Criteria

Display:

Results

Viewing 181 to 210 of 8600
2016-10-17
Technical Paper
2016-01-2161
Gangfeng Tan, Xuefeng Yang, Li Zhou, Kangping Ji, Mengying Yang
Abstract In this research, the Mg2Si1-xSnx thermoelectric material is used in the exhaust temperature difference power-generating system, and the material's heat transfer characteristic and power-generating characteristic were analyzed. Firstly, steady heat transfer model from vehicle exhaust to cooling water was established. Then the impact of Sn/Si ratio to the thermoelectric characteristic parameter was analyzed. Finally, considering the influence of varying thermal conductivity to the heat transfer process along the material's heat transfer direction, when the cold end temperature of thermoelectric materials was controlled by cooling water respectively boiling at 343K and 373K, the thermoelectric conversion efficiency and power output of Mg2Si1-xSnx thermoelectric materials with different x value were evaluated based on simulation calculation.
2016-10-17
Technical Paper
2016-01-2172
Matthieu Cordier, Olivier Laget, Florence Duffour, Xavier Gautrot, Loic De Francqueville
Abstract Increasing global efficiency of direct injection spark ignition (DISI) engine is nowadays one of the main concerns in automotive research. A conventional way to reduce DISI engine fuel consumption is through downsizing. This approach is well suited to the current homologation cycle as NEDC, but has the drawback to induce over-consumptions in customer real driving usage. Moreover, the driving cycles dedicated to EURO 6d and future regulations will evolve towards higher load operating conditions with higher particulate emissions. Therefore, efficiency of current DISI has to be strongly increased, for homologation cycle and real driving conditions. This implies to deeply understand and improve injection, mixing and flame propagation processes.
2016-10-17
Technical Paper
2016-01-2178
Daniela Siano, Gerardo Valentino, Fabio Bozza, Arturo Iacobacci, Luca Marchitto
Abstract In this paper, a downsized twin-cylinder turbocharged spark-ignition engine is experimentally investigated at test-bench in order to verify the potential to estimate the peak pressure value and the related crank angle position, based on vibrational data acquired by an accelerometer sensor. Purpose of the activity is to provide the ECU of additional information to establish a closed-loop control of the spark timing, on a cycle-by-cycle basis. In this way, an optimal combustion phasing can be more properly accomplished in each engine operating condition. Engine behavior is firstly characterized in terms of average thermodynamic and performance parameters and cycle-by-cycle variations (CCVs) at high-load operation. In particular, both a spark advance and an A/F ratio sweep are actuated. In-cylinder pressure data are acquired by pressure sensors flush-mounted within the combustion chamber of both cylinders.
2016-10-17
Journal Article
2016-01-2160
Alexander Bech, Paul J. Shayler, Michael McGhee
A physics based, lumped thermal capacity model of a 1litre, 3 cylinder, turbocharged, directly injected spark ignition engine has been developed to investigate the effects of cylinder deactivation on the thermal behaviour and fuel economy of small capacity, 3 cylinder engines. When one is deactivated, the output of the two firing cylinders is increased by 50%. The largest temperature differences resulting from this are between exhaust ports and between the upper parts of liners of the deactivated cylinder and the adjacent firing cylinder. These differences increase with load. The deactivated cylinder liner cools to near-coolant temperature. Temperatures in the lower engine structure show little response to deactivation. Temperature response times following deactivation or reactivation events are similar. Motoring work for the deactivated cylinder is a minor loss; the net benefit of deactivation diminishes with increasing load.
2016-10-17
Journal Article
2016-01-2234
Ahmed F. Khan, Alexey Burluka, Jens Neumeister, Dave OudeNijeweme, Paul Freeland, John Mitcalf
Abstract A holistic modelling approach has been employed to predict combustion, cyclic variability and knock propensity of a turbocharged downsized SI engine fuelled with gasoline. A quasi-dimensional, thermodynamic combustion modelling approach has been coupled with chemical kinetics modelling of autoignition using reduced mechanisms for realistic gasoline surrogates. The quasi-dimensional approach allows a fast and appreciably accurate prediction of the effects of operating conditions on the burn-rate and makes it possible to evaluate engine performance. It has also provided an insight into the nature of the turbulent flame as the boost pressure and speed is varied. In order to assess the sensitivity of the end-gas chemical kinetics to cyclic variability, the in-cylinder turbulence and charge composition were perturbed according to a Gaussian distribution.
2016-10-17
Technical Paper
2016-01-2221
Joshua Kurtis Carroll, Mohammad Alzorgan, Corey Page, Abdel Raouf Mayyas
Electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) are considered as a promising future solution for sustainable transportation. This is due to the reduction in energy consumption when compared to conventional internal combustion engine (ICE) based vehicles. EVs and PHEVs contain an Energy Storage Systems (ESS). This increases the complexity of the system but also provides additional margins and fields for optimization. One of the most important elements of these vehicles is the ESS. The electrochemistry nature of battery systems is inherently sensitive to the temperature shifts. The shifts are controlled by the thermal management system of the traction battery systems, for electric-drive vehicles, which directly affects the overall vehicle dynamics. These dynamics include performance, long-term durability, and cost of the battery systems. Hence, thermal management becomes an essential element in the achievement to meet the demand for better performance.
2016-10-17
Technical Paper
2016-01-2294
Hwasup Song, Han Ho Song
Abstract Livengood-Wu integration model is acknowledged as a relatively simple but fairly accurate autoignition prediction method which has been widely recognized as a methodology predicting knock occurrence of a spark-ignition (SI) engine over years. Fundamental idea of the model is that the chemical reactivity of fuel under a certain thermodynamic test condition can be represented by inverse of the acquired ignition delay. However, recent studies show that the predictability of the model seems to deteriorate if the tested fuel exhibits negative temperature coefficient (NTC) behavior which is primarily caused by two-stage ignition characteristics. It is convincing that the cool flame exothermicity during the first ignition stage is a major cause that limits the prediction capability of the integration model, therefore a new ignition delay concept based on cool flame elimination is introduced in order to minimize the thermal effect of the cool flame.
2016-10-17
Technical Paper
2016-01-2302
Hyun Woo Won, Alexandre Bouet, Florence Duffour, Loic Francqueville
Abstract Gasoline-like fuels have been recently identified as good candidates to reduce NOX and particulate emissions when used in compression-ignition (CI) engines. In this context, straight-run naphtha, a refinery stream directly derived from the atmospheric crude oil distillation process, was identified as a highly valuable fuel. In addition, thanks to its higher H/C ratio and energy content (LHV) compared to diesel, CO2 benefits are also expected when using naphtha in such engines. In a previous study, wide ranges of Cetane Number naphtha fuels (CN 20 to 35) were evaluated to optimize CI combustion, with different bowls and nozzle designs. CN 35 naphtha fuel has been selected for its better robustness and lower HC and CO emissions. The purpose of the current study is to investigate the potential of CN 35 naphtha fuel on a light duty single-cylinder compression-ignition engine as well as the minimum required hardware modifications needed to properly run this fuel.
2016-10-17
Technical Paper
2016-01-2336
Ken Naitoh, Soichi Ohara, Yuichi Onuma, Kentaro Kojima, Kenya Hasegawa, Tomoya Shirai
Abstract A single-point autoignition gasoline engine (Fugine) proposed by us previously has a strongly asymmetric double piston unit without poppet valves, in which pulsed multi-jets injected from eight suction nozzles collide around the combustion chamber center. Combustion experiments conducted on this engine at a low operating speed of 2000 rpm using gasoline as the test fuel under lean burn conditions showed both high thermal efficiency comparable to that of diesel engines and silent combustion comparable to that of conventional spark-ignition gasoline engines. This gasoline engine was tested with a weak level of point compression generated by negative pressure of about 0.04 MPa and also at an additional mechanical homogeneous compression ratio of about 8:1 without throttle valves. After single-point autoignition, turbulent flame propagation may occur at the later stage of heat release.
2016-10-17
Technical Paper
2016-01-2310
Jeff Yeo, Jeremy Rochussen, Patrick Kirchen
Abstract As global energy demands continue to be met with ever evolving and stricter emissions requirements, natural gas (NG) has become a highly researched alternative to conventional fossil fuels in many industrial sectors. Transportation is one such field that can utilize the benefits of NG as a primary fuel for use in internal combustion engines (ICEs). In the context of heavy-duty on-highway transportation applications, diesel-ignited dual-fuel (DIDF) combustion of NG has been identified as a commercially viable alternative technology. Previous investigations of DIDF have examined the various trends present across the spectrum of DIDF operating space. However, in-cylinder processes are still not well understood and this investigation aims to further understanding in this area. An in-cylinder, local infrared absorption fuel concentration sensor is used to examine in-cylinder processes by comparison with previous optical and thermodynamic studies.
2016-10-17
Technical Paper
2016-01-2305
Ireneusz Pielecha, Krzysztof Wislocki, Wojciech Cieslik, Przemyslaw Borowski, Wojciech Bueschke, Maciej Skowron
Abstract The paper presents the thermodynamic analysis of the engine supplied with small and large diesel fuel doses while increasing natural gas quantity. The paper presents changes in the combustion process thermodynamic indexes and changes in the exhaust gas emissions for dynamically increased share of the gaseous fuel. The cylinder pressure history was subject to thermodynamic analysis, . based on which the mean indicated pressure, the heat release rate, the quantity of heat released as well as the pressure rate increase after self-ignition were determined. These parameters were also referred to the subsequent engine operation cycles by specifying the scope of the change per cycle. The relationship between the engine load and the start, the center and the end of combustion while increasing the gas amount supplied to the cylinder was indicated.
2016-10-17
Technical Paper
2016-01-2257
Hua LI, Liang Yu, Linqi Ouyang, Shuzhou Sun
Abstract The ignition delay time of toluene reference fuels composed of iso-Octane, n-heptane and toluene was studied in a shock tube under the conditions of medium to high temperature ranges, different pressures (10-20 bar), and various equivalence ratios (0.5,1.0,1.5 and 2) by reflected waves.Three different ternary blends, TRF2 (42.8% iso-Octane/13.7% n-heptane/43.5% toluene), TRF3 (65% iso-Octane/10% n-heptane/25% toluene) and TRF4 (87.2% iso-Octane/6.3% n-heptane/6.5% toluene), with the same Research Octane Number of 95 (RON=95) were constructed. The experimental results showed that there was an obvious negative correlation between the ignition delay time of the toluene reference fuels and the pressure, temperature and equivalence ratio; and, a minimal discrepancy of TRF2, TRF3, and TRF4 was measured at pressures of 10 and 20 bar in a stoichiometric ratio. A detailed chemical mechanism was established to research the surrogate combustion properties.
2016-10-17
Technical Paper
2016-01-2262
Atsushi Shimada, Yuzo Shirakawa, Takao Ishikawa
Abstract Bio-ethanol can be produced from several type of biomass, and the CO2 emission of bio-ethanol is low compared with gasoline. Bio-ethanol is a high octane fuel, therefore, it has characteristics that allow it to burn at a high compression ratio condition. However, bio-ethanol is usually refined to be high purity ethanol (>99.5%). It requires much energy to refine; thus large-scale refinery plants are needed, increasing the cost of refining bio-ethanol. High purity ethanol (>99.5%) can be refined after fermentation and a distillation. If hydrous ethanol can be used as a fuel for engines, the distillation process can be simplified. As a result, the costs of refinement can be reduced. An innovated engine can be developed by using hydrous ethanol as the fuel because three highly efficient methods can be combined. First, exhaust heat can be recovered by the steam reforming of hydrous ethanol.
2016-10-17
Technical Paper
2016-01-2228
Mithilesh Kumar Sahu, Tushar Choudhary, Y Sanjay
Abstract Global energy scenario requires thermal systems with higher efficiency and lower capital and operating cost. The paper deals with the thermoeconomic analysis of the gas turbine cycles with possible application as marine gas turbines. Thermoeconomic analysis of an energy conversion cycle is a combined study of thermodynamics and economics. Different configurations of gas turbine cycles have been analyzed using thermo-economic methodology keeping the gas turbine operating parameters (compressor pressure ratio, turbine inlet temperature, isentropic efficiencies of compressor & turbine etc fixed. Study has been carried out by considering appropriate objective function in a form of decision variables. This objective function combines both fuel cost and investment cost.
2016-09-27
Technical Paper
2016-01-8085
Yanjun Ren, Gangfeng Tan, Kangping Ji, Li Zhou, Ruobing Zhan
Abstract The hydraulic retarder is an auxiliary braking device generally equipped on commercial vehicles. Its oil temperature change influences the brake performance of hydraulic retarder. The Organic Rankine Cycle (ORC) is a good means to recover exhausted heat. Moreover, it can cool oil and stably control oil temperature with the help of heat absorption related with evaporation. Comprehensively considering the heat-producing characteristics of hydraulic retarder and the temperature control demand, the aimed boundary conditions are determined. Also the changing rules about the working medium flow rate are obtained. In this work, the heat-producing properties of hydraulic retarder under different conditions and the oil external circulating performance is firstly analyzed. By researching the system’s adaptation to the limiting conditions, the aimed temperature to control is prescribed.
2016-09-27
Technical Paper
2016-01-8084
Yousef Jeihouni, Katharina Eichler, Michael Franke
Abstract In order to comply with demanding Greenhous Gas (GHG) standards, future automotive engines employ advanced engine technologies including waste heat recovery (WHR) systems. A waste heat recovery system converts part of engine wasted exergies to useful work which can be fed back to the engine. Utilizing this additional output power leads to lower specific fuel consumption and CO2 emission when the total output power equals the original engine output power. Engine calibration strategies for reductions in specific fuel consumption typically results in a natural increase of NOx emissions. The utilization of waste heat recovery systems provides a pathway which gives both reduction in emissions and reduction in specific fuel consumption. According to DOE (Department of Energy), US heavy-duty truck engines’ technology need to be upgraded towards higher brake thermal efficiencies (BTE). DOE target is BTE>55% for Class-8 heavy-duty vehicles in the United States.
2016-09-27
Technical Paper
2016-01-8079
Zhiwei Zhang, Gangfeng Tan, Mengying Yang, Zhongjie Yang, Mengzuo Han
Abstract The hydraulic retarder is an important auxiliary braking device. With merits such as its high braking torque, smooth braking, low noise, long service life and small size, it is widely used on modern commercial vehicles. Transmission fluid of traditional hydraulic retarder is cooled by engine cooling system, which exhausts the heat directly and need additional energy consumption for the thermal management component. On account of the working characteristics of hydraulic retarder, this study designs a set of waste heat recovery system based on the Organic Rankine Cycle (ORC). Under the premise of ensuring stable performance of hydraulic retarder, waste heat energy in transmission fluid is recycled to supplement energy requirements for cooling system. First of all, a principle model, which is scaled down according to D300 retarder`s thermal power generation ration of 1:100, is established.
2016-09-27
Technical Paper
2016-01-8071
Igor Gritsuk, Vladimir Volkov, Yurii Gutarevych, Vasyl Mateichyk, Valeriy Verbovskiy
Abstract The article discusses the use of the combined heating system with phase-transitional thermal accumulator. The peculiarity of the presented system is that it uses thermal energy of exhaust gas, coolant and motor oil, and emissions of the internal combustion engine during its operation to accumulate the thermal energy. The results of experimental studies of the combined heating system are shown. A system and methods for pre-start and after-start heating of the vehicular engine in the investigated system are developed. The structure of the "combined heating” system to study the impact of its structural and adjustment parameters on the performance of thermal development of the vehicular engine is described. The use of the combined heating system within phase-transitional thermal accumulators is compared with the use of standard systems for a truck engine 8FS 9.2 / 8. It reduces the time of coolant and motor oil thermal development by 22.9-57.5% and 25-57% accordingly.
2016-09-27
Journal Article
2016-01-8100
Jordan Kelleher, Nikhil Ajotikar
Abstract Piston cooling nozzles/jets play several crucial roles in the power cylinder of an internal combustion engine. Primarily, they help with the thermal management of the piston and provide lubrication to the cylinder liner and the piston’s wrist pin. In order to evaluate the oil jet characteristics from various piston cooling nozzle (PCN) designs, a quantitative and objective process was developed. The PCN characterization began with a computational fluid dynamics (CFD) turbulent model to analyze the mean oil velocity and flow distribution at the nozzle exit/tip. Subsequently, the PCN was tested on a rig for a given oil temperature and pressure. A high-speed camera captured images at 2500 frames per second to observe the evolution of the oil stream as a function of distance from the nozzle exit. An algorithm comprised of standard digital image processing techniques was created to calculate the oil jet width and density.
2016-09-27
Technical Paper
2016-01-8121
Riccardo Bianchi, Addison Alexander, Andrea Vacca
Abstract Typically, earthmoving machines do not have wheel suspensions. This lack of components often causes uncomfortable driving, and in some cases reduces machine productivity and safety. Several solutions to this problem have been proposed in the last decades, and particularly successful is the passive solution based on the introduction of accumulators in the hydraulic circuit connecting the machine boom. The extra capacitance effect created by the accumulator causes a magnification of the boom oscillations, in such a way that these oscillations counter-react the machine oscillation caused by the driving on uneven ground. This principle of counter-reacting machine oscillations through the boom motion can be achieved also with electro-hydraulic solutions, properly actuating the flow supply to the boom actuators on the basis of a feedback sensors and a proper control strategy.
2016-09-27
Technical Paper
2016-01-8057
Michael Glensvig, Heimo Schreier, Mauro Tizianel, Helmut Theissl, Peter Krähenbühl, Fabio Cococcetta, Ivan Calaon
Abstract This paper presents the results of a long haul truck Waste Heat Recovery (WHR) system from simulation, test bench and public road testing. The WHR system uses exhaust gas recuperation only and utilizes up to 110kW of exhaust waste heat for the Organic Rankine Cycle (ORC) in a typical European driving cycle. The testing and simulation procedures are explained in detail together with the tested and simulated WHR fuel consumption benefit for different real life cycles in Europe and USA reaching fuel consumption benefits between 2.5% and 3.4%. Additionally a technology road map is shown which discusses the role of WHR in fulfilling the future CARB BSFC target value (minimum in map) of around 172 g/kWh.
2016-09-20
Journal Article
2016-01-2023
Timothy Deppen, Brian Raczkowski, Marco Amrhein, Jason Wells, Eric Walters, Mark Bodie, Soumya Patnaik
Abstract Future aircraft systems are projected to have order of magnitude greater power and thermal demands, along with tighter constraints on the performance of the power and thermal management subsystems. This trend has led to the need for a fully integrated design process where power and thermal systems, and their interactions, are considered simultaneously. To support this new design paradigm, a general framework for codifying and checking specifications and requirements is presented. This framework is domain independent and can be used to translate requirement language into a structured definition that can be quickly queried and applied to simulation and measurement data. It is constructed by generalizing a previously developed power quality analysis framework. The application of this framework is demonstrated through the translation of thermal specifications for airborne electrical equipment, into the SPecification And Requirement Evaluation (SPARE) Tool.
2016-09-20
Journal Article
2016-01-2054
Deniz Unlu, Federico Cappuzzo, Olivier Broca, Pierpaolo Borrelli
Abstract This paper presents the activities foreseen on the Leonardo Aircraft Division EIS (Entry In Service) 2020 derivative aircraft performed in the frame of the FP7 European research project TOICA (Thermal Overall Integrated Concept of Aircraft). On board air systems for conventional aircraft are fed by the bleed off-take which penalizes the amount of power available to the turbine of jet or turboprop engines. In order to minimize such operating penalties and optimize the energy efficiency of the overall aircraft, it is of major interest to support trade-offs at aircraft level including aircraft systems as early as possible in the development cycle. The study presents the Virtual Integrated Aircraft methodology and associated simulation activities relying on the system simulation platform LMS Imagine.Lab. This methodology is also relying on concept of flexible model and pyramid of models developed in the context of TOICA.
2016-09-20
Technical Paper
2016-01-1978
Philippe Coni, Sylvain Hourlier, Xavier Servantie, Laurent Laluque, Aude Gueguen
Abstract A 3D Stereoscopic Head-Up Display (HUD) using direct projection on a transparent screen is presented. Symbol incrustation in conformity with the landscape is performed through the use of simulated collimation offering a large eye-box, in excess of conventional HUD. The use of spectral glasses for our transparent screen was decided as most commonly used polarizing or active glasses were not adapted. Furthermore it gave ususeful green laser attack protection.
2016-09-20
Technical Paper
2016-01-1994
Wei Wu, Yeong-Ren Lin, Louis Chow, Edmund Gyasi, John P. Kizito, Quinn Leland
Abstract For aircraft electromechanical actuator (EMA) cooling applications using forced air produced by axial fans, the main objective in fan design is to generate high static pressure head, high volumetric flow rate, and high efficiency over a wide operating range of rotational speed (1x∼3x) and ambient pressure (0.2∼1 atm). In this paper, a fan design based on a fan diameter of 86 mm, fan depth (thickness) of 25.4 mm, and hub diameter of 48 mm is presented. The blade setting angle and the chord lengths at the leading and trailing edges are varied in their suitable ranges to determine the optimal blade profiles. The fan static pressure head, volumetric flow rate, and flow velocity are calculated at various ambient pressures and rotational speeds. The optimal blade design in terms of maximum total-to-total pressure ratio and efficiency at the design point is obtained via CFD simulation.
2016-09-20
Journal Article
2016-01-1995
Patrick McCarthy, Nicholas Niedbalski, Kevin McCarthy, Eric Walters, Joshua Cory, Soumya Patnaik
Abstract As the cost and complexity of modern aircraft systems increases, emphasis has been placed on model-based design as a means for reducing development cost and optimizing performance. To facilitate this, an appropriate modeling environment is required that allows developers to rapidly explore a wider design space than can cost effectively be considered through hardware construction and testing. This wide design space can then yield solutions that are far more energy efficient than previous generation designs. In addition, non-intuitive cross-coupled subsystem behavior can also be explored to ensure integrated system stability prior to hardware fabrication and testing. In recent years, optimization of control strategies between coupled subsystems has necessitated the understanding of the integrated system dynamics.
2016-09-20
Technical Paper
2016-01-1997
Wei Wu, Yeong-Ren Lin, Louis Chow, Edmund Gyasi, John P. Kizito, Quinn Leland
Abstract The aircraft electromechanical actuator (EMA) cooling fan is a critical component because an EMA failure caused by overheating could lead to a catastrophic failure in aircraft. Fault tree analysis (FTA) is used to access the failure probability of EMA fans with the goal of improving their mean time to failure (MTTF) from ∼O(5×104) to ∼ O(2.5×109) hours without incurring heavy weight penalty and high cost. The dual-winding and dual-bearing approaches are analyzed and a contra rotating dual-fan design is proposed. Fan motors are assumed to be brushless direct current (BLDC) motors. To have a full understanding of fan reliability, all possible failure mechanisms and failure modes are taken into account.
2016-09-20
Technical Paper
2016-01-1999
Debabrata Pal, Frank Feng
Abstract In 3-phase AC application, there is additional heat dissipation due to skin effects and proximity effects in bus bars. In addition, when the 3- phase AC is used to drive a motor at high fundamental frequency, for example between 666 Hz and 1450 Hz, there are higher bus bar losses due to presence of higher frequency harmonic content. High frequency current carrying bus bars in aircraft power panels are typically cooled by natural convection and radiation. In this paper a thermal and electrical finite element analysis (FEA) is done for a bus bar system. For electrical loss modeling, 3D electromagnetic FEA is used to characterize losses in three parallel bus bars carrying AC at various frequencies. This loss analysis provides correlation of heat loss as function of frequency. A method is presented where this AC loss is incorporated using computational fluid dynamics (CFD) based thermal model.
2016-09-20
Technical Paper
2016-01-1998
Michele Trancossi, Jose Pascoa, Carlos Xisto
Abstract Environmental and economic issues related to the aeronautic transport, with particular reference to the high-speed one are opening new perspectives to pulsejets and derived pulse detonation engines. Their importance relates to high thrust to weight ratio and low cost of manufacturing with very low energy efficiency. This papers presents a preliminary evaluation in the direction of a new family of pulsejets which can be coupled with both an air compression system which is currently in pre-patenting study and a more efficient and enduring valve systems with respect to today ones. This new pulsejet has bee specifically studied to reach three objectives: a better thermodynamic efficiency, a substantial reduction of vibrations by a multi-chamber cooled architecture, a much longer operative life by more affordable valves. Another objective of this research connects directly to the possibility of feeding the pulsejet with hydrogen.
2016-09-20
Technical Paper
2016-01-2000
Mark Bodie, Thierry Pamphile, Jon Zumberge, Thomas Baudendistel, Michael Boyd
Abstract As technology for both military and civilian aviation systems mature into a new era, techniques to test and evaluate these systems have become of great interest. To achieve a general understanding as well as save time and cost, the use of computer modeling and simulation for component, subsystem or integrated system testing has become a central part of technology development programs. However, the evolving complexity of the systems being modeled leads to a tremendous increase in the complexity of the developed models. To gain confidence in these models there is a need to evaluate the risk in using those models for decision making. Statistical model validation techniques are used to assess the risk of using a given model in decision making exercises. In this paper, we formulate a transient model validation challenge problem for an air cycle machine (ACM) and present a hardware test bench used to generate experimental data relevant to the model.
Viewing 181 to 210 of 8600