Display:

Results

Viewing 1 to 30 of 4218
2017-10-08
Technical Paper
2017-01-2204
Hoon Lee, Kwangwoo Jeong, Sanghoon Yoo, Byungho Lee, Sejun Kim
Hyundai Motor Company recently developed a multi-way, electrical coolant valve for engine thermal management module. The main purposes of the system that replaces a mechanical thermostat are to boost fuel economy by accelerating warm-up and to enhance thermal efficiency by actively controlling engine operating temperature. The electrical valve controls the amount of coolant flow to components such as oil heat exchanger, heater core, and radiator, while providing separate cooling for engine block and head. The coolant flow is modulated by varying the valve angle actuated with an electric motor. The system operates under a thermal management strategy that consists of multiple phases including zero coolant flow mode, and for those phases that require coolant temperature control, a feedback algorithm is designed for the flow control.
2017-10-08
Technical Paper
2017-01-2442
Bingqing Xiao, Wei Wu, Jibin Hu, Shihua Yuan, Chenhui Hu
The prediction of temperature distribution and variation of oil-cooled sliding disk pair is essential for the design of wet clutches and brakes in vehicle transmission system. A heat transfer model is established in the study and some fluid-solid coupled heat transfer simulations are performed to investigate the thermal behaviors of wet clutch during sliding. Both cooling liquid and grooved solid disks are contained in the heat transfer model and the heat convection due to the cooling liquid in the radial grooves is also considered by fluid-solid coupled transient heat transfer simulations. The temperature distribution and variation of the grooved disk are discussed and analyzed in detail. The results indicate that the temperature distribution on the grooved disk is nonuniform. The temperature within the middle radius area is higher than that in the inner and outer radius area. The outer radius temperature is higher than the inner radius temperature at the contact face.
2017-10-08
Technical Paper
2017-01-2381
Kristian Hentelä, Ossi Kaario, Vikram Garaniya, Laurie Goldsworthy, Martti Larmi
In the present study, a new approach for modelling emissions of coke particles or cenospheres from large diesel engines using HFO (Heavy fuel oil) was studied. The used model is based on a multicomponent droplet mass transfer and properties model that uses a continuous thermodynamics approach to model the complex composition of the HFO fuel and the resulting evaporation behavior of the fuel droplets. Cenospheres are modelled as the residue left in the fuel droplets towards the end of the simulation. The mass-transfer and fuel properties models were implemented into a cylinder section model based on the Wärtsilä W20 engine in the CFD-code Star CD v.4.24. Different submodels and corresponding parameters were tuned to match experimental data of cylinder pressures available from Wärtsilä for the studied cases. The results obtained from the present model were compared to experimental results found in the literature.
2017-10-08
Technical Paper
2017-01-2222
ZhenYang Liu, Xihui Wang
The ever increasing popularity of electric vehicles and demand in passengers comfort and safe requirements of vehicle have led more efficient heat pump air conditioning system to an indispensable device in electric vehicle. Many studies have shown that the addition of nano particles contributes to improving the thermal conductivity of nano fluids more than that of conventional refrigerants. Therefore, the appliance of the magnetic nano-refrigerant in heat pump air conditioning system has great potential to improve the heat transfer efficiency. This paper aims at studying the magnetic nano-refrigerant comprised of the magnetic nano powder Fe3O4 and refrigerant R134a.According to the relevant theoretical analysis and different empirical formula, the heat transfer coefficient, density, viscosity, and other physical parameters are calculated approximately.
2017-10-08
Technical Paper
2017-01-2229
Byeongsoek Lee, Heechang Oh, SeungKook Han, SooHyung Woo, JinWook Son
There are two way to improve engine thermal efficiency. One is to improve the theoretical thermal efficiency by increasing the compression ratio and specific heat ratio. The other is to reduce various engine losses like friction, pumping, heat loss. For the development of Ultra High Efficiency, We designed the new 2.0L NA GDI engine based on HMC's Nu 2.0L GDI engine. We conducted various parameter studies related to gasoline combustion characteristic, such as compression ratio, ignition system, intake port design, cam duration, Cooled EGR, etc. As a result, we achieved the maximum thermal efficiency up to 42%(~200g/kWh) in stoichiometric AFR. This paper described the ways and possibilities to improve the maximum thermal efficiency.
2017-10-08
Technical Paper
2017-01-2196
Giuseppe Cicalese, Fabio Berni, Stefano Fontanesi, Alessandro D'Adamo, Enrico Andreoli
High performance Diesel engines are characterized by remarkable thermo-mechanical loads. Therefore, compared to spark ignition engines, designers are forced to increase component strength in order to avoid failures. By the way, 3D-CFD simulations represent a powerful tool for the evaluation of the engine thermal field and may be used by designers, along with FEM analysis, to prevent thermo-mechanical failures. The current work aims at providing an integrated in-cylinder/CHT methodology for the estimation of a Diesel engine thermal field. On one hand, in-cylinder simulations are fundamental to evaluate not only the global heat transfer at the combustion chamber walls, but also its point-wise distribution. In particular, thanks to an improved heat transfer model based on a modified thermal wall function, wall heat fluxes due to combustion are correctly estimated.
2017-09-23
Technical Paper
2017-01-1984
Jun Ma, Junyi Li, Zaiyan Gong, Jihong Yu
Given the wide adoption of touchscreens in vehicles, an interesting debate is taking place regarding the good screen size, length-width ratio and whether the usability of in-vehicle information system (IVIS) would be decreased by a larger screen, especially. Moreover, the lack of scientific evidence about the concrete impact of touch screen size on usability raises questions to practitioners. In this paper, we investigated the impact of in-vehicle touch screen size on users' visual behavior and usability as measured using eye tracker and questionnaire. Two experiments were conducted on 30 participants. In the first experiment, participants were asked to seek same information on four different in-vehicle screens based on simulated driving environment, while eye movement was recorded for analyzing efficiency of visual behavior.
2017-09-17
Technical Paper
2017-01-2500
Bo Huang, Longjie Xiao
Head-up Display (HUD) system can avoid divers’ distraction on dashboard and effectively reduce collisions caused by emergency events, which is gradually being realized by researchers around the world. However, the current HUD only displays information like speed, fuel consumption, other information like acceleration and braking can’t be displayed yet. This research will uses the color and position change of the indicator symbol to remind drivers of braking information like braking time, braking severity, which can alert drivers to make braking operations timely and accurately. The system has the advantages of safe, intuition and real-time. The vehicle safety speed is calculated according to the road parameters like adhesion coefficient, slope and curvature as well as vehicle parameters like vehicle mass and centroid. And then the appropriate braking operations like braking time are obtained by combining the vehicle status like speed and steering.
2017-09-04
Technical Paper
2017-24-0158
Teresa Castiglione, Giuseppe Franzè, Angelo Algieri, Pietropaolo Morrone, Sergio Bova
The paper shows how specific requirements of the cooling system of an ICE can be met by actuating the coolant flow rate independently of engine speed, by means of an electric pump and of an ad-hoc developed control system. Given that the proposed methodology is valid for each condition, in the present paper the focus is on the engine operating under fully warmed conditions, with the aim to keep the wall temperature into the prescribed limits, with the lowest possible coolant flow rates. This goal is achieved by properly defining the controller parameters. The developed controller is based on the Robust Model Predictive Control approach, which makes use of a lumped parameter model of the engine cooling system. The model also includes the radiator-thermostatic valve-fan block and incorporates the nucleate boiling heat transfer regime.
2017-09-04
Technical Paper
2017-24-0107
Alessandro Montanaro, Luigi Allocca, Vittorio Rocco, Michela Costa, Daniele Piazzullo
Abstract Gasoline direct injection (GDI) engines are characterized by complex phenomena involving spray dynamics and possible spray-wall interaction. Control of mixture formation is indeed fundamental to achieve the desired equivalence ratio of the mixture, especially at the spark plug location at the time of ignition. Droplet impact on the piston or liner surfaces has also to be considered, as this may lead to gasoline accumulation in the liquid form as wallfilm. Wallfilms more slowly evaporate than free droplets, thus leading to local enrichment of the charge, hence to a route to diffusive flames, increased unburned hydrocarbons formation and particulate matter emissions at the exhaust. Local heat transfer at the wall obviously changes if a wallfilm is present, and the subtraction of the latent heat of vaporization necessary for secondary phase change is also an issue deserving a special attention.
2017-09-04
Technical Paper
2017-24-0016
Morris Langwiesner, Christian Krueger, Sebastian Donath, Michael Bargende
Abstract The real cycle simulation is an important tool to predict the engine efficiency. To evaluate Extended Expansion SI-engines with a multi-link cranktrain, the challenge is to consider all concept specific effects as best as possible by using appropriate submodels. Due to the multi-link cranktrain, the choice of a suitable heat transfer model is of great importance since the cranktrain kinematics is changed. Therefore, the usage of the mean piston speed to calculate a heat-transfer-related velocity for heat transfer equations is not sufficient. The heat transfer equation according to Bargende combines for its calculation the actual piston speed with a simplified k-ε model. In this paper it is assessed, whether the Bargende model is valid for Extended Expansion engines. Therefore a single-cylinder engine is equipped with fast-response surface-thermocouples in the cylinder head. The surface heat flux is calculated by solving the unsteady heat conduction equation.
2017-09-04
Technical Paper
2017-24-0032
Gilles Decan, Stijn Broekaert, Tommaso Lucchini, Gianluca D'Errico, Jan Vierendeels, Sebastian Verhelst
Abstract The present work details a study of the heat flux through the walls of an internal combustion engine. The determination of this heat flux is an important aspect in engine optimization, as it influences the power, efficiency and the emissions of the engine. Therefore, a set of simulation tools in the OpenFOAM® software has been developed, that allows the calculation of the heat transfer through engine walls for ICEs. Normal practice in these types of engine simulations is to apply a wall function model to calculate the heat flux, rather than resolving the complete thermo-viscous boundary layer, and perform simulations of the closed engine cycle. When dealing with a complex engine, this methodology will reduce the overall computational cost. It however increases the need to rely on assumptions on both the initial flow field and the behavior in the near-wall region.
2017-09-04
Journal Article
2017-24-0041
Daniele Piazzullo, Michela Costa, Luigi Allocca, Alessandro Montanaro, Vittorio ROCCO
Abstract During gasoline direct injection (GDI) in spark ignition engines, droplets may hit piston or liner surfaces and be rebounded or deposit in the liquid phase as wallfilm. This may determine slower secondary atomization and local enrichments of the mixture, hence be the reason of increased unburned hydrocarbons and particulate matter emissions at the exhaust. Complex phenomena indeed characterize the in-cylinder turbulent multi-phase system, where heat transfer involves the gaseous mixture (made of air and gasoline vapor), the liquid phase (droplets not yet evaporated and wallfilm) and the solid walls. A reliable 3D CFD modelling of the in-cylinder processes, therefore, necessarily requires also the correct simulation of the cooling effect due to the subtraction of the latent heat of vaporization of gasoline needed for secondary evaporation in the zone where droplets hit the wall. The related conductive heat transfer within the solid is to be taken into account.
2017-09-04
Journal Article
2017-24-0021
Sabino Caputo, Federico Millo, Giancarlo Cifali, Francesco Concetto Pesce
Abstract One of the key technologies for the improvement of the diesel engine thermal efficiency is the reduction of the engine heat transfer through the thermal insulation of the combustion chamber. This paper presents a numerical investigation on the effects of the combustion chamber insulation on the heat transfer, thermal efficiency and exhaust temperatures of a 1.6 l passenger car, turbo-charged diesel engine. First, the complete insulation of the engine components, like pistons, liner, firedeck and valves, has been simulated. This analysis has showed that the piston is the component with the greatest potential for the in-cylinder heat transfer reduction and for Brake Specific Fuel Consumption (BSFC) reduction, followed by firedeck, liner and valves. Afterwards, the study has been focused on the impact of different piston Thermal Barrier Coatings (TBCs) on heat transfer, performance and wall temperatures.
2017-07-24
Technical Paper
2017-01-5003
Igor V. Gritsuk, Valery Aleksandrov, Sergii Panchenko, Artur Kagramanian, Oksana Sobol, Aleksandr Sobolev, Roman Varbanets
Abstract Thermal control of a vehicle engine operation is a key aspect of the development of a vehicle warming-up systems. The use of heat accumulators and phase transition heat-accumulating materials is perspective. The given article describes the ways of improving thermal properties of phase transition heat-accumulating materials in the processes of their designing, the efficient ways of heat transfer from phase transition heat-accumulating materials to heat carrying agent of heat accumulators and then to vehicles. To create reliable phase transition heat-accumulating materials, different ways of their realization are suggested. One of them is the construction of the corresponding phase diagrams to determine an optimal composition of phase transition heat-accumulating materials with higher thermal properties to operate in a given temperature range.
2017-07-10
Technical Paper
2017-28-1926
Jos Frank, Sohin Doshi, Manchi Rao, Prasath Raghavendran
Abstract In today’s automotive scenario, noise vibration and harshness (NVH) has become a synonym for quality perception. This paper evaluates the problem of vibration and noise experienced in M2 category 40 seat bus and suggests the counter measures. Severe vibration is experienced on the bus floor, predominantly towards rear part of the bus. Vibration along with acoustic boom occurs prominently in 4th gear wide open throttle operating condition between 1300-1600 rpm of the engine. This paper focuses on reducing NVH levels by working on the transfer path with little modifications on power-train. Preliminary torsional measurements conducted on powertrain indicated high torsional excitation in the driveline during the problematic rpm zone. Further, Operational Deflection Shape (ODS) analysis revealed that the transfer path to the cabin is rear differential unit and suspension links. The dominant frequencies were identified along the transfer path and suitable modifications were done.
2017-07-10
Technical Paper
2017-28-1924
Praveen Kumar, Vivek KV Shenoy, Nareen Kinthala, Srikanth Sudhir
Abstract Plenum is the part located between the front windshield and the bonnet of an automobile . It is primarily used as an air inlet to the HVAC during fresh air mode operation. It’s secondary functions include water drainage, aesthetic cover to hide the gap between windshield to bonnet, concealing wiper motors and mechanisms etc. The plenum consists mainly two sub parts viz. upper plenum and lower plenum. Conventional plenum design which is found in majority of global OEMs employ a plastic upper plenum and a metal lower plenum which spans across the entire width of engine compartment. This conventional lower plenum is bulky, consumes more packaging space and has more weight. In this paper, we propose a novel design for the plenum lower to overcome above mentioned limitations of the conventional design. This novel design employs a dry and wet box concept for its working and is made up of complete plastic material.
2017-07-10
Technical Paper
2017-28-1923
Satish Mudavath, Ganesh Dharmar, Shyam Somani
Abstract Digital human models (DHM) have greatly enhanced design for the automotive environment. The major advantage of the DHMs today is their ability to quickly test a broad range of the population within specific design parameters. The need to create expensive prototypes and run time consuming clinics can be significantly reduced. However, while the anthropometric databases within these models are comprehensive, the ability to position the manikin’s posture is limited and needs lot of optimization. This study enhances the occupant postures and their seating positions, in all instances the occupant was instructed to adjust to the vehicle parameters so they were in their most comfortable position. While all the Occupants are accommodated to their respective positions which finally can be stacked up for space assessments. This paper aims at simulating those scenarios for different percentiles / population which will further aid in decision making for critical parameters.
2017-07-10
Technical Paper
2017-28-1958
Jyothivel Giridharan, Gokul Kumar
Bio-fuels potentially represent a more environmentally friendly alternative to fossil fuels as they produce fewer greenhouse gas emissions when burned. Ethanol is one such bio-fuel alternative to the conventional fossil fuels. Towards the initiative of sustainable transportation using alternative fuels, it is attempted to develop an ethanol powered engine for commercial vehicles and this paper attempts to explain the 1D thermodynamic simulation carried out for predicting the engine performance and combustion characteristics, as a part of the engine development program. Engine simulation is becoming an increasingly important engineering tool for reducing the development cost and time and also helps in carrying out various DOE iterations which are rather difficult to be conducted experimentally in any internal combustion engine development program. AVL Boost software is used for modeling and simulation.
2017-07-10
Technical Paper
2017-28-1951
K Nantha Gopal, B. Ashok, Rishabh Bahuguna, Tanmay Prasad
Abstract Thermal management is one of the most challenging and innovative aspects of the automotive industry. The efficiency of the vehicle cooling framework unequivocally relies upon the air stream through the radiator core. Significant advances in thermal management are being embraced in the field of radiator material and coolant. The radiator shouldn't be exclusively credited for the reliable cooling of the engine. There are other auto parts that play an essential role in keeping engine temperature at a manageable level. The fan-shroud assembly is an important component of the cooling system. While the fan is responsible for drawing in air, the fan shroud's job is to ensure uniform air distribution to the radiator core. By assisting airflow in the engine compartment the fan shroud helps in dismissing excess heat from the engine. This assembly also prevents the recirculation of heated air through the cooling fan.
2017-06-29
Journal Article
2017-01-9281
Nuria Garrido Gonzalez, Roland Baar, Jens Drueckhammer, Christoph Kaeppner
Water vapor is, aside from carbon dioxide, the major fossil fuel combustion by-product. Depending on its concentration in the exhaust gas mixture as well as on the exhaust gas pressure, its condensation temperature can be derived. For typical gasoline engine stoichiometric operating conditions, the water vapor dew point lies at about 53 °C. The exhaust gas mixture does however contain some pollutants coming from the fuel, engine oil, and charge air, which can react with the water vapor and affect the condensation process. For instance, sulfur trioxide present in the exhaust, reacts with water vapor forming sulfuric acid. This acid builds a binary system with water vapor, which presents a dew point often above 100 °C. Exhaust composition after leaving the combustion chamber strongly depends on fuel type, engine concept and operation point. Furthermore, the exhaust undergoes several chemical after treatments.
2017-06-28
Journal Article
2017-01-9180
Johannes Wurm, Eetu Hurtig, Esa Väisänen, Joonas Mähönen, Christoph Hochenauer
Abstract The presented paper focuses on the computation of heat transfer related to continuously variable transmissions (CVTs). High temperatures are critical for the highly loaded rubber belts and reduce their lifetime significantly. Hence, a sufficient cooling system is inevitable. A numerical tool which is capable of predicting surface heat transfer and maximum temperatures is of high importance for concept design studies. Computational Fluid Dynamics (CFD) is a suitable method to carry out this task. In this work, a time efficient and accurate simulation strategy is developed to model the complexity of a CVT. The validity of the technique used is underlined by field measurements. Tests have been carried out on a snowmobile CVT, where component temperatures, air temperatures in the CVT vicinity and engine data have been monitored. A corresponding CAD model has been created and the boundary conditions were set according to the testing conditions.
2017-06-05
Technical Paper
2017-01-1787
Jan Biermann, Adrien Mann, Barbara Neuhierl, Min-Suk Kim
Abstract Over the past decades, interior noise from wind noise or engine noise have been significantly reduced by leveraging improvements of both the overall vehicle design and of sound package. Consequently, noise sources originating from HVAC systems (Heat Ventilation and Air Conditioning), fans or exhaust systems are becoming more relevant for perceived quality and passenger comfort. This study focuses on HVAC systems and discusses a Flow-Induced Noise Detection Contributions (FIND Contributions) numerical method enabling the identification of the flow-induced noise sources inside and around HVAC systems. This methodology is based on the post-processing of unsteady flow results obtained using Lattice Boltzmann based Method (LBM) Computational Fluid Dynamics (CFD) simulations combined with LBM-simulated Acoustic Transfer Functions (ATF) between the position of the sources inside the system and the passenger’s ears.
2017-06-05
Technical Paper
2017-01-1766
Dirk von Werne, Stefano Orlando, Anneleen Van Gils, Thierry Olbrechts, Ivan Bosmans
Abstract A methodology to secure cabin noise and vibration targets is presented. Early in the design process, typically in the Joint Definition Phase, Targets are cascaded from system to component level to comply with the overall cabin noise target in various load cases. During the Detailed Design Phase, 3D simulation models are build up to further secure and refine the vibro-acoustic performance of the cabin noise related subsystems. Noise sources are estimated for the target setting based on layer analytical and empirical expressions from literature. This includes various types of engine noise - fan, jet, and propeller noise - as well as turbulent boundary layer noise. For other noise sources, ECS and various auxiliaries, targets are set such as to ensure the overall cabin noise level. To synthesize the cabin noise, these noise sources are combined with estimates of the noise transfer through panels and the cavity effect of the cabin.
2017-06-05
Technical Paper
2017-01-1781
Joshua Wheeler
Abstract The design and operation of a vehicle’s heating, ventilation, and air conditioning (HVAC) system has great impact on the performance of the vehicle’s Automatic Speech Recognition (ASR) and Hands-Free Communication (HFC) system. HVAC noise provides high amplitudes of broadband frequency content that affects the signal to noise ratio (SNR) within the vehicle cabin, and works to mask the user’s speech. But what’s less obvious is that when the airflow from the panel vents or defroster openings can be directed toward the vehicle microphone, a mechanical “buffeting” phenomenon occurs on the microphone’s diaphragm that distresses the ASR system beyond its ability to interpret the user’s voice. The airflow velocity can be strong enough that a simple windscreen on the microphone is not enough to eliminate the problem. Minimizing this buffeting effect is a vital key to building a vehicle that meets the customer’s expectations for ASR and HFC performance.
2017-06-05
Technical Paper
2017-01-1887
Antoine Minard, Christophe Lambourg, Patrick Boussard, Olivier Cheriaux
Abstract While electric and hybrid vehicles are becoming increasingly common, the issue of engine noise is becoming less important, because it does not dominate the overall noise perceived in the passenger compartment in such vehicles anymore. However, at the same time, other sound sources such as air conditioning, start to emerge, which can also cause annoyance. The CEVAS project, involving VALEO, CETIM, University of Technology of Compiègne, ESI GROUP and GENESIS, deals with the acoustic simulation and perception of automotive air-conditioning (HVAC) and electric battery cooling (BTM) systems. While the other partners focused their work on the aeroacoustic characterization, modeling and simulation, GENESIS’ part in the project is dedicated to HVAC sound synthesis and perception. In order to do the synthesis of the acoustic spectra provided by the partners of the project, an additive model was used.
2017-06-05
Technical Paper
2017-01-1861
Ismail Benhayoun, Frédéric Bonin, Antoine Milliet de Faverges, Julien Masson
Abstract NVH (Noise Vibration & Harshness) is one of the main focus areas during the development of products such as passenger cars or trucks. Physical test methods have traditionally been used to assess NVH, but the necessity for reducing cost and creating a robust solution early in the design process has driven the increased usage of simulation tools. Development of well-defined methods and tools for NVH analysis allows today’s OEMs to have a virtual engineering based development cycle from concept to test. However, a subset of NVH problems including squeak and rattle (S&R) have not been generally focused upon. In a vehicle, S&R is a recurring problem for interior plastic parts such as an instrument panel or door trim. Since 2012, Altair has been developing S&R Director (SnRD), which is a solution that identifies and combats S&R issues by embedding the Evaluation-Line (E-Line) methodology [1] [2].
2017-06-05
Technical Paper
2017-01-1858
James Haylett, Andrew Polte
Abstract Truck and construction seats offer a number of different challenges compared to automotive seats in the identification and characterization of Buzz, Squeak, and Rattle (BSR) noises. These seats typically have a separate air or mechanical suspension and usually a larger number and variety of mechanical adjustments and isolators. Associated vibration excitation tend to have lower frequencies with larger amplitudes. In order to test these seats for both BSR and vibration isolation a low-noise shaker with the ability to test to a minimum frequency of 1 Hz was employed. Slowly swept sine excitation was used to visualize the seat mode shapes and identify nonlinearities at low frequencies. A sample set of seat BSR sounds are described in terms of time and frequency characteristics, then analyzed using sound quality metrics.
2017-06-05
Technical Paper
2017-01-1826
Sagar Deshmukh, Sandip Hazra
Abstract Engine mounting system maintains the position of powertrain in the vehicle with respect to chassis and other accessories during inertia, torque reaction loads and roadway disturbances. The mounting system also plays a role in terms of isolation of the rest of the vehicle and its occupants from powertrain and helps in maintaining vehicle ride and handling condition. This paper investigates the performance comparison between hydromount and switchable hydromount during idle and ride performance. The optimization scheme aims to improve the performance of the mounting system in order to achieve overall powertrain performance and NVH attribute balancing through switchable mount technology.
2017-06-05
Technical Paper
2017-01-1847
Asif Basha Shaik Mohammad, Ravindran Vijayakumar, Nageshwar rao.P
Abstract Tractor operators prefer to drive more comfortable tractors in the recent years. The high noise and vibration levels, to which drivers of agricultural tractor are often exposed for long periods of time, have a significant part in the driver’s fatigue and may lead to substantial hearing impairment and health problems. Therefore, it is essential for an optimal cabin design to have time and cost effective analysis tools for the assessment of the noise and vibration characteristics of various design alternatives at both the early design stages and the prototype testing phase. Airborne excitation and Structure Borne excitation are two types of dynamic cabin excitations mainly cause the interior noise in a driver’s cabin. Structure-borne excitation is studied in this paper and it consists of dynamic forces, which are directly transmitted to the cabin through the cabin suspension. These transmitted forces introduce cabin vibrations, which in turn generate interior noise.
Viewing 1 to 30 of 4218