Criteria

Display:

Results

Viewing 61 to 90 of 8625
2017-03-28
Technical Paper
2017-01-0499
Mingde Ding, Jiancai Liu PhD, Jianbo Su Sr, Zhiyuan He Sr, Benhong Tan Sr, Ligang Wang
Abstract Because of their high specific stiffness and strength, composite materials have been used in the structural of vehicles to provide a competitive advantage of through weight reduction while maintaining or even increasing functionality. Composite materials have been used for IP carrier which forms the skeleton of the cockpit and provides the base architecture off of which IP components are attached and function. Specially, composite materials using injection molding process have been used to develop IP carrier recently, due to high level of styling flexibility by that can achieve high degree integration and simplicity of process. However, for injection part especially for large part would deform largely. Consequently, deformation controlling is very important for large composite part that used injection molding. In this study mold flow analysis was conducted on the composite IP carrier structure which gets from the topology optimization result.
2017-03-28
Technical Paper
2017-01-0492
Mahendra Beera, Dinesh Pahuja, Arpit Kapila, Rajat Handa, Sandeep Raina
Abstract Plastic plays a major role in automotive interiors. Till now most of the Indian automobile industries are using plastics mainly to cover the bare sheet metal panels and to reduce the weight of the vehicle along with safety concerns. Eventually Indian customer requirement is changing towards luxury vehicles. Premium look and luxury feel of the vehicle plays an equal role along with fuel economy and cost. Interior cabin is the place where aesthetics and comfort is the key to attract customers. Door Trims are one of the major areas of interiors where one can be able to provide premium feeling to the customer by giving PVC skin and decorative inserts. This paper deals with different types of PVC skins and its properties based on process constraints, complexity of the inserts. Door trim inserts can be manufactured by various methods like adhesive pasting, thermo-compression molding and low pressure injection molding process etc.
2017-03-28
Technical Paper
2017-01-0493
Li Lu, Sean West, Stacey Raines, Jin Zhou, Paul Hoke, Yi Yang Tay
Abstract Traditionally, Knee Air Bag (KAB) is constructed of a woven nylon or polyester fabric. Recently, Ford developed an injection molded air bag system for the passenger side called Active Glove Box (AGB). This system integrates a plastic bladder welded between the glove box outer and inner doors. This new system is smaller and lighter, thus improving the roominess and other creature comforts inside the passenger cabin while providing equivalent restraint performance as traditional knee airbag system. This patented technology allows positioning of airbags in new locations within the vehicle, thus giving more freedom to designers. The first application of this technology was standard equipment on the 2015 Ford Mustang. Given that this technology is first in the industry, it was a challenge to design, test and evaluate the performance of the system as there is no benchmark to compare this technology. A CAE driven design methodology was chosen to overcome this challenge.
2017-03-28
Technical Paper
2017-01-0494
Michael Christian Haverkamp, Anja Moos
Abstract Material authenticity is an important factor for appearance and perceived quality of the vehicle interior. The term authenticity implies ambivalence: For the product designer, it means identification and trueness of the origin of the material. The customers, however, can only access information on the nature of the materials via their own perception of surface features. Thus, the intended authenticity of a material always needs to be conveyed by its surface. Specific cases illustrate the context: 1. The customer touches a part of known matter, but various layers prevent from directly touching the natural material: e.g. leather at the steering wheel, applications of wood. 2. Perception of a thin surface layer indicates authentic material, which is not fulfilled by the whole part: e.g. plastic parts plated with metal. 3.
2017-03-28
Technical Paper
2017-01-0328
Yunkai Gao, Genhai Wang, Jingpeng Han
Abstract The multi-body dynamics simulation and physical iteration were carried out based on the 4-channel road simulation bench, the solution of fatigue test bench which was suitable for cab with frame and suspension was designed. Large load and displacement above the suspension can be loaded on the test bench, and the same weak position of cab exposed on the road test can be assessed well on the fatigue test bench. The effectiveness of the bench test solution was verified though comparative study. And it has important reference for the same type of cab assembly with suspension in the fatigue bench test. According to the durability specifications of cab assembly, a multi-body dynamics model with a satisfactory accuracy was built. And the fixture check and virtual iteration analysis were used to verify the effectiveness of the solution. According to the road load signal analysis and multi-body dynamics analysis results, the test bench with linear guide and spherical joint was built.
2017-03-28
Technical Paper
2017-01-0251
Suneel Kumar Sharma, Ashish Kumar Sahu, Subhash Bhosale
Stringent emission norms by government and higher fuel economy targets have urged automotive companies to look beyond conventional methods of optimization to achieve an optimal design with minimum mass, which also meets the desired level of performance targets at the system as well as at vehicle level. In conventional optimization method, experts from each domain work independently to improve the performance based on their domain knowledge which may not lead to optimum design considering the performance parameters of all domain. It is time consuming and tedious process as it is an iterative method. Also, it fails to highlight the conflicting design solutions. With an increase in computational power, automotive companies are now adopting Multi-Disciplinary Optimization (MDO) approach which is capable of handling heterogeneous domains in parallel. It facilitates to understand the limitations of performances of all domains to achieve good balance between them.
2017-03-28
Technical Paper
2017-01-0184
Miyoko Oiwake, Ozeki Yoshiichi, Sogo Obata, Hideaki Nagano, Itsuhei Kohri
Abstract In order to develop various parts and components for hybrid electric vehicles, understanding the effect of their structure and thermal performance on their fuel consumption and cruising distance is essential. However, this essential information is generally not available to suppliers of vehicle parts and components. In this report, following a previous study of electric vehicles, a simple method is proposed as the first step to estimate the algorithm of the energy transmission and then the cruising performance for hybrid electric vehicles. The proposed method estimates the cruising performance using only the published information given to suppliers, who, in general, are not supplied with more detailed information. Further, an actual case study demonstrating application of the proposed method is also discussed.
2017-03-28
Technical Paper
2017-01-0181
Benny Johnson William, Agathaman Selvaraj, Manjeet Singh Rammurthy, Manikandan Rajaraman, V. Srinivasa Chandra
Abstract The modern day automobile customers’ expectations are sky-high. The automotive manufacturers need to provide sophisticated, cost-effective comfort to stay in this competitive world. Air conditioning is one of the major features which provides a better comfort but also adds up to the increase in operating fuel cost of vehicle. According to the sources the efficiency of internal combustion engine is 30% and 70% of energy is wasted to atmosphere. The current Air conditioners in automobiles use Vapour compression system (VCS) which utilizes a portion of shaft power of the engine at its input; this in turn reduces the brake power output and increases the specific fuel consumption (SFC) of the engine. With the current depletion rate of fossil fuels, it is necessary to conserve the available resources and use it effectively which also contributes to maintain a good balance in greenhouse effect thus protecting the environment.
2017-03-28
Technical Paper
2017-01-0179
Saravanan Sambandan, Manuel Valencia, Sathish Kumar S
Abstract In an automotive air-conditioning (AC) system, the heater system plays a major role during winter condition to provide passenger comforts as well as to clear windshield defogging and defrost. In order to meet the customer satisfaction the heater system shall be tested physically in severe cold conditions to meet the objective performance in wind tunnel and also subjective performance in cold weather regions by conducting on road trials. This performance test is conducted in later stage of the program development, since the prototype or tooled up parts will not be available at initial program stage. The significance of conducting the virtual simulation is to predict the performance of the HVAC (Heating ventilating air-conditioning) system at early design stage. In this paper the development of 1D (One dimensional) model with floor duct systems and vehicle cabin model is studied to predict the performance. Analysis is carried out using commercial 1D simulation tool KULI®.
2017-03-28
Technical Paper
2017-01-0177
Lili Feng, Predrag Hrnjak
Abstract This paper presents the study of refrigerant charge imbalance between A/C (cooling) mode and HP (heating) mode of a mobile reversible system. Sensitivities of cooling and heating capacity and energy efficiency with respect to refrigerant charge were investigated. Optimum refrigerant charge level for A/C mode was found to be larger than that for HP mode, primarily due to larger condenser size in A/C mode. Refrigerant charge retention in components at both modes were measured in the lab by quick close valve method. Modeling of charge retention in heat exchangers was compared to experimental measurements. Effect of charge imbalance on oil circulation was also discussed.
2017-03-28
Technical Paper
2017-01-0176
B. Vasanth, Uday Putcha, S. Sathish Kumar, Ramakrishna nukala, Murali Govindarajalu
The main function of mobile air conditioning system in a vehicle is to provide the thermal comfort to the occupants sitting inside the vehicle at all environmental conditions. The function of ducts is to get the sufficient airflow from the HVAC system and distribute the airflow evenly throughout the cabin. In this paper, the focus is to optimize the rear passenger floor duct system to meet the target requirements through design for six sigma (DFSS) methodology. Computational fluid dynamics analysis (CFD) has been used extensively to optimize system performance and shorten the product development time. In this methodology, a parametric modeling of floor duct design using the factors such as crossectional area, duct length, insulation type, insulation thickness and thickness of duct were created using CATIA. L12 orthogonal design array matrix has been created and the 3D CFD analysis has been carried out individually to check the velocity and temperature.
2017-03-28
Technical Paper
2017-01-0175
Jing He, Bill Johnston, Debasish Dhar, Loren Lohmeyer
The natural refrigerant, R744 (CO2), remains a viable solution to replace the high GWP refrigerant R134a which is to be phased out in light-duty vehicles in EU and US market. In this study, thermodynamic analysis is performed on a R744 parallel compression system to evaluate its potential in automotive climate control. The model adopts a correlation of isentropic efficiency as a function of compression ratio based on a prototype R744 MAC compressor and accounts for the operating limits defined in the latest DIN specifications. Optimization is run over typical MAC operating conditions which covers both transcritical and subcritical domain. Comparing to the conventional single compression cycle, effectiveness of parallel compression is found most pronounced in low evaporating temperature and high ambient conditions, with up to 21% increase in COP and 5.3 bar reduction in discharge pressure observed over the considered parametric range.
2017-03-28
Technical Paper
2017-01-0174
Ravi Rungta, Noori Pandit
Abstract A simple and rapid immersion type corrosion test has been successfully developed that discriminates corrosion performance in condensers from various suppliers and with differing manufacturing processes. The goal is to develop a test specification that will be included in the Ford corrosion specification for condensers so that condensers received from various suppliers may be evaluated rapidly for their relative corrosion performance to each other. Sections from condensers from Supplier A (tube is silfluxed), Supplier B (tube is zinc arc sprayed), and Supplier C (bare folded tube with no zinc for corrosion protection) were tested in 2% v/v hydrochloric acid for 16, 24 and 48 hours. The results showed that in terms of corrosion performance, zinc arc sprayed Supplier B condenser performed the worst while Supplier C condenser performed the best with Supplier A in between.
2017-03-28
Technical Paper
2017-01-0172
Suhas Venkatappa, Manfred Koberstein, Zhengyu Liu
Abstract The refrigerant transition from HFC-134a to HFO-1234yf has proven to be more challenging on controlling refrigerant flow-induced noises generated from automotive air-conditioning (A/C) systems than originally anticipated. The objectives of this paper are to describe the noise issues with HFO-1234yf, understand the mechanisms and key factors affecting HFO-1234yf refrigerant flow-induced noise. Finally, the countermeasures and guidelines for attenuating and suppressing the noise are presented.
2017-03-28
Technical Paper
2017-01-0167
Steven Lambert, William Jamo, Mike Kurtz
Abstract The failure of an A/C system often results in the introduction of contaminants to the A/C system. The sources of the contaminants include debris from damaged components and debris from the surrounding environment. Returning the A/C system to service requires the removal of these contaminants from any reused components. The recommended approach to cleaning contaminated components and systems is to flush with a solvent flushing machine. Previous internal studies have concluded that solvent flushing will remove all contaminants, restoring component and system performance. Many commercial refrigerant recovery and recharge machines include a refrigerant “flush” feature which can flush oil from the system and components with the systems refrigerant. The effectiveness of using the “flush” feature of a refrigerant recovery and recharge machine with an added in-line filter to remove contaminants is investigated.
2017-03-28
Technical Paper
2017-01-0168
B. Vasanth, Muthukumar Arunachalam, Sathya Narayana, S. Sathish Kumar, Murali govindarajalu
In current scenario, there is an increasing need to have faster product development and achieve the optimum design quickly. In an automobile air conditioning system, the main function of HVAC third row floor duct is to get the sufficient airflow from the rear heating ventilating and air-conditioning (HVAC) system and to provide the sufficient airflow within the leg locations of passenger. Apart from airflow and temperature, fatigue strength of the duct is one of the important factors that need to be considered while designing and optimizing the duct. The challenging task is to package the duct below the carpet within the constrained space and the duct should withstand the load applied by the passenger leg and the luggage. Finite element analysis (FEA) has been used extensively to validate the stress and deformation of the duct under different loading conditions applied over the duct system.
2017-03-28
Technical Paper
2017-01-0164
Venkatesan Muthusamy, S. Sathish Kumar, Saravanan Sambandan
Abstract In an automotive air-conditioning (AC) system, upfront prediction of the cabin cool down rate in the initial design stage will help in reducing the overall product development (PD) time. Vehicle having higher seating capacity will have higher thermal load and providing thermal comfort to all passengers uniformly is a challenging task for the automotive HVAC (Heating Ventilation and Air conditioning) industry. Dual HVAC unit is generally used to provide uniform cooling to a large cabin volume. One dimensional (1D) simulation is being extensively used to predict the HVAC performance during the initial stage of PD. The refrigerant loop with components such as compressor, condenser, TXV and evaporator was modeled. The complicated vehicle cabin including the glazing surfaces and enclosures were modeled as a three row duct system using 1D tool AMESim®. The material type, density, specific heat capacity and thermal conductivity of the material were specified.
2017-03-28
Technical Paper
2017-01-0163
Gursaran D. Mathur
The author has developed a model that can be used to predict build-up of cabin carbon dioxide levels for automobiles based on many variables. There are a number of parameters including number of occupants that dictates generation of CO2 within the control volume, cabin leakage (infiltration or exfiltration) characteristics, cabin volume, blower position or airflow rate; vehicle age, etc. Details of the analysis is presented in the paper. Finally, the developed model has been validated with experimental data. The simulated data follows the same trend and matches fairly well with the experimental data.
2017-03-28
Technical Paper
2017-01-0166
Noori Pandit
Abstract The effects of substituting a 12 mm thick subcool on top condenser in place of a 16 mm subcool on bottom condenser are evaluated in a vehicle level AC pull down test. The A to B testing shows that a thinner condenser with subcool on top exhibits no degradation in AC performance while resulting in a lower total system refrigerant charge. The results are from vehicle level tests run in a climatically controlled vehicle level wind tunnel to simulate an AC pull down at 43°C ambient. In addition to cabin temperature and AC vent temperatures, comparison of compressor head pressures was also done. The conclusion of the study was that a standard 16 mm thick subcool on bottom IRD condenser can be replaced by a 12 mm thick subcool on top IRD condenser with no negative effects on performance.
2017-03-28
Technical Paper
2017-01-0159
Peng Liu, Ge-Qun Shu, Hua Tian, Xuan Wang, Dongzhan Jing
Abstract The environmental issues combined with the rising of crude oil price have attracted more interest in waste heat recovery of marine engine. Currently, the thermal efficiency of marine diesels only reaches 48~51%, and the rest energy is rejected to the environment. Meanwhile, energy is required when generating electricity and cooling that are necessary for vessels. Hence, the cogeneration system is treated as the promising technology to conform the strict environment regulation while offering a high energy utilization ratio. In this paper, an electricity and cooling cogeneration system combined of Organic Rankine Cycle (ORC) and Absorption Refrigeration Cycle (ARC) is proposed to recover waste heat from marine engine. ORC is applied to recover exhaust waste heat to provide electricity while ARC is used to utilize condensation heat of ORC to produce additional cooling.
2017-03-28
Technical Paper
2017-01-0160
Longjie Xiao, Tianming He, Gangfeng Tan, Bo Huang, Xianyao Ping
Abstract While the car ownership increasing all over the world, the unutilized thermal energy in automobile exhaust system is gradually being realized and valued by researchers around the world for better driving energy efficiency. For the unexpected urban traffic, the frequent start and stop processes as well as the acceleration and deceleration lead to the temperature fluctuation of the exhaust gas, which means the unstable hot-end temperature of the thermoelectric module generator (TEG). By arranging the heat conduction oil circulation at the hot end, the hot-end temperature’s fluctuation of the TEG can be effectively reduced, at the expense of larger system size and additional energy supply for the circulation. This research improves the TEG hot-end temperature stability by installing solid heat capacity material(SHCM) to the area between the outer wall of the exhaust pipe and the TEG, which has the merits of simple structure, none energy consumption and light weight.
2017-03-28
Technical Paper
2017-01-0161
Dandong Wang, Cichong Liu, Jiangping Chen
Abstract This study investigates the cycle performance and potential advantages of the replacement of fin-and-tube evaporator with parallel flow micro-channel evaporator, in R134a roof-top bus air conditioner (AC) system. The heat exchangers for bus AC system are featured by a stringent space height limitation. The configuration of inclined four piece or six piece micro-channel evaporators was proposed to satisfy this space requirement, instead of original two piece fin-and-tube evaporators. Additionally, the individual superheat control method with thermostatic expansive valve (TXV) in each evaporator was adopted to improve refrigerant distribution. Three kinds of micro-channel evaporators were designed and equipped in an 8-m roof-top bus AC system. Except the replacement of evaporators, TXV and connecting pipes, other cycle components were kept same.
2017-03-28
Technical Paper
2017-01-0162
Jun Li, Lili Feng, Pega Hrnjak
Abstract This paper presents the results of an experimental study to determine the effect of vapor-liquid refrigerant separation in a microchannel condenser of a MAC system. R134a is used as the working fluid. A condenser with separation and a baseline condenser identical on the air side have been tested to evaluate the difference in the performance due to separation. Two categories of experiments have been conducted: the heat exchanger-level test and the system-level test. In the heat exchanger-level test it is found that the separation condenser condenses from 1.6% to 7.4% more mass flow than the baseline at the same inlet and outlet temperature (enthalpy); the separation condenser condenses the same mass flow to a lower temperature than the baseline condenser does. In the system-level test, COP is compared under the same superheat, subcooling and refrigerating capacity. Separation condenser shows up to 6.6% a higher COP than the baseline condenser.
2017-03-28
Technical Paper
2017-01-0155
Yongbing Xu, Gangfeng Tan, Xuexun Guo, Xianyao Ping
Abstract The closed cabin temperature is anticipated to be cooled down when it is a bit hot inside the driving car. The traditional air-condition lowers the cabin temperature by frequently switching the status of the compressor, which increases the engine’s parasitic power and shortens the compressor’s service-life. The semiconductor auxiliary cooling system with the properties of no moving parts, high control precision and quick response has the potential to assist the on-board air-condition in modulating the cabin temperature with relative small ranges. Little temperature differences between the cabin and the outside environment means that the system energy consumption to ensure the occupant comfort is relatively low and the inefficiency could be made up by the renewable energy source.
2017-03-28
Technical Paper
2017-01-0157
Forrest Jehlik, Simeon Iliev, Eric Wood, Jeff Gonder
Abstract This work details two approaches for evaluating transmission warming technology: experimental dynamometer testing and development of a simplified transmission efficiency model to quantify effects under varied real world ambient and driving conditions. Two vehicles were used for this investigation: a 2013 Ford Taurus and a highly instrumented 2011 Ford Fusion (Taurus and Fusion). The Taurus included a production transmission warming system and was tested over hot and cold ambient temperatures with the transmission warming system enabled and disabled. A robot driver was used to minimize driver variability and increase repeatability. Additionally the instrumented Fusion was tested cold and with the transmission pre-heated prior to completing the test cycles. These data were used to develop a simplified thermally responsive transmission model to estimate effects of transmission warming in real world conditions.
2017-03-28
Technical Paper
2017-01-0158
Masaaki Nakamura, Koichi Machida, Kiyohiro Shimokawa
Abstract A diesel engine is advantageous in its high thermal efficiency, however it still wastes about 50% of total input energy to exhaust and cooling losses. A feasibility study of thermoacoustic refrigerator was carried out as one of the means to recuperate waste heat. The thermoacoustic refrigerator prototyped for this study showed a capability to achieve cooling temperature lower than -20 degree C, which indicated that the system has a potential to be used in refrigerator trucks not only for cargo compartment cooling but also for cabin cooling.
2017-03-28
Technical Paper
2017-01-0150
Ankit Kumar Shukla, Raj Dhami, Aashish Bhargava, Sanjay Tiwari
Abstract In the current landscape of commercial vehicle industry, fuel economy is one of the major parameter for fleet owner’s profitability as well as greenhouse gasses emission. Less fuel efficiency results in more fuel consumption; use of conventional fuel in engines also makes environment polluted. The rapid growth in fuel prices has led to the demand for technologies that can improve the fuel efficiency of the vehicle. Phase change material (PCMs) for Thermal energy storage system (TES) is one of the specific technologies that not only can conserve energy to a large extent but also can reduce emission as well as the dependency on convention fuel. There is a great variety of PCMs that can be used for the extensive range of temperatures, making them attractive in a number of applications in automobiles.
2017-03-28
Technical Paper
2017-01-0152
Gang Liu, Zheng Zhao, Hao Guan, Chunhui Zhang, Dingwei Gao, Yongwei Cao
Abstract Advanced technology of thermal management is an effective method to reduce fuel consumption. There are several different technologies for coolant control, for example, electric water pump, split cooling and coolant control module. Through 1D thermal management simulation, coolant control module was chose for the test due to the best benefit for fuel consumption under NEDC cycle. 1D thermal management simulation model includes vehicle, cooling system, lubrication system and detailed engine model with all friction components. Coolant control module is designed to fix on 2.0L turbocharger GDI gasoline and to control 5 coolant ways, including radiator, by-pass, engine oil cooler, cabin heater and transmission oil cooler. The prototype is designed and made. The function and strategy is verified on designed test-bed. The vehicle with coolant control module is running under NEDC cycle.
2017-03-28
Technical Paper
2017-01-0154
Sudhi Uppuluri, Hemant R Khalane, Ajay Naiknaware
Abstract With the upcoming regulations for fuel economy and emissions, there is a significant interest among vehicle OEMs and fleet managers in developing computational methodologies to help understand the influence and interactions of various key parameters on Fuel Economy and carbon dioxide emissions. The analysis of the vehicle as a complete system enables designers to understand the local and global effects of various technologies that can be employed for fuel economy and emission improvement. In addition, there is a particular interest in not only quantifying the benefit over standard duty-cycles but also for real world driving conditions. The present study investigates impact of exhaust heat recovery system (EHRS) on a typical 1.2L naturally aspirated gasoline engine passenger car representative of the India market.
2017-03-28
Technical Paper
2017-01-0144
Zhijia Yang, Song Lan, Richard Stobart, Edward Winward, Rui Chen, Iain Harber
Abstract The application of state-of-art thermoelectric generator (TEG) in automotive engine has potential to reduce more than 2% fuel consumption and hence the CO2 emissions. This figure is expected to be increased to 5%~10% in the near future when new thermoelectric material with higher properties is fabricated. However, in order to maximize the TEG output power, there are a few issues need to be considered in the design stage such as the number of modules, the connection of modules, the geometry of the thermoelectric module, the DC-DC converter circuit, the geometry of the heat exchanger especially the hot side heat exchanger etc. These issues can only be investigated via a proper TEG model. The authors introduced four ways of TEG modelling which in the increasing complexity order are MATLB function based model, MATLAB Simscape based Simulink model, GT-power TEG model and CFD STAR-CCM+ model. Both Simscape model and GT-Power model have intrinsic dynamic model performance.
Viewing 61 to 90 of 8625