Display:

Results

Viewing 1 to 30 of 254
2017-03-28
Technical Paper
2017-01-0521
Richard Merrett, John Murray, Doug Kolak
Abstract The development of experimental ORC systems is an extremely complex, time consuming and costly task. Running a range of experiments on a number of different component configurations may be prohibitively expensive and subject to equipment issues and failures. Yet ORC systems offer significant potential for automotive manufacturers to improve vehicle efficiency, reduce fuel consumption and vehicle emissions; the technology is particularly relevant for those involved in the design and/or manufacture of heavy duty trucks. This paper is focused on the validation of a computational ORC system simulation tool against a number of SAE published test results based on the European Stationary Cycle. Such studies on industry standard systems are essential in order to help promote confidence in a virtual prototype approach.
2017-03-28
Technical Paper
2017-01-0181
Benny Johnson William, Agathaman Selvaraj, Manjeet Singh Rammurthy, Manikandan Rajaraman, V. Srinivasa Chandra
Abstract The modern day automobile customers’ expectations are sky-high. The automotive manufacturers need to provide sophisticated, cost-effective comfort to stay in this competitive world. Air conditioning is one of the major features which provides a better comfort but also adds up to the increase in operating fuel cost of vehicle. According to the sources the efficiency of internal combustion engine is 30% and 70% of energy is wasted to atmosphere. The current Air conditioners in automobiles use Vapour compression system (VCS) which utilizes a portion of shaft power of the engine at its input; this in turn reduces the brake power output and increases the specific fuel consumption (SFC) of the engine. With the current depletion rate of fossil fuels, it is necessary to conserve the available resources and use it effectively which also contributes to maintain a good balance in greenhouse effect thus protecting the environment.
2017-03-28
Journal Article
2017-01-1046
Christian Binder, Fahed Abou Nada, Mattias Richter, Andreas Cronhjort, Daniel Norling
Abstract Diesel engine manufacturers strive towards further efficiency improvements. Thus, reducing in-cylinder heat losses is becoming increasingly important. Understanding how location, thermal insulation, and engine operating conditions affect the heat transfer to the combustion chamber walls is fundamental for the future reduction of in-cylinder heat losses. This study investigates the effect of a 1mm-thick plasma-sprayed yttria-stabilized zirconia (YSZ) coating on a piston. Such a coated piston and a similar steel piston are compared to each other based on experimental data for the heat release, the heat transfer rate to the oil in the piston cooling gallery, the local instantaneous surface temperature, and the local instantaneous surface heat flux. The surface temperature was measured for different crank angle positions using phosphor thermometry.
2017-03-28
Technical Paper
2017-01-0158
Masaaki Nakamura, Koichi Machida, Kiyohiro Shimokawa
Abstract A diesel engine is advantageous in its high thermal efficiency, however it still wastes about 50% of total input energy to exhaust and cooling losses. A feasibility study of thermoacoustic refrigerator was carried out as one of the means to recuperate waste heat. The thermoacoustic refrigerator prototyped for this study showed a capability to achieve cooling temperature lower than -20 degree C, which indicated that the system has a potential to be used in refrigerator trucks not only for cargo compartment cooling but also for cabin cooling.
2017-03-28
Technical Paper
2017-01-0150
Ankit Kumar Shukla, Raj Dhami, Aashish Bhargava, Sanjay Tiwari
Abstract In the current landscape of commercial vehicle industry, fuel economy is one of the major parameter for fleet owner’s profitability as well as greenhouse gasses emission. Less fuel efficiency results in more fuel consumption; use of conventional fuel in engines also makes environment polluted. The rapid growth in fuel prices has led to the demand for technologies that can improve the fuel efficiency of the vehicle. Phase change material (PCMs) for Thermal energy storage system (TES) is one of the specific technologies that not only can conserve energy to a large extent but also can reduce emission as well as the dependency on convention fuel. There is a great variety of PCMs that can be used for the extensive range of temperatures, making them attractive in a number of applications in automobiles.
2017-03-28
Technical Paper
2017-01-0624
Jiaxin Liu, Sicheng Qin, Yankun Jiang, Shumo He
Abstract In this work, a XD132 Road Roller from XCMG in China was employed as a research basis to study the heat exchange performance of the heat dissipation module under varied working conditions. The module in the XD132 consists of a cooling fan and three radiators. At first, the numerical investigation on the elementary units of radiators was performed to obtain Colburn j factor and Fanning friction f factor, which were used for the ε-NTU method to predict the radiator performance. The fan was numerically tested in a wind test tunnel to acquire the performance curve. The performance data from both investigations were transformed into the boundary conditions of the numerical vehicle model in a virtual tunnel. A field experiment was carried out to validate the simulation accuracy, and an entrance coefficient was proposed to discuss the performance regularity under four working conditions.
2017-03-28
Technical Paper
2017-01-1412
Christopher H. Goddard, David Price
Abstract Various mechanisms have been used to drive speedometers and other instrument gauges. This paper reviews the mechanisms used; in particular investigates the ability of stepper motors which have become the most common instrument motor in the last decade to freeze at the apparent reading prior to impact. Stepper motors require power to drive the needle to any indicated position, including having to return it to zero. Hence if power to the instrument is lost as a result of a collision, there is no power to move the needle and it should be left at the reading shown at the moment the power was lost. However, not all stepper motor instruments are the same and before accepting the reading, a number of criteria need to be considered to give a level of confidence in the result. As part of recent ITAI (Institute of Traffic Accident Investigators) crash test events in the UK, a number of instrument clusters were installed in vehicles to simulate both frontal and side impacts.
2016-09-27
Technical Paper
2016-01-8085
Yanjun Ren, Gangfeng Tan, Kangping Ji, Li Zhou, Ruobing Zhan
Abstract The hydraulic retarder is an auxiliary braking device generally equipped on commercial vehicles. Its oil temperature change influences the brake performance of hydraulic retarder. The Organic Rankine Cycle (ORC) is a good means to recover exhausted heat. Moreover, it can cool oil and stably control oil temperature with the help of heat absorption related with evaporation. Comprehensively considering the heat-producing characteristics of hydraulic retarder and the temperature control demand, the aimed boundary conditions are determined. Also the changing rules about the working medium flow rate are obtained. In this work, the heat-producing properties of hydraulic retarder under different conditions and the oil external circulating performance is firstly analyzed. By researching the system’s adaptation to the limiting conditions, the aimed temperature to control is prescribed.
2016-09-27
Technical Paper
2016-01-8071
Igor Gritsuk, Vladimir Volkov, Yurii Gutarevych, Vasyl Mateichyk, Valeriy Verbovskiy
Abstract The article discusses the use of the combined heating system with phase-transitional thermal accumulator. The peculiarity of the presented system is that it uses thermal energy of exhaust gas, coolant and motor oil, and emissions of the internal combustion engine during its operation to accumulate the thermal energy. The results of experimental studies of the combined heating system are shown. A system and methods for pre-start and after-start heating of the vehicular engine in the investigated system are developed. The structure of the "combined heating” system to study the impact of its structural and adjustment parameters on the performance of thermal development of the vehicular engine is described. The use of the combined heating system within phase-transitional thermal accumulators is compared with the use of standard systems for a truck engine 8FS 9.2 / 8. It reduces the time of coolant and motor oil thermal development by 22.9-57.5% and 25-57% accordingly.
2016-09-27
Technical Paper
2016-01-8084
Yousef Jeihouni, Katharina Eichler, Michael Franke
Abstract In order to comply with demanding Greenhous Gas (GHG) standards, future automotive engines employ advanced engine technologies including waste heat recovery (WHR) systems. A waste heat recovery system converts part of engine wasted exergies to useful work which can be fed back to the engine. Utilizing this additional output power leads to lower specific fuel consumption and CO2 emission when the total output power equals the original engine output power. Engine calibration strategies for reductions in specific fuel consumption typically results in a natural increase of NOx emissions. The utilization of waste heat recovery systems provides a pathway which gives both reduction in emissions and reduction in specific fuel consumption. According to DOE (Department of Energy), US heavy-duty truck engines’ technology need to be upgraded towards higher brake thermal efficiencies (BTE). DOE target is BTE>55% for Class-8 heavy-duty vehicles in the United States.
2016-09-27
Technical Paper
2016-01-8079
Zhiwei Zhang, Gangfeng Tan, Mengying Yang, Zhongjie Yang, Mengzuo Han
Abstract The hydraulic retarder is an important auxiliary braking device. With merits such as its high braking torque, smooth braking, low noise, long service life and small size, it is widely used on modern commercial vehicles. Transmission fluid of traditional hydraulic retarder is cooled by engine cooling system, which exhausts the heat directly and need additional energy consumption for the thermal management component. On account of the working characteristics of hydraulic retarder, this study designs a set of waste heat recovery system based on the Organic Rankine Cycle (ORC). Under the premise of ensuring stable performance of hydraulic retarder, waste heat energy in transmission fluid is recycled to supplement energy requirements for cooling system. First of all, a principle model, which is scaled down according to D300 retarder`s thermal power generation ration of 1:100, is established.
2016-09-27
Technical Paper
2016-01-8057
Michael Glensvig, Heimo Schreier, Mauro Tizianel, Helmut Theissl, Peter Krähenbühl, Fabio Cococcetta, Ivan Calaon
Abstract This paper presents the results of a long haul truck Waste Heat Recovery (WHR) system from simulation, test bench and public road testing. The WHR system uses exhaust gas recuperation only and utilizes up to 110kW of exhaust waste heat for the Organic Rankine Cycle (ORC) in a typical European driving cycle. The testing and simulation procedures are explained in detail together with the tested and simulated WHR fuel consumption benefit for different real life cycles in Europe and USA reaching fuel consumption benefits between 2.5% and 3.4%. Additionally a technology road map is shown which discusses the role of WHR in fulfilling the future CARB BSFC target value (minimum in map) of around 172 g/kWh.
2016-09-27
Technical Paper
2016-01-8121
Riccardo Bianchi, Addison Alexander, Andrea Vacca
Abstract Typically, earthmoving machines do not have wheel suspensions. This lack of components often causes uncomfortable driving, and in some cases reduces machine productivity and safety. Several solutions to this problem have been proposed in the last decades, and particularly successful is the passive solution based on the introduction of accumulators in the hydraulic circuit connecting the machine boom. The extra capacitance effect created by the accumulator causes a magnification of the boom oscillations, in such a way that these oscillations counter-react the machine oscillation caused by the driving on uneven ground. This principle of counter-reacting machine oscillations through the boom motion can be achieved also with electro-hydraulic solutions, properly actuating the flow supply to the boom actuators on the basis of a feedback sensors and a proper control strategy.
2016-09-27
Journal Article
2016-01-8100
Jordan Kelleher, Nikhil Ajotikar
Abstract Piston cooling nozzles/jets play several crucial roles in the power cylinder of an internal combustion engine. Primarily, they help with the thermal management of the piston and provide lubrication to the cylinder liner and the piston’s wrist pin. In order to evaluate the oil jet characteristics from various piston cooling nozzle (PCN) designs, a quantitative and objective process was developed. The PCN characterization began with a computational fluid dynamics (CFD) turbulent model to analyze the mean oil velocity and flow distribution at the nozzle exit/tip. Subsequently, the PCN was tested on a rig for a given oil temperature and pressure. A high-speed camera captured images at 2500 frames per second to observe the evolution of the oil stream as a function of distance from the nozzle exit. An algorithm comprised of standard digital image processing techniques was created to calculate the oil jet width and density.
2016-09-18
Technical Paper
2016-01-1935
Binyu Mei, Xuexun Guo, Gangfeng Tan, Ming Chen, Bo Huang, Longjie Xiao
Abstract With the continuous increasing requirements of commercial vehicle weight and speed on highway transportation, conventional friction brake is difficult to meet the braking performance. To ensure the driving safety of the vehicle in the hilly region, the eddy current retarder (ECR) has been widely used due to its fast response, lower prices and convenient installation. ECR brakes the vehicle through the electromagnetic force generated by the current, and converted vehicle mechanical energy into heat through magnetic field. Air cooling structure is often used in the traditional ECR and cooling performance is limited, which causes low braking torque, thermal recession, and low reliability and so on. The water jacket has been equipped outside the eddy current region in this study, and the electric ECR is cooled through the water circulating in the circuit, which prolongs its working time.
2016-09-18
Technical Paper
2016-01-1941
Tie Wang, Gangfeng Tan, Xuexun Guo, Shengguang Xiong, Zhiwei Zhang, Xin Gao
Abstract Vehicle hydraulic retarders are applied in heavy-duty trucks and buses as an auxiliary braking device. In traditional cooling systems of hydraulic retarders, the working fluid is introduced into the heat exchanger to transfer heat to the cooling liquid in circulation, whose heat is then dissipated by the engine cooling system. This prevents the waste heat of the working fluid from being used effectively. In hydraulic retarder cooling system based on the Organic Rankine Cycle, the organic working fluid first transfers heat with the hydraulic retarder working fluid in Rankine cycle, and then outputs power through expansion machine. It can both reduce heat load of the engine cooling system, and enhance thermal stability of the hydraulic retarder while recovering and utilizing braking energy. First of all, according to the target vehicle model, hydraulic retarder cooling system model based on Rankine cycle is established.
2016-04-05
Technical Paper
2016-01-0239
Li Zhou, Gangfeng Tan, Xuexun Guo, Ming Chen, Kangping Ji, Zhilei Li, Zhongjie Yang
Abstract The hydraulic retarder is an auxiliary braking device used in heavy duty vehicle. It generates braking forceby liquid damping effect and makes inertial energy into thermal energy of the transmission medium when the vehicleis in thedownhill. The traditional thermal management system of the hydraulic retarder dissipates the heat of transmission medium out of the vehicle directly, which causes a big waste of energy, meanwhilethe thermal management system components need to consume engine power. This study applies organic Rankine cycle (ORC)cooling system to meet the high power cooling requirements of the hydraulic retarder and recover waste heat energy from the transmission medium at the same time and then supply energy to the thermal management system, which could save the parasitic power of the engine and improve the comprehensive energy utilization ratio of the vehicle.
2016-04-05
Technical Paper
2016-01-0234
Roberto Cipollone, Davide Di Battista, Andrea Perosino, Federica Bettoja
Abstract The use of reciprocating internal combustion engines (ICE) dominates the sector of the in-the-road transportation sector, both for light and heavy duties. CO2 reduction is the technological driver, considering the severe worldwide greenhouse commitments. In ICE more than one third of the fuel energy used is rejected to the environment as thermal waste through the exhaust gases. Therefore, a greater fuel economy could be achieved, recovering this energy and converting it into useful electric power on board. Financial benefits will be produced in terms of fuel cost which will rebound similar benefits in terms of CO2 emitted. For long hauling vehicles, which run for thousands of miles, frequently at fixed engine operating conditions, this recovery appears very worthy of attention. In this activity, an ORC-based power unit was designed, built and tested fed by a heavy duty diesel engine, so contributing to the huge efforts on going in that specific sector.
2016-04-05
Technical Paper
2016-01-0199
Bin Xu, Xiaobing Liu, John Shutty, Paul Anschel, Simona Onori, Zoran Filipi, Mark Hoffman
Abstract This paper presents an Organic Rankine Cycle (ORC) system model for heavy-duty diesel (HDD) applications. The dynamic, physics-based model includes: heat exchangers for parallel exhaust and EGR circuits, compressible vapor working fluid, distribution and flow control valves, a high pressure pump, and a reservoir. A finite volume method is used to model the evaporator, and a pressure drop model is included to improve the accuracy of predictions. Experimental results obtained on a prototype ORC system are used for model calibration and validation. Comparison of predicted and measured values under steady-state conditions is pursued first, followed by the analysis of selected transient events. Validation reveals the model’s ability to track real-world temperature and pressure dynamics of the ORC system.
2016-04-05
Technical Paper
2016-01-0217
Somnath Sen, Mayur Selokar, Diwakar Nisad, Kamal Kishore
Abstract Adequate visibility through the vehicle windshield over the entire driving period is of paramount practical significance. Thin water film (fog) that forms on the windshield mainly during the winter season would reduce and disturb the driver’s visibility. This water film originates from condensing water vapor on inside surface of the windshield due to low outside temperatures. Primary source of this vapor is the passenger’s breath, which condenses on the windshield. Hot and dry air which impinges at certain velocity and angle relative to the windshield helps to remove the thin water film (defogging) and hence improves driver’s visibility. Hence a well-designed demisting device will help to eliminate this fog layer within very short span of time and brings an accepted level of visibility. An attempt is made here to design and develop a demisting device for a commercial vehicle with the help of numerical and analytical approach and later on validated with experimental results.
2016-04-05
Technical Paper
2016-01-1437
Giorgio Previati, Massimiliano Gobbi, Giampiero Mastinu
Abstract The paper is focused on both the subjective and the objective ride comfort evaluation of farm tractors. The experimental measurement of the relevant accelerations occurring at the tractor body, at the cabin and at the seat was performed on a number of different farm tractors. A subjective rating of the ride comfort level was performed by considering five different drivers. The comfort index was computed according with ISO 2631 and other standards. The acceleration of the seated subject was computed by means of a proper mechanical model of a farm tractor and derived at different positions on the subject body. It turned out that the acceleration of the lower torso was particularly relevant for establishing a matching between the subjective perception and the objective measurement and computation. A number of indices have been derived from the measured data which are able to correlate the subjective driver feeling with the measured accelerations.
2016-04-05
Technical Paper
2016-01-0648
Sinan Eroglu, Ipek Duman, Alp Ergenc, Rıfat Yanarocak
Abstract The exhaust manifold bridges the gap between the engine structure and the hot-end after-treatment system, the burned in-cylinder gases are disposed through the manifold. The automotive exhaust manifolds are designed and developed for providing a smooth flow with low/least back pressure and must be able to withstand extreme heating under very high temperatures and cooling under low temperatures. The paper presents a theoretical study aiming to investigate the feasibility of three different CAE approaches and techniques used for the simulation of exhaust manifold fluid flow and the accompanying thermal distribution. The main difficulty emanates from the pulsating nature of fluid flow inside the engine exhaust manifold. To verify the outcome of each solution experimental measurements of the manifold temperatures have been performed.
2016-04-05
Journal Article
2016-01-0309
Matthew Reed, Sheila Ebert-Hamilton
Abstract This study evaluated the ISO 5353 Seat Index Point Tool (SIPT) as an alternative to the SAE J826 H-point manikin for measuring military seats. A tool was fabricated based on the ISO specification and a custom back-angle measurement probe was designed and fitted to the SIPT. Comparisons between the two tools in a wide range of seating conditions showed that the mean SIP location was 5 mm aft of the H-point, with a standard deviation of 7.8 mm. Vertical location was not significantly different between the two tools (mean - 0.7 mm, sd 4.0 mm). A high correlation (r=0.9) was observed between the back angle measurements from the two tools. The SIPT was slightly more repeatable across installations and installers than the J826 manikin, with most of the discrepancy arising from situations with flat seat cushion angles and either unusually upright or reclined back angles that caused the J826 manikin to be unstable.
2016-04-05
Journal Article
2016-01-0310
Xinran Tao, John R. Wagner
Abstract The pursuit of greater fuel economy in internal combustion engines requires the optimization of all subsystems including thermal management. The reduction of cooling power required by the electromechanical coolant pump, radiator fan(s), and thermal valve demands real time control strategies. To maintain the engine temperature within prescribed limits for different operating conditions, the continual estimation of the heat removal needs and the synergistic operation of the cooling system components must be accomplished. The reductions in thermal management power consumption can be achieved by avoiding unnecessary overcooling efforts which are often accommodated by extreme thermostat valve positions. In this paper, an optimal nonlinear controller for a military M-ATV engine cooling system will be presented. The prescribed engine coolant temperature will be tracked while minimizing the pump, fan(s), and valve power usage.
2016-04-05
Journal Article
2016-01-0258
Jason Aaron Lustbader, Bidzina Kekelia, Jeff Tomerlin, Cory J. Kreutzer, Skip Yeakel, Steven Adelman, Zhiming Luo, John Zehme
Abstract Annual fuel use for sleeper cab truck rest period idling is estimated at 667 million gallons in the United States, or 6.8% of long-haul truck fuel use. Truck idling during a rest period represents zero freight efficiency and is largely done to supply accessory power for climate conditioning of the cab. The National Renewable Energy Laboratory’s CoolCab project aims to reduce heating, ventilating, and air conditioning (HVAC) loads and resulting fuel use from rest period idling by working closely with industry to design efficient long-haul truck thermal management systems while maintaining occupant comfort. Enhancing the thermal performance of cab/sleepers will enable smaller, lighter, and more cost-effective idle reduction solutions. In addition, if the fuel savings provide a one- to three-year payback period, fleet owners will be economically motivated to incorporate them.
2016-04-05
Journal Article
2016-01-1404
Steven E. Hodges
Abstract Fire protection, active and passive, has been, and is, an important area of concern during the design, development and deployment phases for all modern ground vehicles. All US military vehicles carry handheld fire extinguishers, and many tactical and all combat vehicles have automatic fire protection systems that protect the crew, engine, and in some cases, external components such as fuel tanks and wheels, from potentially catastrophic combat events involving fire. Vehicle designs also mitigate fire hazards by separating the vehicle occupants from the most flammable materials, e.g., fuel and ammunition, as much as practical. Explosion protection of the crew and passengers in military vehicles is a unique application with unique requirements that must balance suppression actions with safety limits.
2016-04-05
Journal Article
2016-01-0729
Takeshi Okamoto, Noboru Uchida
Abstract To overcome the trade-offs of thermal efficiency with energy loss and exhaust emissions typical of conventional diesel engines, a new diffusion-combustion-based concept with multiple fuel injectors has been developed. This engine employs neither low temperature combustion nor homogeneous charge compression ignition combustion. One injector was mounted vertically at the cylinder center like in a conventional direct injection diesel engine, and two additional injectors were slant-mounted at the piston cavity circumference. The sprays from the side injectors were directed along the swirl direction to prevent both spray interference and spray impingement on the cavity wall, while improving air utilization near the center of the cavity.
2015-09-29
Technical Paper
2015-01-2838
Dharmar Ganesh, Riyaz Mohammed, Hareesh Krishnan, Radakrishnan Rambabu
Abstract In-vehicle displays such as an instrument cluster in a vehicle provide vital information to the user. The information in terms of displays and tell-tales needs to be perceived by the user with minimal glance during driving. Drivers must recognize the condition of the vehicle and the state of its surroundings through primarily visual means. Drivers then process this in the brain, draw on their memory to identify problem situations, decide on a plan of action and execute it in order to avoid an accident. There are visual hindrances seen in real world scenario such as obscuration, reflection and glare on the instrument cluster which prevents the vital information flow from vehicle to the driver. In order to ensure safety while driving, the instrument cluster or driver displays should be placed in an optimized location.
2015-09-29
Technical Paper
2015-01-2873
Sumit Sharma, Sandeep Sharma, Sanjay Tiwari, Umashanker Gupta
Abstract The safety of the heavy duty commercial vehicle (HCV) occupants in an accident is an imperative task and should be considered during the design and development of cabins. The sufficient cabin survival space must be remained after the accident. The main aim of this study is to develop a Finite Element (FE) model of HCV cabin and validate to the test as per AIS029. The present study also includes the assessment of the energy absorption capabilities of the HCV cab during the pendulum impact test. Initially a detailed 3D FE model of a fully suspended HCV cabin was developed and then pendulum impact test simulation was carried out using LS-Dyna explicit solver. Simulation results were compared with the test results and were found in a great agreement in terms of survival space and overall deformation behavior. The load transfer path was described at the time of pendulum impact. The largest amount of impact energy was absorbed by the frontal region of the cabin.
2015-09-29
Technical Paper
2015-01-2869
Sumit Sharma, Sandeep Sharma, Umashanker Gupta, Ravi Joshi, Shailesh Pawar
Abstract Buses are always one of the main and favorite sources of public transit. Thousands of people die or injure every year in bus accidents. Bus seat can also cause severe injury to the occupants in case of frontal impact. Seat structure of the bus should absorb sufficient energy to minimize the passenger injury. Most of the occupants seated in the second row or further back were injured by hitting the seat back in the row in front of them. In India, AIS023 (Automotive Industry Standards) is one of the several mandatory standards from CMVR (Central Motor Vehicles Rules) to ensure the seat strength and occupant safety during accidents. This standard specifies minimum and maximum deformations range for the seat back to minimize the passenger injury with adequate seat strength. Present study includes the Finite Element Analysis (FEA) and correlation of bus seat as per AIS023 test setup with LS-Dyna explicit tool. Reasonable correlation was found between test and simulation results.
Viewing 1 to 30 of 254