Criteria

Display:

Results

Viewing 61 to 90 of 8579
2017-03-28
Technical Paper
2017-01-0732
Stijn Broekaert, Thomas De Cuyper, Michel De Paepe, Sebastian Verhelst
Abstract Homogeneous Charge Compression Ignition (HCCI) engines can achieve both a high thermal efficiency and near-zero emissions of NOx and soot. However, their maximum attainable load is limited by the occurrence of a ringing combustion. At high loads, the fast combustion rate gives rise to pressure oscillations in the combustion chamber accompanied by a ringing or knocking sound. In this work, it is investigated how these pressure oscillations affect the in-cylinder heat transfer and what the best approach is to model the heat transfer during ringing combustion. The heat transfer is measured with a thermopile heat flux sensor inside a CFR engine converted to HCCI operation. A variation of the mass fuel rate at different compression ratios is performed to measure the heat transfer during three different operating conditions: no, light and severe ringing. The occurrence of ringing increases both the peak heat flux and the total heat loss.
2017-03-28
Journal Article
2017-01-0011
Kesav Kumar Sridharan, Swaminathan Viswanathan
Abstract Current generation automobiles are controlled by electronic modules for performing various functions. These electronic modules have numerous semiconductor devices mounted on printed circuit boards. Solders are generally used as thermal interface material between surface mount devices and printed circuit boards (PCB) for efficient heat transfer. In the manufacturing stage, voids are formed in solders during reflow process due to outgassing phenomenon. The presence of these voids in solder for power packages with exposed pads impedes heat flow and can increase the device temperature. Therefore it is imperative to understand the effect of solder voids on thermal characteristics of semiconductor devices. But the solder void pattern will vary drastically during mass manufacturing. Replicating the exact solder void pattern and doing detail simulation to predict the device temperature for each manufactured module is not practical.
2017-03-28
Journal Article
2017-01-0126
Joshua W. Finn, John R. Wagner
Abstract Hybrid vehicle embedded systems and payloads require progressively more accurate and versatile thermal control mechanisms and strategies capable of withstanding harsh environments and increasing power density. The division of the cargo and passenger compartments into convective thermal zones which are independently managed can lead to a manageable temperature control problem. This study investigates the performance of a Peltier-effect thermoelectric zone cooling system to regulate the temperature of target objects (e.g., electronic controllers, auxiliary computer equipment, etc) within ground vehicles. Multiple thermoelectric cooling modules (TEC) are integrated with convective cooling fans to provide chilled air for convective heat transfer from a robust, compact, and solid state device. A series of control strategies have been designed and evaluated to track a prescribed time-varying temperature profile while minimizing power consumption.
2017-03-28
Journal Article
2017-01-1215
Peter Haussmann, Joachim Melbert
Abstract Battery safety is the most critical requirement for the energy storage systems in hybrid and electric vehicles. The allowable battery temperature is limited with respect to the battery chemistry in order to avoid the risk of thermal runaway. Battery temperature monitoring is already implemented in electric vehicles, however only cell surface temperature can be measured at reasonable cost using conventional sensors. The internal cell temperature may exceed the surface temperature significantly at high current due to the finite internal electrical and thermal cell resistance. In this work, a novel approach for internal cell temperature measurement is proposed applying on board impedance spectroscopy. The method considers the temperature coefficient of the complex internal cell impedance. It can be observed by current and voltage measurements as usually performed by standard battery management systems.
2017-03-28
Journal Article
2017-01-1213
Yilin Yin, Zhong Zheng, Song-Yul Choe
Abstract Analysis of thermal behavior of Lithium ion battery is one of crucial issues to ensure a safe and durable operation. Temperature is the physical quantity that is widely used for analysis, but limited for accurate investigations of behavior of heat generation of battery because of sensitivities affected by heat transfer in experiments. Calorimeter available commercially is widely used to measure the heat generation of battery, but does not follow required dynamics because of a relatively large thermal time constant given by cavity and a limited heat transfer capability. In this paper, we proposed a highly dynamic calorimeter that was constructed using two thermoelectric devices (TEMs). For the design of the calorimeter and its calibration, a printed circuit board (PCB) with the same size as the battery was used as a dummy load to generate controlled heat.
2017-03-28
Technical Paper
2017-01-1725
Tanawat Tessathan, Chutiphon Thammasiri, Prabhath De Silva, Rehan Hussain, Nuksit Noomwongs
Abstract It is common for users of commuting passenger cars in Thailand to use the vehicle’s HVAC (Heating, Ventilating and Air Conditioning) system predominantly in recirculation (REC) mode. This minimizes the compressor work, thereby saving fuel, and reduces dust and odor infiltration into the vehicle cabin. The car windows are rarely opened for ventilation purposes, except for exchanges at service stations such as garage entrances and tollway booths. As such, there are few opportunities for fresh air to enter the cabin with the consequent accumulation of CO2 in vehicle cabins due to occupants’ exhalations being well documented. Field experiments conducted showed that the in-vehicle CO2 concentrations could reach up to 15 times that of the ambient concentration level during typical city commutes. Preliminary experiments were also conducted to quantify the air exchanges between the cabin and the ambient when the doors are opened for occupant egression.
2017-03-28
Technical Paper
2017-01-1036
Silvia Marelli, Simone Gandolfi, Massimo Capobianco
Abstract In the last few years, the effect of diabatic test conditions on compressor performance maps has been widely investigated leading some Authors to propose different correction models. The aim of the paper is to investigate the effect of heat transfer phenomena on the experimental definition of turbocharger maps, focusing on turbine performance. An experimental investigation on a small turbocharger for automotive application has been carried out and presented. The study focused onto the effects of internal heat transfer on turbine thermomechanical efficiency. The experimental campaign was developed considering the effect of different heat transfer state by varying turbine inlet temperature, oil and coolant temperature and compressor inlet pressure. An original model previously developed by the Authors is adopted for the correction of compressor steady flow maps.
2017-03-28
Journal Article
2017-01-1046
Christian Binder, Fahed Abou Nada, Mattias Richter, Andreas Cronhjort, Daniel Norling
Abstract Diesel engine manufacturers strive towards further efficiency improvements. Thus, reducing in-cylinder heat losses is becoming increasingly important. Understanding how location, thermal insulation, and engine operating conditions affect the heat transfer to the combustion chamber walls is fundamental for the future reduction of in-cylinder heat losses. This study investigates the effect of a 1mm-thick plasma-sprayed yttria-stabilized zirconia (YSZ) coating on a piston. Such a coated piston and a similar steel piston are compared to each other based on experimental data for the heat release, the heat transfer rate to the oil in the piston cooling gallery, the local instantaneous surface temperature, and the local instantaneous surface heat flux. The surface temperature was measured for different crank angle positions using phosphor thermometry.
2017-03-28
Technical Paper
2017-01-0075
Shinya Kitayama, Toshiyuki Kondou, Hirokazu Ohyabu, Masaaki Hirose, Haneda Narihiro, Ryuta Maeda
Abstract In the future, autonomous vehicles will be realized. It is assumed that traffic accidents will be caused by the overconfidence to the autonomous driving system and the lack of communication between the vehicle and the pedestrian. We propose that one of the solutions is a display system to give the information the state of vehicle to pedestrians. In this paper, we studied how the information influences the motion of pedestrians. The vehicle gives the information, which is displayed on road by using of color light (red, yellow and blue), of the collision risk determined by the TTC (Time to Collision). The pedestrian is ordered to cross the road in several cases of the TTC. In the presence of the TTC information, the number of the pedestrians, who did not cross the road in the case of short TTC (red light is displayed), increased from 52% to 67%. It is cleared that the pedestrians determined whether they crossed the road or not by the information effectively.
2017-03-28
Technical Paper
2017-01-0125
Marco Pizzi, Mauro Zorzetto, Alberto Barbano, Piercarlo Merlano, Luca Vercellotti
Abstract The emission reduction in gasoline and diesel engines is driving the introduction of systems implementing additives in liquid form: in particular water for injection systems in gasoline engines and urea solutions (AD-blue) in SCR (Selective Catalytic Reduction) systems in diesel engines. Owing to water and AD-Blue can freeze in the car operative temperature range, the tanks must be equipped with heaters to guarantee a sufficient amount of additives in liquid form. Currently used technologies are ceramic PTC (Positive Temperature Coefficient) elements and distributed metal resistors. Ceramic PTC based heaters concentrate all the power in small volumes. They need thermally conductive elements distributing the power over a wide area. The assembly is complex and the cost of the metal parts and related packaging technologies used to insulate the heater from the environment (water or urea) is typically high. Metal resistors are cheaper but must be controlled in current.
2017-03-28
Technical Paper
2017-01-0129
Sinya Miura, Takashi YASUDA
Abstract In general, CFD analysis with porous media is precise enough to simulate airflow behavior in a heat exchanger core, placed in the vehicle. In a case when the airflow behavior is complex, however, the precision lowers according to our study. Therefore, we developed a new modeling method to keep high-precision and applied it to analysis of airflow in the vehicle. The concept is at first that the shape of tubes and the distance between the tubes are as the actual product so that the airflow with an oblique angle is to pass through a core. With this concept, airflow with an oblique angle hits the surface of tubes and passes through a core with changing the direction. Next, the concept is to reproduce the air pressure loss in actually-shaped fins, and therefore, we use a porous medium for the modeling of the fins instead of the product shape modeling to combine with the the tubes.
2017-03-28
Technical Paper
2017-01-0134
Jan Eller, Heinrich Reister, Thomas Binner, Nils Widdecke, Jochen Wiedemann
Abstract There is a growing need for life-cycle data – so-called collectives – when developing components like elastomer engine mounts. Current standardized extreme load cases are not sufficient for establishing such collectives. Supplementing the use of endurance testing data, a prediction methodology for component temperature collectives utilizing existing 3D CFD simulation models is presented. The method uses support points to approximate the full collective. Each support point is defined by a component temperature and a position on the time axis of the collective. Since it is the only currently available source for component temperature data, endurance testing data is used to develop the new method. The component temperature range in this data set is divided in temperature bands. Groups of driving states are determined which are each representative of an individual band. Each of the resulting four driving state spaces is condensed into a substitute load case.
2017-03-28
Technical Paper
2017-01-0141
Ray Host, Peter Moilanen, Marcus Fried, Bhageerath Bogi
Abstract Future vehicle North American emissions standards (e.g., North American Tier 3 Bin 30 or LEVIII SULEV 30) require the exhaust catalyst to be greater than 80% efficient by 20 seconds after the engine has been started in the Federal Test Procedure. Turbocharged engines are especially challenged to deliver fast catalyst light-off since the presence of the turbocharger in the exhaust flow path significantly increases exhaust system heat losses. A solution to delivering cost effective SULEV 30 emissions in turbocharged engines is to achieve fast catalyst light-off by reducing exhaust system heat losses in cold start, without increasing catalyst thermal degradation during high load operation. A CAE methodology to assess the thermal performance of exhaust system hardware options, from the exhaust port to the catalyst brick face is described, which enables compliance with future emissions regulations.
2017-03-28
Technical Paper
2017-01-0144
Zhijia Yang, Song Lan, Richard Stobart, Edward Winward, Rui Chen, Iain Harber
Abstract The application of state-of-art thermoelectric generator (TEG) in automotive engine has potential to reduce more than 2% fuel consumption and hence the CO2 emissions. This figure is expected to be increased to 5%~10% in the near future when new thermoelectric material with higher properties is fabricated. However, in order to maximize the TEG output power, there are a few issues need to be considered in the design stage such as the number of modules, the connection of modules, the geometry of the thermoelectric module, the DC-DC converter circuit, the geometry of the heat exchanger especially the hot side heat exchanger etc. These issues can only be investigated via a proper TEG model. The authors introduced four ways of TEG modelling which in the increasing complexity order are MATLB function based model, MATLAB Simscape based Simulink model, GT-power TEG model and CFD STAR-CCM+ model. Both Simscape model and GT-Power model have intrinsic dynamic model performance.
2017-03-28
Technical Paper
2017-01-0142
Chunhui Zhang, Mesbah Uddin, Lee Foster
Abstract The demand for better fuel economy pushed by both consumer and Environmental Protection Agency (EPA), made OEMs to put more effort on other areas beside vehicle external aerodynamics. As one of these areas, under-hood aero-thermal management has taken an important role in the new road vehicle design process, due to the combination of growing engine power demands, utilization of sophisticated under-hood and underbody devices, and emission regulations. The challenge of the under-hood aerothermal management is not only due to the complexity of under-hood compartment, but also as a result of the complex heat transfer phenomena involving conduction, convention and thermal radiation. In this study, 3D CFD simulations were used to investigate the under-hood aerothermal flow features. The full vehicle model with detailed under-hood components used in this study is a Hyundai Veloster. A commercial CDF code Star-CCM+ version 11.04 from CD-adapco was used to run all the simulations.
2017-03-28
Technical Paper
2017-01-0143
Neelakandan Kandasamy, Steve Whelan
Abstract During cabin warm-up, effective air distribution by vehicle climate control systems plays a vital role. For adequate visibility to the driver, major portion of the air is required to be delivered through the defrost center ducts to clear the windshield. HVAC unit deliver hot air with help of cabin heater and PTC heater. When hot air interacts with cold windshield it causes thermal losses, and windshield act as sink. This process may causes in delay of cabin warming during consecutive cabin warming process. Thus it becomes essential to predict the effect of different windscreen defrost characteristics. In this paper, sensitivity analysis is carried for different windscreen defrosts characteristics like ambient conditions, modes of operation; change in material properties along with occupant thermal comfort is predicted. An integrated 1D/3D CFD approach is proposed to evaluate these conditions.
2017-03-28
Technical Paper
2017-01-0152
Gang Liu, Zheng Zhao, Hao Guan, Chunhui Zhang, Dingwei Gao, Yongwei Cao
Abstract Advanced technology of thermal management is an effective method to reduce fuel consumption. There are several different technologies for coolant control, for example, electric water pump, split cooling and coolant control module. Through 1D thermal management simulation, coolant control module was chose for the test due to the best benefit for fuel consumption under NEDC cycle. 1D thermal management simulation model includes vehicle, cooling system, lubrication system and detailed engine model with all friction components. Coolant control module is designed to fix on 2.0L turbocharger GDI gasoline and to control 5 coolant ways, including radiator, by-pass, engine oil cooler, cabin heater and transmission oil cooler. The prototype is designed and made. The function and strategy is verified on designed test-bed. The vehicle with coolant control module is running under NEDC cycle.
2017-03-28
Technical Paper
2017-01-0150
Ankit Kumar Shukla, Raj Dhami, Aashish Bhargava, Sanjay Tiwari
Abstract In the current landscape of commercial vehicle industry, fuel economy is one of the major parameter for fleet owner’s profitability as well as greenhouse gasses emission. Less fuel efficiency results in more fuel consumption; use of conventional fuel in engines also makes environment polluted. The rapid growth in fuel prices has led to the demand for technologies that can improve the fuel efficiency of the vehicle. Phase change material (PCMs) for Thermal energy storage system (TES) is one of the specific technologies that not only can conserve energy to a large extent but also can reduce emission as well as the dependency on convention fuel. There is a great variety of PCMs that can be used for the extensive range of temperatures, making them attractive in a number of applications in automobiles.
2017-03-28
Technical Paper
2017-01-0157
Forrest Jehlik, Simeon Iliev, Eric Wood, Jeff Gonder
Abstract This work details two approaches for evaluating transmission warming technology: experimental dynamometer testing and development of a simplified transmission efficiency model to quantify effects under varied real world ambient and driving conditions. Two vehicles were used for this investigation: a 2013 Ford Taurus and a highly instrumented 2011 Ford Fusion (Taurus and Fusion). The Taurus included a production transmission warming system and was tested over hot and cold ambient temperatures with the transmission warming system enabled and disabled. A robot driver was used to minimize driver variability and increase repeatability. Additionally the instrumented Fusion was tested cold and with the transmission pre-heated prior to completing the test cycles. These data were used to develop a simplified thermally responsive transmission model to estimate effects of transmission warming in real world conditions.
2017-03-28
Technical Paper
2017-01-0156
Olaf Erik Herrmann, Matteo Biglia, Takashi YASUDA, Sebastian Visser
Abstract The coming Diesel powertrains will remain as key technology in Europe to achieve the stringent 2025 CO2 emission targets. Especially for applications which are unlikely to be powered by pure EV technology like Light Duty vehicles and C/D segment vehicles which require a long driving range this is the case. To cope with these low CO2 targets the amount of electrification e.g. in form of 48V Belt-driven integrated Starter Generator (BSG) systems will increase. On the other hand the efficiency of the Diesel engine will increase which will result in lower exhaust gas temperatures resulting in a challenge to keep the required NOx reduction system efficiencies under Real Drive Emissions (RDE) driving conditions. In order to comply with the RDE legislation down to -7 °C ambient an efficient thermal management is one potential approach.
2017-03-28
Technical Paper
2017-01-0155
Yongbing Xu, Gangfeng Tan, Xuexun Guo, Xianyao Ping
Abstract The closed cabin temperature is anticipated to be cooled down when it is a bit hot inside the driving car. The traditional air-condition lowers the cabin temperature by frequently switching the status of the compressor, which increases the engine’s parasitic power and shortens the compressor’s service-life. The semiconductor auxiliary cooling system with the properties of no moving parts, high control precision and quick response has the potential to assist the on-board air-condition in modulating the cabin temperature with relative small ranges. Little temperature differences between the cabin and the outside environment means that the system energy consumption to ensure the occupant comfort is relatively low and the inefficiency could be made up by the renewable energy source.
2017-03-28
Technical Paper
2017-01-0154
Sudhi Uppuluri, Hemant R Khalane, Ajay Naiknaware
Abstract With the upcoming regulations for fuel economy and emissions, there is a significant interest among vehicle OEMs and fleet managers in developing computational methodologies to help understand the influence and interactions of various key parameters on Fuel Economy and carbon dioxide emissions. The analysis of the vehicle as a complete system enables designers to understand the local and global effects of various technologies that can be employed for fuel economy and emission improvement. In addition, there is a particular interest in not only quantifying the benefit over standard duty-cycles but also for real world driving conditions. The present study investigates impact of exhaust heat recovery system (EHRS) on a typical 1.2L naturally aspirated gasoline engine passenger car representative of the India market.
2017-03-28
Technical Paper
2017-01-0161
Dandong Wang, Cichong Liu, Jiangping Chen
Abstract This study investigates the cycle performance and potential advantages of the replacement of fin-and-tube evaporator with parallel flow micro-channel evaporator, in R134a roof-top bus air conditioner (AC) system. The heat exchangers for bus AC system are featured by a stringent space height limitation. The configuration of inclined four piece or six piece micro-channel evaporators was proposed to satisfy this space requirement, instead of original two piece fin-and-tube evaporators. Additionally, the individual superheat control method with thermostatic expansive valve (TXV) in each evaporator was adopted to improve refrigerant distribution. Three kinds of micro-channel evaporators were designed and equipped in an 8-m roof-top bus AC system. Except the replacement of evaporators, TXV and connecting pipes, other cycle components were kept same.
2017-03-28
Technical Paper
2017-01-0160
Longjie Xiao, Tianming He, Gangfeng Tan, Bo Huang, Xianyao Ping
Abstract While the car ownership increasing all over the world, the unutilized thermal energy in automobile exhaust system is gradually being realized and valued by researchers around the world for better driving energy efficiency. For the unexpected urban traffic, the frequent start and stop processes as well as the acceleration and deceleration lead to the temperature fluctuation of the exhaust gas, which means the unstable hot-end temperature of the thermoelectric module generator (TEG). By arranging the heat conduction oil circulation at the hot end, the hot-end temperature’s fluctuation of the TEG can be effectively reduced, at the expense of larger system size and additional energy supply for the circulation. This research improves the TEG hot-end temperature stability by installing solid heat capacity material(SHCM) to the area between the outer wall of the exhaust pipe and the TEG, which has the merits of simple structure, none energy consumption and light weight.
2017-03-28
Technical Paper
2017-01-0158
Masaaki Nakamura, Koichi Machida, Kiyohiro Shimokawa
Abstract A diesel engine is advantageous in its high thermal efficiency, however it still wastes about 50% of total input energy to exhaust and cooling losses. A feasibility study of thermoacoustic refrigerator was carried out as one of the means to recuperate waste heat. The thermoacoustic refrigerator prototyped for this study showed a capability to achieve cooling temperature lower than -20 degree C, which indicated that the system has a potential to be used in refrigerator trucks not only for cargo compartment cooling but also for cabin cooling.
2017-03-28
Technical Paper
2017-01-0159
Peng Liu, Ge-Qun Shu, Hua Tian, Xuan Wang, Dongzhan Jing
Abstract The environmental issues combined with the rising of crude oil price have attracted more interest in waste heat recovery of marine engine. Currently, the thermal efficiency of marine diesels only reaches 48~51%, and the rest energy is rejected to the environment. Meanwhile, energy is required when generating electricity and cooling that are necessary for vessels. Hence, the cogeneration system is treated as the promising technology to conform the strict environment regulation while offering a high energy utilization ratio. In this paper, an electricity and cooling cogeneration system combined of Organic Rankine Cycle (ORC) and Absorption Refrigeration Cycle (ARC) is proposed to recover waste heat from marine engine. ORC is applied to recover exhaust waste heat to provide electricity while ARC is used to utilize condensation heat of ORC to produce additional cooling.
2017-03-28
Journal Article
2017-01-0130
Phillip Bonkoski, Amey Y. Karnik, Adrian Fuxman
Abstract Control of vehicle powertrain thermal management systems is becoming more challenging as the number of components is growing, and as a result, advanced control methods are being investigated. Model predictive control (MPC) is particularly interesting in this application because it provides a suitable framework to manage actuator and temperature constraints, and can potentially leverage preview information if available in the future. In previous SAE publications (2015-01-0336 and 2016-01-0215), a robust MPC control formulation was proposed, and both simulation and powertrain thermal lab test results were provided. In this work, we discuss the controller deployment in a vehicle; where controller validation is done through road driving and on a wind tunnel chassis dynamometer. This paper discusses challenges of linear MPC implementation related to nonlinearities in this over-actuated thermal system.
2017-03-28
Journal Article
2017-01-0180
Jun Li, Pega Hrnjak
Abstract This paper introduces the concept of separation of two-phase flow in condenser as a way to improve condenser efficiency. The benefits of vapor-liquid refrigerant separation and the reason why it will improve the condenser performance are explained. Numerical studies are presented on the effects of separation on performance of an R134a microchannel condenser, with the comparison to experiment data. Model predicts that at the same mass flow rate, the exit temperature is lower by 2.2 K in the separation condenser compared with that in the baseline. Up to 9% more flow rate of condensate is also predicted by the model in the separation condenser. Experiment results confirm the same trend. In addition, the reason why a certain circuiting of passes with pre-assumed separation results in the header improves the condenser is investigated by the model and results are presented.
2017-03-28
Journal Article
2017-01-0495
Michael Christian Haverkamp
Abstract The vehicle interior constitutes the multi-sensory environment of driver and passengers. Beside overall design and execution, materials and its surfaces are of specific interest to the customer. They are not only needed to fulfil technical functions, but are in direct focus of the customer’s perception. The perceived quality is based on all sensory data collected by the human perceptual system. Surfaces express design intent and craftsmanship by their visual appearance. Haptic features supervene when materials are touched. And even smell has an influence on the perception of ambience. Although sound is generated nearly every time when fingers slide across a surface, touch-sounds have been disregarded so far. In various cases, these contact sounds are clearly audible. As essential sound responses to haptic activity, they can degrade perceived quality. A method has been developed for a standardized generation of touch-sounds.
2017-03-28
Technical Paper
2017-01-0494
Michael Christian Haverkamp, Anja Moos
Abstract Material authenticity is an important factor for appearance and perceived quality of the vehicle interior. The term authenticity implies ambivalence: For the product designer, it means identification and trueness of the origin of the material. The customers, however, can only access information on the nature of the materials via their own perception of surface features. Thus, the intended authenticity of a material always needs to be conveyed by its surface. Specific cases illustrate the context: 1. The customer touches a part of known matter, but various layers prevent from directly touching the natural material: e.g. leather at the steering wheel, applications of wood. 2. Perception of a thin surface layer indicates authentic material, which is not fulfilled by the whole part: e.g. plastic parts plated with metal. 3.
Viewing 61 to 90 of 8579