Criteria

Display:

Results

Viewing 151 to 180 of 8625
2017-03-28
Technical Paper
2017-01-0171
Quansheng Zhang, Yan Meng, Christopher Greiner, Ciro Soto, William Schwartz, Mark Jennings
Abstract In this paper, the tradeoff relationship between the Air Conditioning (A/C) system performance and vehicle fuel economy for a hybrid electric vehicle during the SC03 drive cycle is presented. First, an A/C system model was integrated into Ford’s HEV simulation environment. Then, a system-level sensitivity study was performed on a stand-alone A/C system simulator, by formulating a static optimization problem which minimizes the total energy use of actuators, and maintains an identical cooling capacity. Afterwards, a vehicle-level sensitivity study was conducted with all controllers incorporated in sensitivity analysis software, under three types of formulations of cooling capacity constraints. Finally, the common observation from both studies, that the compressor speed dominates the cooling capacity and the EDF fan has a marginal influence, is explained using the thermodynamics of a vapor compression cycle.
2017-03-28
Technical Paper
2017-01-0182
Gautam Peri, Saravanan Sambandan, S. Sathish Kumar
Abstract Cool down of a passenger vehicle cabin is a preferred method to test the efficiency of the vehicle HVAC (Heating, Ventilation and Air Conditioning) system. The intended primary objective of a passenger vehicle air conditioning system is to ensure thermal comfort to the passengers seated inside at all prevailing conditions. Presently 1-D analysis plays a major role in determining the conformation of the selected system to achieve the desired results. Virtual analysis thus saves a lot of time and effort in predicting the system performance in the initial development phase of the vehicle HVAC systems. A variety of parameters play an important role in achieving the above thermal comfort. Thermal comfort is measured using the Human comfort sensor for all the passengers seated inside.
2017-03-28
Technical Paper
2017-01-0016
Don Zaremba, Emily Linehan, Carlos Ramirez Ramos
Abstract For over thirty years, the silicon power MOSFET’s role has expanded from a few key components in electronic engine control to a key component in nearly every automotive electronics system. New and emerging automotive applications such as 48 V micro hybrids and autonomous vehicle operation require improved power MOSFET performance. This paper reviews mature and state of the art power MOSFET technologies, from planar to shield gate trench, with emphasis on applicability to automotive electronic systems. The automotive application environment presents unique challenges for electronic systems and associated components such as potential for direct short to high capacity battery, high voltage battery transients, high ambient temperature, electromagnetic interference (EMI) limitations, and large delta temperature power cycling. Moreover, high reliability performance of semiconductor components is mandatory; sub 1 ppm overall failure rate is now a fundamental requirement.
2017-03-28
Technical Paper
2017-01-1368
Jeffrey Aaron Suway, Steven Suway
Abstract Mapping the luminance values of a visual scene is of broad interest to accident reconstructionists, human factors professionals, and lighting experts. Such mappings are useful for a variety of purposes, including determining the effectiveness and appropriateness of lighting installations, and performing visibility analyses for accident case studies. One of the most common methods for mapping luminance is to use a spot type luminance meter. This requires individual measurements of all objects of interest and can be extremely time consuming. Luminance cameras can also be used to create a luminance map. While luminance cameras will map a scene’s luminance values more quickly than a spot luminance meter, commercially available luminance cameras typically require long capture times during low illuminance (up to 30 seconds). Previous work has shown that pixel intensity captured by consumer-grade digital still cameras can be calibrated to measure luminance.
2017-03-28
Technical Paper
2017-01-1444
Mitali Chakrabarti, Alfredo Perez Montiel, Israel Corrilo, Jing He, Angelo Patti, James Gebbie, Loren Lohmeyer, Bernd Dienhart, Klaus Schuermanns
CO2 is an alternative to replace the conventional refrigerant (R134a) for the air-conditioning system, due to the high Global Warming Potential (GWP) of R134a. There are concerns with the use of CO2 as a refrigerant due to health risks associated with exposure to CO2, if the concentration of CO2 is over the acceptable threshold. For applications with CO2 as the refrigerant, the risk of CO2 exposure is increased due to the possibility of CO2 leakage into the cabin through the duct system; this CO2 is in addition to the CO2 generated from the respiration of the occupants. The initiation of the leak could be due to a crash event or a malfunction of the refrigerant system. In an automobile, where the interior cabin is a closed volume (with minimal venting), the increase in concentration can be detrimental to the customer but is hard to detect.
2017-03-28
Technical Paper
2017-01-0134
Jan Eller, Heinrich Reister, Thomas Binner, Nils Widdecke, Jochen Wiedemann
Abstract There is a growing need for life-cycle data – so-called collectives – when developing components like elastomer engine mounts. Current standardized extreme load cases are not sufficient for establishing such collectives. Supplementing the use of endurance testing data, a prediction methodology for component temperature collectives utilizing existing 3D CFD simulation models is presented. The method uses support points to approximate the full collective. Each support point is defined by a component temperature and a position on the time axis of the collective. Since it is the only currently available source for component temperature data, endurance testing data is used to develop the new method. The component temperature range in this data set is divided in temperature bands. Groups of driving states are determined which are each representative of an individual band. Each of the resulting four driving state spaces is condensed into a substitute load case.
2017-03-28
Technical Paper
2017-01-1366
Jeffrey Muttart, Swaroop Dinakar, Jeffrey Suway, Michael Kuzel, Timothy Maloney, Wayne Biever, Toby Terpstra, Tilo Voitel, David Cavanaugh, T.J. Harms
Abstract Collision statistics show that more than half of all pedestrian fatalities caused by vehicles occur at night. The recognition of objects at night is a crucial component in driver responses and in preventing nighttime pedestrian accidents. To investigate the root cause of this fact pattern, Richard Blackwell conducted a series of experiments in the 1950s through 1970s to evaluate whether restricted viewing time can be used as a surrogate for the imperfect information available to drivers at night. The authors build on these findings and incorporate the responses of drivers to objects in the road at night found in the SHRP-2 naturalistic database. A closed road outdoor study and an indoor study were conducted using an automatic shutter system to limit observation time to approximately ¼ of a second. Results from these limited exposure time studies showed a positive correlation to naturalistic responses, providing a validation of the time-limited exposure technique.
2017-03-28
Technical Paper
2017-01-1375
Louis Tijerina, Danielle Warren, Sang-Hwan Kim, Francine Dolins
Abstract This study investigated the effects of three navigation system human-machine interfaces (HMIs) on driver eye-glance behavior, navigational errors, and subjective assessments. Thirty-six drivers drove an unfamiliar 3-segment route in downtown Detroit. HMIs were 2D or 3D (level-of-detail) electronic map display + standard voice prompts, or 3D map-display augmented by photorealistic images + landmark-enhanced voice prompts. Participants drove the same three route segments in order but were assigned a different HMI condition/segment in a 3-period/3-treatment crossover experimental design. Results indicate that drivers’ visual attention using the advanced navigation systems HMIs were within US Department of Transportation recommended visual distraction limits. More turns missed in the first route segment, regardless of HMI, were attributable to greater route complexity and a late-onset voice prompt.
2017-03-28
Technical Paper
2017-01-1370
Hiroyuki Hara, Masaaki Kawauchi, Masayuki Katayama, Noriyuki Iwamori
Abstract Driving is an action that depends strongly on visual information. For displays in the cockpit, a combination of “ease of viewing” to inform the driver of danger early and “annoyance reduction” to avoid drops in the driver’s perception is needed. In this study, we tried to capture “ease of viewing” and “annoyance” in one fixed-quantity indicator. We took up a Camera Monitor System (CMS) as the subject and analyzed the effect that annoyance with the display used in CMSs has on driving behavior. Based on our analysis, we hypothesize that evaluating carelessness in viewing behavior is related evaluating to annoyance. Next, we chose a Detection Response Task (DRT) technique as a method to evaluate driving behavior influenced by this annoyance.
2017-03-28
Technical Paper
2017-01-1474
Raed E. El-Jawahri, Agnes Kim, Dean Jaradi, Rich Ruthinowski, Kevin Siasoco, Cortney Stancato, Para Weerappuli
Abstract Sled tests simulating full-frontal rigid barrier impact were conducted using the Hybrid III 5th female and the 50th male anthropomorphic test devices (ATDs). The ATDs were positioned in the outboard rear seat of a generic small car environment. Two belt configurations were used: 1) a standard belt with no load limiter or pre-tensioner and 2) a seatbelt with a 4.5 kN load-limiting retractor with a stop function and a retractor pre-tensioner (LL-PT). In the current study, the LL-PT belt system reduced the peak responses of both ATDs. Probabilities of serious-to-fatal injuries (AIS3+), based on the ATDs peak responses, were calculated using the risk curves in NHTSA’s December 2015 Request for Comments (RFC) proposing changes to the United States New Car Assessment Program (US-NCAP). Those probabilities were compared to the injury rates (IRs) observed in the field on point estimate basis.
2017-03-28
Journal Article
2017-01-0180
Jun Li, Pega Hrnjak
Abstract This paper introduces the concept of separation of two-phase flow in condenser as a way to improve condenser efficiency. The benefits of vapor-liquid refrigerant separation and the reason why it will improve the condenser performance are explained. Numerical studies are presented on the effects of separation on performance of an R134a microchannel condenser, with the comparison to experiment data. Model predicts that at the same mass flow rate, the exit temperature is lower by 2.2 K in the separation condenser compared with that in the baseline. Up to 9% more flow rate of condensate is also predicted by the model in the separation condenser. Experiment results confirm the same trend. In addition, the reason why a certain circuiting of passes with pre-assumed separation results in the header improves the condenser is investigated by the model and results are presented.
2017-03-28
Journal Article
2017-01-0130
Phillip Bonkoski, Amey Y. Karnik, Adrian Fuxman
Abstract Control of vehicle powertrain thermal management systems is becoming more challenging as the number of components is growing, and as a result, advanced control methods are being investigated. Model predictive control (MPC) is particularly interesting in this application because it provides a suitable framework to manage actuator and temperature constraints, and can potentially leverage preview information if available in the future. In previous SAE publications (2015-01-0336 and 2016-01-0215), a robust MPC control formulation was proposed, and both simulation and powertrain thermal lab test results were provided. In this work, we discuss the controller deployment in a vehicle; where controller validation is done through road driving and on a wind tunnel chassis dynamometer. This paper discusses challenges of linear MPC implementation related to nonlinearities in this over-actuated thermal system.
2017-03-28
Journal Article
2017-01-0625
Yen-Chung Liu, Brian Sangeorzan, Alex Alkidas
Abstract The purpose of this research was to measure and correlate the area-average heat transfer coefficients for free, circular upward-impinging oil-jets onto two automotive pistons having different undercrown shapes and different diameters. For the piston heat transfer studies, two empirical area-average Nusselt number correlations were developed. One was based on the whole piston undercrown surface area with the Nusselt number based on the nozzle diameter, and the other was based on the oil-jet impingement area with the Nusselt number based on the oil-jet effective impingement diameter. The correlations can predict the 95% and 94% of the experimental measurements within 30% error, respectively. The first correlation is simpler to use and can be employed for cases in which the oil jet wets the whole piston undercrown. The latter may be more useful for larger pistons or higher Prandtl number conditions in which the oil jet wets only a portion of the undercrown.
2017-03-28
Journal Article
2017-01-0622
Sury Janarthanam, Sarav Paramasivam, Patrick Maguire, James Gebbie, Douglas Hughes
Abstract Hybrid Electric Vehicles (HEV) utilize a High Voltage (HV) battery pack to improve fuel economy by maximizing the capture of vehicle kinetic energy for reuse. Consequently, these HV battery packs experience frequent and rapid charge-discharge cycles. The heat generated during these cycles must be managed effectively to maintain battery cell performance and cell life. The HV battery pack cooling system must keep the HV battery pack temperature below a design target value and maintain a uniform temperature across all of the cells in the HV battery pack. Herein, the authors discuss some of the design points of the air cooled HV battery packs in Ford Motor Company’s current model C-Max and Fusion HEVs. In these vehicles, the flow of battery cooling air was required to not only provide effective cooling of the battery cells, but to simultaneously cool a direct current high voltage to low voltage (DC-DC) converter module.
2017-03-28
Journal Article
2017-01-0722
Pablo Olmeda, Jaime Martin, Antonio Garcia, David Villalta, Alok Warey, Vicent Domenech
Abstract Growing awareness about CO2 emissions and their environmental implications are leading to an increase in the importance of thermal efficiency as criteria to design internal combustion engines (ICE). Heat transfer to the combustion chamber walls contributes to a decrease in the indicated efficiency. A strategy explored in this study to mitigate this efficiency loss is to promote low swirl conditions in the combustion chamber by using low swirl ratios. A decrease in swirl ratio leads to a reduction in heat transfer, but unfortunately, it can also lead to worsening of combustion development and a decrease in the gross indicated efficiency. Moreover, pumping work plays also an important role due to the effect of reduced intake restriction to generate the swirl motion. Current research evaluates the effect of a dedicated injection strategy to enhance combustion process when low swirl is used.
2017-03-28
Journal Article
2017-01-1046
Christian Binder, Fahed Abou Nada, Mattias Richter, Andreas Cronhjort, Daniel Norling
Abstract Diesel engine manufacturers strive towards further efficiency improvements. Thus, reducing in-cylinder heat losses is becoming increasingly important. Understanding how location, thermal insulation, and engine operating conditions affect the heat transfer to the combustion chamber walls is fundamental for the future reduction of in-cylinder heat losses. This study investigates the effect of a 1mm-thick plasma-sprayed yttria-stabilized zirconia (YSZ) coating on a piston. Such a coated piston and a similar steel piston are compared to each other based on experimental data for the heat release, the heat transfer rate to the oil in the piston cooling gallery, the local instantaneous surface temperature, and the local instantaneous surface heat flux. The surface temperature was measured for different crank angle positions using phosphor thermometry.
2017-03-28
Journal Article
2017-01-0120
Yoichiro Kawamoto, Gota Ogata, Zhiwei Shan
Abstract This study reports on a new generation ECS (Ejector Cycle System) which includes a highly efficient ejector and a novel system configuration. The ejector is working as a fluid jet pump that recovers expansion energy which is wasted in the conventional refrigeration cycle decompression process, and converts the recovered expansion energy into pressure energy and raises the compressor suction pressure. Consequently, the ejector system can reduce power consumption of the compressor by using the above mentioned pressure-rising effect and improve energy efficiency of the refrigeration cycle. The ejector consists of a nozzle, a suction section, a mixing section and a diffuser. The objective of this study is to improve actual fuel economy of all vehicles by ejector technology. The previous generation ECS was reported in 2012 SAE World Congress1. Now, a new generation ECS has been successfully developed and released in the market for Mobile Air Conditioning systems as of 2013.
2017-03-28
Journal Article
2017-01-0122
Gursaran D. Mathur
Water drainage characteristics are dependent on the design of the evaporator: specifically the design of the fins and plates along with hydrophilic coating. A part of the hydrophilic coating washes off with the moisture that condenses over the evaporator core from the air-stream. Hence, water drainage characteristics of an evaporator changes with the vehicle mileage or the age of the vehicle. Since a part of the hydrophilic coating washes away, more water is retained within the evaporator at this condition. Hence, the effectiveness of the evaporator drainage deteriorates with the age of the vehicles. At this condition, the contact angle measured at the plate increases. Author has conducted an experimental study to measure the effectiveness of hydrophilic coating from evaporators taken out from arid (9 cores) and humid areas (16 cores) as a function of vehicle mileage or vehicle age. Contact angles and water retention were measured for a number of evaporators from different OEMs.
2017-03-28
Journal Article
2017-01-0147
Brian Sweetman, Ingo Schmitz, Burkhard Hupertz, Nathanael Shaw, John Goldstein
Abstract Driven by the demand to continuously reduce the development time of new vehicles, it is of critical importance to robustly develop design and packaging concepts early within a new vehicle program using CAE methods. As the underhood and underbody package is constantly getting tighter and the engine power increases, the development of a sophisticated heat protection concept requires much more attention. For many years, heat protection CAE is an integral part of the vehicle development at Ford. However, due to challenges related to transient analysis, e.g. high numerical effort, simulation of transient buoyancy driven airflow (thermal soak), and dependency on high quality thermal material properties, heat protection CAE was primarily focused on steady state vehicle operating conditions.
2017-03-28
Journal Article
2017-01-0165
Jingwei Zhu, Stefan Elbel
Abstract Expansion work recovery by two-phase ejector is known to be beneficial to vapor compression cycle performance. However, one of the biggest challenges with ejector vapor compression cycle is that the ejector cycle performance is sensitive to working condition changes which are common in many applications, including automotive AC systems. Different working conditions require different ejector geometries to achieve maximum performance. Slightly different geometries may result in substantially different COPs under the same conditions. Ejector motive nozzle throat diameter (motive nozzle restrictiveness) is one of the key parameters that can significantly affect COP. This paper presents the experimental investigation of a new motive nozzle restrictiveness control mechanism for two-phase ejectors used in vapor compression cycles, which has the advantages of being simple, potentially less costly and less vulnerable to clogging.
2017-03-28
Journal Article
2017-01-0170
Aditya Velivelli, Daniel Guerithault, Stefan Stöwe
Abstract Seat cooling and heating strategies have enhanced human thermal comfort in automotive environments. Cooling/heating strategies also need to focus on the distribution of the seat cooling/heating power across the seat and the effect of such distributions on human thermal comfort. This paper studies the effect of active cooling combined with ventilation only strategy on thermal comfort. As part of the study, heat flux between the occupant and seat is mapped and is correlated to a step increase in the occupant’s local thermal comfort of body segments in contact with seat. A human physiological model and the Berkeley comfort model were combined to determine power and optimum placement of cooling to effectively cool an occupant using a climate control seat in a warm environment. This leads to a new approach using asymmetric seat cooling to distribute cooling power resulting in improved and balanced subjective comfort than traditional climate seat and ventilation technologies.
2017-03-28
Journal Article
2017-01-0178
Mark Hepokoski, Allen Curran, Sam Gullman, David Jacobsson
Abstract Passive sensor (HVAC) manikins have been developed to obtain high-resolution measurements of environmental conditions across a representative human body form. These manikins incorporate numerous sensors that measure air velocity, air temperature, radiant heat flux, and relative humidity. The effect of a vehicle’s climate control system on occupant comfort can be characterized from the data collected by an HVAC manikin. Equivalent homogeneous temperature (EHT) is often used as a first step in a cabin comfort analysis, particularly since it reduces a large data set to a single intuitive number. However, the applicability of the EHT for thermal comfort assessment is limited since it does not account for human homeostasis, i.e., that the human body actively counter-balances heat flow with the environment to maintain a constant core temperature.
2017-03-28
Journal Article
2017-01-1302
Hyung In Yun, Jae Kyu Lee, Jae Hong Choi, MyoungKwon Je, Junhyuk Kim
Abstract A sliding door is one of the car door systems, which is generally applied to the vans. Compared with swing doors, a sliding door gives comfort to the passengers when they get in or out the car. With an increasing number of the family-scale activities, there followed a huge demand on the vans, which caused growing interests in the convenience technology of the sliding door system. A typical sliding door system has negative effects on the vehicle interior package and the operating effort. Since the door should move backward without touching the car body, the trajectory of the center rail should be a curve. The curve-shaped center rail infiltrates not only the passenger shoulder room, but also the opening flange curve, which results in the interior package loss. Moreover, as the passenger pulls the door outside handle along the normal direction of the door outer skin, the curved rail causes the opening effort loss.
2017-03-28
Journal Article
2017-01-1305
Yucheng Liu, Jeremy Batte, Zachary Collins, Jennifer Bateman, John Atkins, Madelyn Davis, David Salley, Cindy L. Bethel, John Ball, Christopher Archibald
Abstract A robot mining system was developed by the State Space Robotic undergraduate student design team from Mississippi State University (MSU) for the 2016 NASA Robotic Mining Competition. The mining robot was designed to traverse the Martian chaotic terrain, excavate a minimum of 10 kg of Martian regolith and deposit the regolith into a collector bin within 10 minutes as part of the competition. A Systems Engineering approach was followed in proceeding with this design project. The designed mining robot consisted of two major components: (1) mechanical system and (2) control system. This paper mainly focuses on the design and assessment process of the mechanical system but will also briefly mention the control system so as to evaluate the designed robotic system in its entirety. The final designed robot consisted of an aluminum frame driven by four motors and wheels. It utilized a scoop and lifting arm subsystem for collecting and depositing Martian regolith.
2017-03-28
Journal Article
2017-01-1520
Teddy Hobeika, Peter Gullberg, Simone Sebben, Lennart Lofdahl
Abstract Quantification of heat exchanger performance in its operative environment is in many engineering applications an essential task, and the air flow rate through the heat exchanger core is an important optimizing parameter. This paper explores an alternative method for quantifying the air flow rate through compact heat exchangers positioned in the underhood of a passenger car. Unlike conventional methods, typically relying on measurements of direct flow characteristics at discrete probe locations, the proposed method is based on the use of load-cells for direct measurement of the total force acting on the heat exchanger. The air flow rate is then calculated from the force measurement. A direct comparison with a conventional pressure based method is presented as both methods are applied on a passenger car’s radiator tested in a full scale wind tunnel using six different grill configurations.
2017-03-28
Journal Article
2017-01-0266
Shervin Shoai Naini, Junkui (Allen) Huang, Richard Miller, John R. Wagner, Denise Rizzo, Scott Shurin, Katherine Sebeck
Designing an efficient cooling system with low power consumption is of high interest in the automotive engineering community. Heat generated due to the propulsion system and the on-board electronics in ground vehicles must be dissipated to avoid exceeding component temperature limits. In addition, proper thermal management will offer improved system durability and efficiency while providing a flexible, modular, and reduced weight structure. Traditional cooling systems are effective but they typically require high energy consumption which provides motivation for a paradigm shift. This study will examine the integration of passive heat rejection pathways in ground vehicle cooling systems using a “thermal bus”. Potential solutions include heat pipes and composite fibers with high thermal properties and light weight properties to move heat from the source to ambient surroundings.
2017-03-28
Journal Article
2017-01-0388
Haeyoon Jung, MiYeon Song, Sanghak Kim
Abstract CO2 emission is more serious in recent years and automobile manufacturers are interested in developing technologies to reduce CO2 emissions. Among various environmental-technologies, the use of solar roof as an electric energy source has been studied extensively. For example, in order to reduce the cabin ambient temperature, automotive manufacturers offer the option of mounting a solar cell on the roof of the vehicle [1]. In this paper, we introduce the semi-transparent solar cell mounted on a curved roof glass and we propose a solar energy management system to efficiently integrate the electricity generated from the solar roof into internal combustion engine (ICE) vehicles. In order to achieve a high efficiency solar system in different driving, we improve the usable power other than peak power of solar roof. Peak power or rated power is measured power (W) in standard test condition (@ 25°C, light intensity of 1000W/m2(=1Sun)).
2017-03-14
Journal Article
2017-01-9276
Joseph K. Ausserer, Marc D. Polanka, Jacob A. Baranski, Keith D. Grinstead, Paul J. Litke
Abstract The rapid expansion of the market for remotely piloted aircraft (RPA) includes a particular interest in 10-25 kg vehicles for monitoring, surveillance, and reconnaissance. Power-plant options for these aircraft are often 10-100 cm3 internal combustion engines. Both power and fuel conversion efficiency decrease with increasing rapidity in the aforementioned size range. Fuel conversion efficiency decreases from ∼30% for conventional-scale engines (>100 cm3 displacement) to <5% for micro glow-fuel engines (<10 cm3 displacement), while brake mean effective pressure decreases from >10 bar (>100 cm3) to <4 bar (<10 cm3). Based on research documented in the literature, the losses responsible for the increase in the rate of decreasing performance cannot be clearly defined.
2017-01-10
Technical Paper
2017-26-0262
Neelakandan Kandasamy, Koundinya Narasimha Kota, Prasad Joshi
Abstract The structure of a vehicle is capable of absorbing a significant amount of heat when exposed to hot climate conditions. 50-70% of this heat penetrates through the glazing and raises both the internal cabin air temperature and the interior trim surface temperature. When driving away, the air conditioning system has to be capable of removing this heat in a timely manner, such that the occupant’s time to comfort will be achieved in an acceptable period [1]. When we reduce the amount of heat absorbed, the discomfort in the cabin can be reduced. A 1D/3D based integrated computational methodology is developed to evaluate the impact of vehicle orientation on cabin climate control system performance and human comfort in this paper. Additionally, effects of glazing material and blinds opening/closing are analyzed to access the occupant thermal comfort during initial and final time AC pull down test.
2017-01-10
Technical Paper
2017-26-0370
G. Meenakshi, Nishit Jain, Sandeep Mandal
Abstract Automobile industry is shifting its focus from conventional fuel vehicles to NexGen vehicles. The NexGen vehicles have electrical components to propel the vehicle apart from mechanical system. These vehicles have a goal of achieving better fuel efficiency along with reduced emissions making it customer as well as environment friendly. Idle start-stop is a key feature of NexGen vehicles, where, the Engine ECU switches to engine stop mode while idling to cut the fuel consumption and increase fuel efficiency. Engine restarts when there is an input from driver to run the vehicle. There is always a clash between the Engine ECU and automatic climate control unit (Auto-AC) either to enter idle stop mode for better fuel efficiency or inhibit idle stop mode to keep the compressor running for driver comfort. This clash can be resolved in two ways: 1 Hardware change and,2 Software change Hardware change leads to increase in cost, validation effort and time.
Viewing 151 to 180 of 8625