Criteria

Display:

Results

Viewing 181 to 210 of 8640
2017-03-28
Technical Paper
2017-01-1304
Alejandro Rosas Vazquez, Fernando Paisano, Diego Santillan Gutierrez
Abstract For many years, the use of in-mold fasteners has been avoided for various reasons including: not fully understanding the load cases in the part, the fear of quality issues occurring, the need for servicing, or the lack of understanding the complexity of all failure modes. The most common solution has been the use of secondary operations to provide attachments, such as, screws, metal clips, heat staking, sonic welding or other methods which are ultimately a waste in the process and an increase in manufacturing costs. The purpose of this paper is to take the reader through the design process followed to design an in-molded attachment clip on plastic parts. The paper explores the design process for in-molded attachment clips beginning with a design concept idea, followed by basic concept testing using a desktop 3D printer, optimizing the design with physical tests and CAE analysis, and finally producing high resolution 3D prototypes for validation and tuning.
2017-03-28
Journal Article
2017-01-0130
Phillip Bonkoski, Amey Y. Karnik, Adrian Fuxman
Abstract Control of vehicle powertrain thermal management systems is becoming more challenging as the number of components is growing, and as a result, advanced control methods are being investigated. Model predictive control (MPC) is particularly interesting in this application because it provides a suitable framework to manage actuator and temperature constraints, and can potentially leverage preview information if available in the future. In previous SAE publications (2015-01-0336 and 2016-01-0215), a robust MPC control formulation was proposed, and both simulation and powertrain thermal lab test results were provided. In this work, we discuss the controller deployment in a vehicle; where controller validation is done through road driving and on a wind tunnel chassis dynamometer. This paper discusses challenges of linear MPC implementation related to nonlinearities in this over-actuated thermal system.
2017-03-28
Journal Article
2017-01-0622
Sury Janarthanam, Sarav Paramasivam, Patrick Maguire, James Gebbie, Douglas Hughes
Abstract Hybrid Electric Vehicles (HEV) utilize a High Voltage (HV) battery pack to improve fuel economy by maximizing the capture of vehicle kinetic energy for reuse. Consequently, these HV battery packs experience frequent and rapid charge-discharge cycles. The heat generated during these cycles must be managed effectively to maintain battery cell performance and cell life. The HV battery pack cooling system must keep the HV battery pack temperature below a design target value and maintain a uniform temperature across all of the cells in the HV battery pack. Herein, the authors discuss some of the design points of the air cooled HV battery packs in Ford Motor Company’s current model C-Max and Fusion HEVs. In these vehicles, the flow of battery cooling air was required to not only provide effective cooling of the battery cells, but to simultaneously cool a direct current high voltage to low voltage (DC-DC) converter module.
2017-03-28
Journal Article
2017-01-0625
Yen-Chung Liu, Brian Sangeorzan, Alex Alkidas
Abstract The purpose of this research was to measure and correlate the area-average heat transfer coefficients for free, circular upward-impinging oil-jets onto two automotive pistons having different undercrown shapes and different diameters. For the piston heat transfer studies, two empirical area-average Nusselt number correlations were developed. One was based on the whole piston undercrown surface area with the Nusselt number based on the nozzle diameter, and the other was based on the oil-jet impingement area with the Nusselt number based on the oil-jet effective impingement diameter. The correlations can predict the 95% and 94% of the experimental measurements within 30% error, respectively. The first correlation is simpler to use and can be employed for cases in which the oil jet wets the whole piston undercrown. The latter may be more useful for larger pistons or higher Prandtl number conditions in which the oil jet wets only a portion of the undercrown.
2017-03-28
Journal Article
2017-01-1046
Christian Binder, Fahed Abou Nada, Mattias Richter, Andreas Cronhjort, Daniel Norling
Abstract Diesel engine manufacturers strive towards further efficiency improvements. Thus, reducing in-cylinder heat losses is becoming increasingly important. Understanding how location, thermal insulation, and engine operating conditions affect the heat transfer to the combustion chamber walls is fundamental for the future reduction of in-cylinder heat losses. This study investigates the effect of a 1mm-thick plasma-sprayed yttria-stabilized zirconia (YSZ) coating on a piston. Such a coated piston and a similar steel piston are compared to each other based on experimental data for the heat release, the heat transfer rate to the oil in the piston cooling gallery, the local instantaneous surface temperature, and the local instantaneous surface heat flux. The surface temperature was measured for different crank angle positions using phosphor thermometry.
2017-03-28
Technical Paper
2017-01-0141
Ray Host, Peter Moilanen, Marcus Fried, Bhageerath Bogi
Abstract Future vehicle North American emissions standards (e.g., North American Tier 3 Bin 30 or LEVIII SULEV 30) require the exhaust catalyst to be greater than 80% efficient by 20 seconds after the engine has been started in the Federal Test Procedure. Turbocharged engines are especially challenged to deliver fast catalyst light-off since the presence of the turbocharger in the exhaust flow path significantly increases exhaust system heat losses. A solution to delivering cost effective SULEV 30 emissions in turbocharged engines is to achieve fast catalyst light-off by reducing exhaust system heat losses in cold start, without increasing catalyst thermal degradation during high load operation. A CAE methodology to assess the thermal performance of exhaust system hardware options, from the exhaust port to the catalyst brick face is described, which enables compliance with future emissions regulations.
2017-03-28
Technical Paper
2017-01-0143
Neelakandan Kandasamy, Steve Whelan
Abstract During cabin warm-up, effective air distribution by vehicle climate control systems plays a vital role. For adequate visibility to the driver, major portion of the air is required to be delivered through the defrost center ducts to clear the windshield. HVAC unit deliver hot air with help of cabin heater and PTC heater. When hot air interacts with cold windshield it causes thermal losses, and windshield act as sink. This process may causes in delay of cabin warming during consecutive cabin warming process. Thus it becomes essential to predict the effect of different windscreen defrost characteristics. In this paper, sensitivity analysis is carried for different windscreen defrosts characteristics like ambient conditions, modes of operation; change in material properties along with occupant thermal comfort is predicted. An integrated 1D/3D CFD approach is proposed to evaluate these conditions.
2017-03-28
Technical Paper
2017-01-0527
Arya Yazdani, Jeffrey Naber, Mahdi Shahbakhti, Paul Dice, Chris Glugla, Stephen Cooper, Douglas McEwan, Garlan Huberts
An accurate estimation of cycle-by-cycle in-cylinder mass and the composition of the cylinder charge is required for spark-ignition engine transient control strategies to obtain required torque, Air-Fuel-Ratio (AFR) and meet engine pollution regulations. Mass Air Flow (MAF) and Manifold Absolute Pressure (MAP) sensors have been utilized in different control strategies to achieve these targets; however, these sensors have response delay in transients. As an alternative to air flow metering, in-cylinder pressure sensors can be utilized to directly measure cylinder pressure, based on which, the amount of air charge can be estimated without the requirement to model the dynamics of the manifold.
2017-03-28
Technical Paper
2017-01-0634
Schoeffmann Wolfgang, Helfried Sorger, Siegfried Loesch, Wolfgang Unzeitig, Thomas Huettner, Alois Fuerhapter
Abstract In order to achieve future CO2 targets - in particular under real driving conditions - different powertrain technologies will have to be introduced. Beside the increasing electrification of the powertrain, it will be essential to utilize the full potential of the internal combustion engine. In addition to further optimization of the combustion processes and the reduction of mechanical losses in the thermal- and energetic systems, the introduction of Variable Compression Ratio (VCR) is probably the measure with the highest potential for fuel economy improvement. VCR systems are expected to be introduced to a considerable number of next generation turbocharged Spark Ignited (SI) engines in certain vehicle classes. The basic principle of the AVL VCR system described in this paper is a 2-stage variation of the conrod length and thus the Compression Ratio (CR).
2017-03-28
Technical Paper
2017-01-0730
Jose M Desantes, J. Javier Lopez, Jose M Garcia-Oliver, Dario Lopez-Pintor
Abstract In this work, a 5-zone model has been applied to replicate the in-cylinder conditions evolution of a Rapid Compression-Expansion Machine (RCEM) in order to improve the chemical kinetic analyses by obtaining more accurate simulation results. To do so, CFD simulations under motoring conditions have been performed in order to identify the proper number of zones and their relative volume, walls surface and temperature. Furthermore, experiments have been carried out in an RCEM with different Primary Reference Fuels (PRF) blends under homogeneous conditions to obtain a database of ignition delays and in-cylinder pressure and temperature evolution profiles. Such experiments have been replicated in CHEMKIN by imposing the heat losses and volume profiles of the experimental facility using a 0-D 1-zone model. Then, the 5-zone model has been analogously solved and both results have been compared to the experimental ones.
2017-03-28
Journal Article
2017-01-0722
Pablo Olmeda, Jaime Martin, Antonio Garcia, David Villalta, Alok Warey, Vicent Domenech
Abstract Growing awareness about CO2 emissions and their environmental implications are leading to an increase in the importance of thermal efficiency as criteria to design internal combustion engines (ICE). Heat transfer to the combustion chamber walls contributes to a decrease in the indicated efficiency. A strategy explored in this study to mitigate this efficiency loss is to promote low swirl conditions in the combustion chamber by using low swirl ratios. A decrease in swirl ratio leads to a reduction in heat transfer, but unfortunately, it can also lead to worsening of combustion development and a decrease in the gross indicated efficiency. Moreover, pumping work plays also an important role due to the effect of reduced intake restriction to generate the swirl motion. Current research evaluates the effect of a dedicated injection strategy to enhance combustion process when low swirl is used.
2017-03-28
Technical Paper
2017-01-1395
Se Jin Park, Murali Subramaniyam, Seunghee Hong, Damee Kim, Tae Hyun Kim, Dong Woo Cho, Bum Il Shim
Abstract Seat cushions are considered as one of the important factors influence the seating comfort. In the automotive seat cushions, flexible polyurethane foams have been widely used due to the cushioning performance. Automotive seat designers are paying more attention to the improvement of seat cushion properties. This study introduces an automotive seat that uses an air-mat in the seat cushion along with polyurethane foam. The air-mat can be adjusted with its internal air pressure. The objective of this paper is to examine air-mat seat pressure level on seating comfort. Vibration experiments have been performed on the BSR simulator with random vibration. Tri-axial accelerometers were used to measure vibration at the foot and hip. All measured vibration were about the vertical direction (z-axis). The whole-body vibration exposure parameters (weighted root-mean-square (RMS), vibration dose value (VDV), transmissibility (SEAT value)) were calculated per ISO 2631-1 standard.
2017-03-14
Journal Article
2017-01-9276
Joseph K. Ausserer, Marc D. Polanka, Jacob A. Baranski, Keith D. Grinstead, Paul J. Litke
Abstract The rapid expansion of the market for remotely piloted aircraft (RPA) includes a particular interest in 10-25 kg vehicles for monitoring, surveillance, and reconnaissance. Power-plant options for these aircraft are often 10-100 cm3 internal combustion engines. Both power and fuel conversion efficiency decrease with increasing rapidity in the aforementioned size range. Fuel conversion efficiency decreases from ∼30% for conventional-scale engines (>100 cm3 displacement) to <5% for micro glow-fuel engines (<10 cm3 displacement), while brake mean effective pressure decreases from >10 bar (>100 cm3) to <4 bar (<10 cm3). Based on research documented in the literature, the losses responsible for the increase in the rate of decreasing performance cannot be clearly defined.
2017-01-10
Technical Paper
2017-26-0262
Neelakandan Kandasamy, Koundinya Narasimha Kota, Prasad Joshi
Abstract The structure of a vehicle is capable of absorbing a significant amount of heat when exposed to hot climate conditions. 50-70% of this heat penetrates through the glazing and raises both the internal cabin air temperature and the interior trim surface temperature. When driving away, the air conditioning system has to be capable of removing this heat in a timely manner, such that the occupant’s time to comfort will be achieved in an acceptable period [1]. When we reduce the amount of heat absorbed, the discomfort in the cabin can be reduced. A 1D/3D based integrated computational methodology is developed to evaluate the impact of vehicle orientation on cabin climate control system performance and human comfort in this paper. Additionally, effects of glazing material and blinds opening/closing are analyzed to access the occupant thermal comfort during initial and final time AC pull down test.
2017-01-10
Technical Paper
2017-26-0370
G. Meenakshi, Nishit Jain, Sandeep Mandal
Abstract Automobile industry is shifting its focus from conventional fuel vehicles to NexGen vehicles. The NexGen vehicles have electrical components to propel the vehicle apart from mechanical system. These vehicles have a goal of achieving better fuel efficiency along with reduced emissions making it customer as well as environment friendly. Idle start-stop is a key feature of NexGen vehicles, where, the Engine ECU switches to engine stop mode while idling to cut the fuel consumption and increase fuel efficiency. Engine restarts when there is an input from driver to run the vehicle. There is always a clash between the Engine ECU and automatic climate control unit (Auto-AC) either to enter idle stop mode for better fuel efficiency or inhibit idle stop mode to keep the compressor running for driver comfort. This clash can be resolved in two ways: 1 Hardware change and,2 Software change Hardware change leads to increase in cost, validation effort and time.
2017-01-10
Technical Paper
2017-26-0237
Bhupesh Agrawal, Mohit Varma, Chandrashekhar Sewatkar
Abstract High temperatures in the surface mounted permanent magnet (SMPM) synchronous motor adversely affect the power output at the motor shaft. Temperature rise may lead to winding insulation failure, permanent demagnetization of magnets and encoder electronics failure. Prediction and management of temperatures at different locations in the motor should be done right at the design stage to avoid such failures in the motor. The present work is focused on the creation of Lumped Parameter Thermal Network (LPTN) and CFD models of SMPM synchronous motor to predict the temperature distribution in the motor parts. LPTN models were created in Motor-CAD and Simulink which are suitable for parameter sensitivity analysis and getting quick results. Air is assumed to be a cooling medium to extract heat from the outer surface of motor. CFD models were useful in providing elaborate temperature distribution and also locating the hot-spots. Correlation models by both the methods, viz.
2017-01-10
Technical Paper
2017-26-0087
Prasad B Warule, Vaibhav V Jadhav
Abstract Hybridization of vehicle drive train is an important step to increase energy security, reduce crude oil import, improvement of air quality and GHG reduction. Heavy traffic congestion poses a great challenge in improvement of fuel economy. Nowadays urban climatic condition forces the passenger to keep air-conditioning (AC) on; thus further decreasing the fuel economy. In a typical urban drive; the vehicle commutes with low speed forcing IC Engine to run in its low efficiency operational points. Further it is characterized by frequent start-stop and crawling. It has been observed that the power consumption for AC is comparable to that required for the vehicle propulsion. Hence the AC on condition with propelling vehicle demands higher power from engine creating a challenge for fuel economy improvement.
2017-01-10
Technical Paper
2017-26-0029
Shubham Saxena, Mudassir Ahmed
Abstract Higher fuel economy of the vehicle is a critical concern in automobile industry. Traditional internal combustion (IC) engines waste a large portion of the available fuel energy as heat loss via exhaust gas. This proposal aims at recovering the available exhaust heat of the IC engines using stirling engine (SE) as an add-on device. SE is a type of cyclic heat engine which operates by compression and expansion of the working fluid, at different temperature levels resulting in a conversion of the heat energy into mechanical work. A thermodynamic analysis is performed on the chosen beta SE rhombic drive configuration with different combinations of design parameters like working fluid mass, total dead volume, thermal resistance, and hot side and cold side temperatures. A regenerator temperature model is developed to account for first law consistency in the regenerator section of SE, along with heat transfer in accordance with mass flow within the regenerator.
2017-01-10
Technical Paper
2017-26-0150
Abhijeet Chothave, Yashwant Mohite, Vinay Poal, Phaneendra Pamarthi
Abstract In present day passenger cars, Mobile Air Conditioning (MAC) system is one of the essential features due to rise in overall ambient temperatures and comfort expectation of customers. During the development of MAC system, the focus is on cooling capacity of system for maintaining in-cabin temperatures. However, parameters like solar radiation, air velocities at occupant, relative humidity, metabolic rate and clothing of occupants also influence occupant’s thermal comfort and normally not considered in design of the MAC system. Subjective method is used to evaluate thermal comfort inside vehicle cabin which depends mainly on human psychology. To better understand the effect and minimize the human psychological factors a large sample of people are required. That process of evaluating the comfort inside the vehicle cabin is not only time consuming but also impractical.
2017-01-10
Technical Paper
2017-26-0098
Riaz Ahamed, Koorma Rao Vavilapalli, Clement Jones, V P Abhijith
Abstract Major decision driving constraints in the automobile sector is space and cost. With the advent of electric vehicles, these constraints apply for electric drive motor also. For applications involving neighborhood electric vehicles (NEV), the challenges become manifold with target cost of complete drivetrain system, including motor, controller & transmission, being very low. This and application of low cost axle mount drive systems prohibits usage of liquid cooled systems. In this scenario, ways to improve thermal performance of motor can be - to reduce heat generation, increase heat conduction and to increase heat rejection so that temperature of winding is kept under thermal limit of insulation used. Major area of thermal hotspots in the motor is at the end windings where direct conductive path to the housing is less. In this paper, thermal performance of the motor is improved by introducing vacuum encapsulation at the end winding thereby increasing net heat conduction.
2017-01-10
Technical Paper
2017-26-0180
Swaminathan Ramaswamy, Christophe Schorsch, Mario Kolar
Abstract Automotive OEMs are adapting various “green” technologies to meet the upcoming and anticipated regulations for reducing direct and indirect GHG emissions equivalent to CO2. Using compact devices and lightweight components on the aggregates, OEMs get the benefit of carbon credits towards their contribution in reducing CO2 emissions. With regards to the HVAC systems, enhancements such as ultra-low permeation hose assemblies and adoption of low GWP refrigerant have shown promising results in reducing the direct GHG emissions by controlling refrigerant permeation & indirect GHG emissions by using compact and high efficiency compressors, compact heat exchangers, and other technologies that contribute to weight reduction and ultimately impact CO2 emissions. Traditional AC lines are routed/installed in space that accommodates the relative movement between the engine and chassis by connecting the various parts.
2017-01-10
Journal Article
2017-26-0364
Igor Gritsuk, Vladimir Volkov, Vasyl Mateichyk, Yurii Gutarevych, Mykola Tsiuman, Nataliia Goridko
Abstract The article suggests the results of experimental and theoretical studies of the engine heating system with a phase-transitional thermal accumulator when the vehicle is in motion in a driving cycle. The aim of the study is to evaluate the efficiency of the vehicle heating system within thermal accumulator and catalytic converter under operating conditions. The peculiarity of the presented system is that it uses thermal energy of exhaust gases to accumulate energy during engine operation. The article describes the methodology to evaluate vehicle fuel consumption and emission in the driving cycle according to the UNECE Regulation № 83-05. The methodology takes into account the environmental parameters, road conditions, the design parameters of the vehicle, the modes of its motion, thermal state of the engine cooling system and the catalytic converter.
2017-01-10
Journal Article
2017-26-0073
B Ashok, K Nantha Gopal, Thundil Karuppa Raj Rajagopal, Sushrut Alagiasingam, Suryakumar Appu, Aravind Murugan
Abstract With the alarming increase in vehicular population, there is depletion of fossil fuel availability. Hence to overcome the difficulties, alternative fuels are tested and used in parts of the world. One of the difficulties with usage of alternate fuels is their high viscosity in comparison to fossil fuels. To overcome this, preheating of biofuel is a good option as it makes the fuel less viscous. In our research, we have used a helical coil heat exchanger to preheat the inlet fuel using the engine’s exhaust gas, making the system more sustainable since no external energy is used. In order to evaluate the effectiveness of preheating device a simulation study has been carried for the ethanol based biofuels. For simulation work, a set of boundary conditions has been arrived based on the experimental analysis. The results from the experiment such as velocity of air and fuel inlet were utilized as input for simulation work.
2016-11-08
Technical Paper
2016-32-0008
Balagovind Nandakumar Kartha, Srikanth Vijaykumar, Pramod Reddemreddy
Abstract Today, nations are in the path of low-emission transformation mandating stricter emission norms with periodic revisions. With the expected introduction of Bharath Stage VI (BS VI) for two wheelers in India by 2020, limitation in primary pollutants namely - Carbon Monoxide (CO), Total Hydro-Carbons (THC) and Nitrogen Oxides (NOx) are reduced by 50%, 75% and 85% respectively in comparison to the existing Bharath Stage IV. The original equipment manufacturers (OEMs) are identifying measures to improve the overall efficiency and raw emissions from the engine through strategies like multi-spark configurations, improved charge induction concepts, liquid cooling, lean combustion etc. With end user demands for performance, low end torque, high power to displacement ratio, quick acceleration and fuel efficiency, the balance with the emission regulation is expected to be challenging.
2016-11-08
Technical Paper
2016-32-0081
Giovanni Vichi, Michele Becciani, Isacco Stiaccini, Giovanni Ferrara, Lorenzo Ferrari, Alessandro Bellissima, Go Asai
Abstract For the development of a very high efficiency engine, the continuous monitoring of the engine operating conditions is needed. Moreover, the early detection of engine faults is fundamental in order to take appropriate corrective actions and avoid malfunctioning and failures. The in-cylinder pressure is the most direct parameter associated to the engine thermodynamic cycle. The cost and the intrusiveness of the dynamic pressure sensor and the harsh operating condition that limits its life-time, make the direct measurement of the in-cylinder pressure not suitable for mass production applications. Consequently, research is oriented on the measurement of physical phenomena linked to the thermodynamic cycle to obtain useful information for the ICE control.
2016-11-08
Technical Paper
2016-32-0085
Giovanni Vichi, Michele Becciani, Isacco Stiaccini, Giovanni Ferrara, Lorenzo Ferrari, Alessandro Bellissima, Go Asai
Abstract For the development of a very high efficiency engine, the continuous monitoring of the engine operating conditions is needed. Moreover, the early detection of engine faults is fundamental in order to take appropriate corrective actions and avoid malfunctioning and failures. The in-cylinder pressure is the most direct parameter associated to the engine thermodynamic cycle. The cost and the intrusiveness of the dynamic pressure sensor and the harsh operating condition that limits its life-time, make the direct measurement of the in-cylinder pressure not suitable for mass production applications. Consequently, research is oriented on the measurement of physical phenomena linked to the thermodynamic cycle to obtain useful information for the ICE control.
2016-11-08
Technical Paper
2016-32-0079
Daisuke Fukui, Yoshinari Ninomiya
Abstract With the remarkable rise of gas prices and global air pollution, measures to improve fuel efficiency and reduce emissions have become urgently needed in the motorcycle industry, as in the automobile industry. One approach is to improve the thermal efficiency of the engine, and much research and development has been done for many years on this subject. Community-based small motorcycles require both high mobility and fuel efficiency in developed and developing countries. Drivability and emission control of recreation and sports motorcycles are also needed. However, when developing engines for small motorcycles, due to differences in engine speed range, driving load range, devices for driving and emission control, market prices, and infrastructure, some different approaches from those for automobile engines with their many advanced technologies are needed.
2016-11-08
Technical Paper
2016-32-0077
Roland Baar, Valerius Boxberger, Maike Sophie Gern
Abstract Two-cylinder engines not only have special demands concerning uniformity and dynamics of oscillating masses and firing order, but also place very different demands on the turbocharger. With two-cylinder engines, the pulsating influence grows and changes the operation of the turbine. In this paper different boosting technologies are compared in small engine applications. Besides turbochargers the potentials and limits of superchargers and electric chargers are compared as well as their combinations. These technologies show differences concerning power supply, operation range and efficiency, and these effects have different implications in small engines. The efficiency of a turbo compressor, for example decreases, rapidly for small dimensions. Results from experiments and engine process simulations are shown based on a two-cylinder engine of 0.8l displacement. The operating condition of a turbocharger turbine in a two-cylinder engine is very specific due to exhaust pulsations.
2016-11-08
Journal Article
2016-32-0033
Tiago J. Costa, Mark Nickerson, Daniele Littera, Jorge Martins, Alexander Shkolnik, Nikolay Shkolnik, Francisco Brito
Abstract This paper describes predictive models and validation experiments used to quantify the in-chamber heat transfer of LiquidPiston’s rotary 70cc SI “XMv3” engine. The XMv3 engine is air cooled, with separate cooling flow paths for the stationary parts and the rotor. The heat transfer rate to the stationary parts was measured by thermal energy balance of that circuit’s cooling air. However, because the rotor’s cooling air mixes internally with the engine’s exhaust gas, a similar procedure was not practical for the rotor circuit. Instead, a CONVERGE CFD model was developed, and used together with GT-POWER to derive boundary conditions to estimate a ratio between rotor and stationary parts heat transfer, thus allowing estimation of rotor and total heat losses. For both cases studied (5000 and 9000 rpm under full load), the rotor’s heat loss was found to be ∼60% that of the stationary parts, and overall heat losses were less than 35% of supplied fuel energy.
2016-11-08
Journal Article
2016-32-0034
Stephan Jandl, Hans-Juergen Schacht, Stephan Schmidt, Ute Dawin, Armin Kölmel, Stefan Leiber
Abstract Worldwide increasing energy consumption, decreasing energy resources and continuous restriction of emission legislation cause a rethinking in the development of internal combustion engines and fuels. Alternative renewable fuels, so called bio-fuels, have the potential to contribute to environmentally friendly propulsion systems. This study concentrates on the usage of alcohol fuels like ethanol, methanol and butanol in non-automotive high power engines, handheld power tools and garden equipment with the focus on mixture formation and cold start capability. Although bio-fuels have been investigated intensely for the use in automotive applications yet, the different propulsion systems and operation scenarios of nonautomotive applications raise the need for specific research. A zero dimensional vaporization model has been set up to calculate the connections between physical properties and mixture formation.
Viewing 181 to 210 of 8640