in knowledge and test techniques for total temperature distortion are identified.
2017-11-18
Article
The Boston-based start-up successfully completed test flights of the SX-1.2—a subscale, subsonic, unmanned demonstrator for its S-512 Quest Supersonic Jet. Competition from Aerion, HyperMach, and Boom points to supersonic commercial flight arriving earlier than thought.
CURRENT
2017-11-15
Standard
J2383_201711
This SAE Recommended Practice establishes uniform Installation Parameters for desiccant Air Dryers for vehicles with compressed air systems.
CURRENT
2017-11-13
Standard
J2911_201711
This SAE Standard provides manufacturers/marketers, testing facilities and providers of technician training with a procedure for certifying compliance with the applicable standard. Manufacturers/marketers or sellers who advertise their products as Certified to an SAE J standard shall follow this procedure. Certification of a product is voluntary; however, this certification process is mandatory for those advertising meeting SAE Standard(s) requirements. Only certifying to this standard allows those claiming compliance to advertise that their product (unit), component, or service technician training meets all requirements of the applicable SAE standard. Certification of compliance to this and the appropriate standard and use of the SAE label on the product shall only be permitted after all the required information has been submitted to SAE International and it has been posted on the SAE web site.
CURRENT
2017-11-09
Standard
ARP594F
The requirements presented in this document address the key considerations for thermal safety in aircraft fuel pump design. Document sections focus on understanding safety relative to an electrically motor driven fuel pump assembly acting as an ignition source for explosive fuel vapors within the airplane tank.
2017-11-07
Technical Paper
2017-36-0286
Juliana Lopes, Rafael Vieira, Cleber Marques, Genildo Vasconcelos, Fabrício Ferreira, Tainã Silva
Abstract The amount of fuel present in the vehicle fuel tank is an extremely important information for car users. In the majority of modern cars, the fuel level is identified through a resistance value measured by a potentiometer inside the tank. This measurement is converted to a digital information that will be filtered by computational algorithms embedded on the responsible Electronic Control Unit (ECU) and shown to the user by Instrument Panel Cluster (IPC) Gauge. The reliability of this information is a critical factor due to fuel economy and safety issues. Some agents can affect the fuel level measurement during the refueling process, such as the fuel slosh (fluid disturbance on the tank), that could compromise the reliability of the information provided to the user. Perform this feature test could be very expensive, demanding car prototypes, several engineer work hours and fuel manipulation.
2017-11-07
Technical Paper
2017-36-0347
Bruno Silva de Lima, Rafael Megale de Oliveira, Luiz Fernando de Oliveira Moraes, Gustavo Abreu Araújo, Gabriel Mendes de Almeida Carvalho
Abstract This work aims to study the selection of a heat exchanger available in the market with the objective of implementing it in a vehicle. The vehicle used for the tests was a prototype, developed by Formula UFMG team. It was made an experimental and a theoretical study in order to calculate the power of the CB600F engine to compare with the experimental study of heat dissipation of the selected heat exchanger. This comparison was made to check whether the heat exchanger reaches the vehicle’s requirements, and it has shown good convergence. The engine technical features were used in the theoretical studies, and thus the power was calculated. The experimental data were obtained by assembling the car in a roller dynamometer with the necessary instrumentation for these tests being performed. In these tests, the critical operation conditions of the vehicle were simulated, once the engine operates at a temperature of 95°C.
2017-11-07
Technical Paper
2017-36-0205
Taís Sampaio
Abstract Not only well-functioning, but also the way operating everyday items "feel", gauges costumer perception of an automobile robustness. To prevent costumer dissatisfaction with door trim panel movement when operating power windows, deflections must be kept small. Deflections of inner panel are seen through trim panel and are responsible for giving a flimsy idea of the door. In this paper, inner panel movement for a fully stamped door in full glass stall up position is analyzed. Through CAE analyses, inner panel behavior was compared, considering different types of reinforcement for belt region.
2017-11-07
Technical Paper
2017-36-0195
Fernando Afonso Siqueira, Tiago Sartor, Adelchi Tiboni
Abstract Among the most important finishing structures of a vehicle interior, the door trim panels reduce external noises, present ergonomic concepts generating comfort, improve appearance, and provide objects storage, knobs and buttons. The panels usually composed of several molded parts (trim, armrest, etc.) connected to each other also have structural function as support closing loads, protect occupants of door internal mechanisms, energy absorption in side impacts and resist misuse conditions. Therefore, these trims usually made of polymeric materials must to present good structural integrity, demanding appropriate connections between components to have good load distribution. The connections between parts can be made using bolts, interference fits (like self-locking), welding tubular plastic towers (heat stakes), or clips (such as snap fits) and last two are the most common due to be cheap and with good retention.
2017-11-05
Technical Paper
2017-32-0070
Stephan Jandl, Patrick Pertl, Hans-Juergen Schacht, Stephan Schmidt, Stefan Leiber
The development of future internal combustion engines and fuels is influenced by decreasing energy resources, restriction of emission legislation and increasing environmental awareness of humanity itself. Alternative renewable fuels have, in dependency on their physical and chemical properties, on the production process and on the raw material, the potential to contribute a better well-to-wheel-CO2-emission-balance in automotive and nonautomotive applications. The focus of this research is the usage of alcohol fuels, like ethanol and 2-butanol, in motorcycle high power engines. The different propulsion systems and operation scenarios of motorcycle applications in comparison to automobile applications raise the need for specific research in this area.
2017-11-05
Technical Paper
2017-32-0032
Rizal Mahmud, Seong Bum Kim, Toru Kurisu, Keiya Nishida, Yoichi Ogata, Jun Kanzaki, Tadashi Tadokoro
Heat loss is more critical for the thermal efficiency improvement in small size diesel engines than large-size diesel engines. More than half of total heat energy in the internal-combustion engine is lost by cooling through the cylinder walls to the atmosphere and the exhaust gas. Therefore, the new combustion concept is needed to reduce losses in the cylinder wall. In a Direct Injection (DI) diesel engine, the spray behavior, including spray-wall impingement has an important role in the combustion development to reduce heat loss. The aim of this study is to understand the mechanism of the heat transfer from the spray and flame to the impinging wall. Experiments were performed in a constant volume vessel (CVV) at high pressures and high temperatures. Fuel was injected using a single-hole injector with a 0.133 mm diameter nozzle. Under these conditions, spray evaporates, then burns near the wall. Spray/flame behavior was investigated with a high-speed video camera.
2017-11-05
Technical Paper
2017-32-0097
Emir Yilmaz, Hayao Joji, Mitsuhisa Ichiyanagi, Takashi Suzuki
In the past two decades, internal combustion engines have been required to improve their thermal efficiency in order to limit hazardous gas emissions. For further improvement of the thermal efficiency, it is required to predict the mass of intake air into cylinders in order to control the auto-ignition timing for CI engines. For an accurate prediction of intake air mass, it is necessary to model the heat transfer phenomena at the intake manifold. From this intention, an empirical equation was developed based on Colburn equation. Two new arguments were presented in the derived formula. The first argument was the addition of Graetz number, where it characterized the entrance region thermal boundary layer development and its effect on the heat transfer inside the intake manifold. As the second argument, Strouhal number was included in order to represent intake valve effect on heat transfer.
2017-11-05
Technical Paper
2017-32-0115
Tatsuya Kuboyama, Yasuo Moriyoshi, Hidenori Kosaka
To investigate the heat transfer phenomena inside the combustion chamber of a diesel engine, a correlation for the heat transfer coefficient in a combustion chamber of a diesel engine was investigated based on heat flux measured by the authors in the previous study(8) using the rapid compression and expansion machine. In the correlation defined in the present study, thermodynamically estimated two-zone temperatures in the burned zone and the unburned zone are applied. The characteristic velocity given in the correlation is related to the speed of spray flame impinging on the wall during the fuel injection period. After the fuel injection period, the velocity term of the Woschni’s equation is applied. It was shown that the proposed correlation well expresses heat transfer phenomena in diesel engines.
2017-11-05
Technical Paper
2017-32-0116
Naohiro Hasegawa, Yasuo Moriyoshi, Tatsuya Kuboyama, Mitsuru Iwasaki
An optimization of thermal management system in a gasoline engine is considered to improve thermal efficiency by minimizing the cost increase without largely changing the configuration of engine system. In this study, the influence of water temperature and intake air temperature on thermal efficiency were investigated using an inline four-cylinder 1.2L gasoline engine. In addition, one-dimensional engine simulations were conducted by using a software of GT-SUITE. Brake thermal efficiency for different engine speeds and loads could be quantitatively predicted with changing the cooling water temperature in the cylinder head. Then, in order to predict the improvement of the fuel consumption in actual use, vehicle mode running simulation and general-purpose engine transient mode simulation were carried out by GT-SUITE. As a result, it was found that by controlling the temperatures of the cooling water and intake gas, thermal efficiency can be improved by several percent.
2017-10-30
Article
The NuEntry e-latch is a prelude to vehicle side doors that automatically open and close on command.
CURRENT
2017-10-27
Standard
ARIC728
This standard provides standards for the in accordance with which aircraft operators and manufacturers can order avionics refrigeration units and can design installations for an ARCS.
2017-10-26
Article
Jet Aviation has developed a supplemental type certificate through the European Aviation Safety Agency to update aging cockpit displays on Dassault Falcon and Cessna Citation business jets with Honeywell DU-875 LCD units.
2017-10-24
WIP Standard
AS25027B
Scope is unavailable.
CURRENT
2017-10-11
Standard
J1052_201710
This SAE Standard describes head position contours and procedures for locating the contours in a vehicle. Head position contours are useful in establishing accommodation requirements for head space and are required for several measures defined in SAE J1100. Separate contours are defined depending on occupant seat location and the desired percentage (95 and 99) of occupant accommodation. This document is primarily focused on application to Class A vehicles (see SAE J1100), which include most personal-use vehicles (passenger cars, sport utility vehicles, pick-up trucks). A procedure for use in Class B vehicles can be found in Appendix B.
Viewing 1 to 30 of 11371

Filter