Criteria

Text:
Topic:
Content:
Display:

Results

Viewing 1 to 30 of 200
2017-10-26
WIP Standard
AS23053/10A
SCOPE IS UNAVAILABLE.
CURRENT
2017-08-14
Standard
J1355_201708
This SAE Recommended Practice describes a laboratory test procedure for measuring the thickness of various resilient insulating padding materials that are used in the automotive industry. Such padding materials may include synthetic or non-synthetic materials, fibrous or cellular materials, high loft or compressed materials, single layer homogeneous or multilayer products, low and high surface density products. Some of these samples may be deformable and elastic, high loft thermal and acoustical fibrous materials, as well. The test method described herein has been developed to establish a means of a uniform procedure for measuring the thickness of different types of samples not only for application to all ground vehicles, but also may be applicable to other situations or conditions. The test method is designed to measure the thickness of flat samples and not formed parts. This test method does not purport to address all of the safety concerns, if any, associated with its use.
CURRENT
2017-08-11
Standard
J2846_201708
This SAE Recommended Practice describes a laboratory test procedure for measuring the acoustical performance of a system consisting of a body cavity filler material formed into a rectangular cross-section channel. Materials for this test may include both heat reactive and chemically reactive products, with or without a shelf to simulate a baffle in an application, or a combination of body cavity filler and aluminum foil to enhance the performance. These materials are commonly installed in transportation systems such as ground vehicles, and thus reduce the noise propagation through the rails, rockers, and pillar/posts. This document is intended to rank order the acoustical performance of materials for application on channels using general automotive steel, such that the effects of sealing of pinch welds in addition to the material could be easily evaluated.
CURRENT
2017-07-24
Standard
ARP6216
This SAE Aerospace Recommended Practice (ARP) identifies the minimum requirements for the testing of insulated electrical wiring for on-aircraft, aeronautical and aerospace applications. The testing requirements defined herein, ensure that a wire fault can be found safely when using a high potential voltage tester (hipot). This test is intended to aid in finding a breach in the wire insulation, and not for the identification of the resistance of the insulation. The test method defined herein is limited to equipment which ia able to control and limit the DC output to 1500 VDC maximum. This type of wire dielectric tester is typically designed to trip on current leakage and not necessarily on arc detection. This test method is solely designed to identify gross/large wire insulation damage or degradation. For additional related information on this topic and related test methods, refer to the documents cited in Section 2.
CURRENT
2017-07-13
Standard
J1400_201707
This SAE Recommended Practice presents a test procedure for determining the airborne sound insulation performance of materials and composite layers of materials commonly found in mobility, industrial and commercial products under conditions of representative size and sound incidence so as to allow better correlation with in-use sound insulator performance. The frequency range of interest is typically 100 to 8000 Hz 1/3 octave-band center frequencies. This test method is designed for testing flat samples with uniform cross section, although in some applications the methodology can be extended to evaluate formed parts, pass-throughs, or other assemblies to determine their acoustical properties. For non-flat parts or assemblies where transmitted sound varies strongly across the test sample surface, a more appropriate methodology would be ASTM E90 (with a reverberant receiving chamber) or ASTM E2249 (intensity method with an anechoic or hemi-anechoic receiving chamber).
CURRENT
2017-03-15
Standard
J2302_201703
This procedure measures the resistance to radiant heat flow of insulating materials in sleeve, tubing or tape (collectively referred to as “sleeve”) form. The sleeve’s effectiveness (SE) is determined by measuring the difference in surface temperature of a flat black, single-diameter ceramic cylinder with and without the standard diameter sleeve at the specified temperature, position, and distance from the radiant heat source.
CURRENT
2017-03-02
Standard
AMS3593B
This specification covers an irradiated, thermally-stabilized, flame-resistant, modified-polyvinylidene-fluoride plastic in the form of extra-thin-wall tubing.
CURRENT
2017-03-01
Standard
AMS3582B
This specification covers a crosslinked polyvinyl chloride plastic in the form of flexible, thin-wall, heat-shrinkable tubing.
CURRENT
2017-02-28
Standard
AMS3683B
This specification covers a thermally-stabilized, irradiated, modified fluoropolymer in the form of very-thin-wall tubing.
Viewing 1 to 30 of 200

Filter

  • Standard
    200