Display:

Results

Viewing 1 to 30 of 965
2017-03-28
Technical Paper
2017-01-0497
Byoung-Keon Daniel Park, Matthew P. Reed
Reliable, accurate data on vehicle occupant characteristics could be used to personalize the occupant experience, potentially improving both satisfaction and safety. Recent improvements in 3D camera technology and increased use of cameras in vehicles offer the capability to effectively capture data on vehicle occupant characteristics, including size, shape, posture, and position. In previous work, the body dimensions of standing individuals were reliably estimated by fitting a statistical body shape model (SBSM) to data from a consumer-grade depth camera (Microsoft Kinect). In the current study, the methodology was extended to consider seated vehicle occupants. The SBSM used in this work was developed using laser scan data gathered from 147 children with stature ranging from 100 to 160 cm and BMI from 12 to 27 kg/m2 in various sitting postures.
2017-03-28
Technical Paper
2017-01-0496
Suhash Venkata Bingi, Sunit Chanana, Arpit Kapila, Rajat Handa, Mohd Rizwan, Sandeep Raina
Gone are the days when the sole purpose of an automobile was transportation. Automobiles have been evolving continuously to cater the demands of the customer in terms of aesthetics and luxury. Interiors play a major role in forming a luxurious impression on the minds of the customers. One of the popular ways to achieve this is to use decorative skins on the interior parts. In Automotive Industry, there are various methods in use for decorative skin application, out of which one of the most effective method in terms of both cost and quality is kimekomi process. This is a pasting technique in which Fabric/PVC is tucked into the specially provided groove on the main board of side door trim with the help of a Special Purpose Machine (SPM), thus eliminating the need for a separate door trim insert making this process cost effective.
2017-03-28
Technical Paper
2017-01-0493
Li Lu, Sean West, Stacey Raines, Jin Zhou, Paul Hoke
Traditionally, Knee Air Bag (KAB) is constructed of a woven nylon or polyester fabric. Recently, Ford developed an injection molded air bag system for the passenger side called Active Glove Box (AGB). This system integrates a bladder welded between the glove box outer and inner door. This new system is smaller and lighter, thus improving the roominess and other creature comforts inside the passenger cabin, while providing equivalent restraint performance as traditional knee airbag system. This patented technology allows positioning of airbags in new locations within the vehicle, thus giving more freedom to designers. The first application of this technology will be standard equipment on the 2015 Ford Mustang. Given that this technology is first in industry, it was a challenge to design, test and evaluate the performance of the system as there is no benchmark to compare the technology against. To overcome this challenge, a CAE driven design methodology was chosen.
2017-03-28
Technical Paper
2017-01-1304
Alejandro Rosas Vazquez, Fernando Paisano, Diego Santillan Gutierrez
For many years the use of in-mold fasteners has been avoided for various reasons including: not fully understand the load cases in the part, the fear for quality issues to occur, the need for servicing, or the lack of understanding the complexity of all failure modes. The most common solution has been the use of secondary operations to provide attachments, such as, screws, metal clips, heat staking, sonic welding or other methods which are ultimately a waste in the process and increase manufacturing costs. The purpose of this paper is to take the reader through a design process which allows for the design of in-molded attachment clips on plastic parts. The paper explores the design process for in-molded attachment clips starting with a design concept idea, testing the basic concept using a personal 3D printer, optimizing the design with physical tests and CAE analysis, and finally producing high resolution 3D prototypes for validation and tuning.
2017-03-28
Technical Paper
2017-01-1309
S. M. Akbar Berry, Hoda ElMaraghy PhD, Johnathan Line, Marc Kondrad
Modularity in product architecture and its importance in product development has become a critical discussion topic in the last few decades. Several Product Modularity definitions and prospects were discussed by many researchers, however, most of the definitions and concepts are proliferated such that it is difficult to apply one universal definition to every modular product architecture and in product development. Automotive seat modular design and key factors for consideration towards modular seat design and assemblies are the main objectives of this work. The primary objectives are focused around the most “natural segmentation” of the seat elements (i.e., cushions, backs, trims, plastics, head restraints, etc.) to enable the greatest ease of final assembly and greatest flexibility for scalable feature offerings around common assembly “hard-points.”
2017-03-28
Technical Paper
2017-01-0491
Hyerin Choi, Jaeyong Ko, JunHo Song, SeungKeon Woo
Recently, it is one of a major problem in automotive industry that wrinkles on seat interior occur at detaching between seat covering and padding material. To laminate seat trim cover and padding material is applied to thermoplastic composite material such as Web Hot Melt. Flame lamination is also using for seat trim cover and padding material lamination but it can be only applied on polyurethane padding and makes toxic substance. The purpose of this research verifies and suggests the way to improve seat appearance and heat resistance using polyurethane reactive (PUR) material of thermosetting plastic. Viscosity and melting temperature can be adjusted coating amount on padding material unlike traditional method to coat leather. We develop PUR that works on thin film at padding material and find optimum situation (method and amount) for seat trim cover and padding material. PUR is cross-linked by moisture concentration in the air and pressure.
2017-03-28
Technical Paper
2017-01-1305
Yucheng Liu, Jeremy Batte, Zachary Collins, Jennifer Bateman, John Atkins, Madelyn Davis, David Salley, Cindy L. Bethel, John Ball, Christopher Archibald
A robot mining system was designed to traverse the Martian chaotic terrain, excavate a minimum of 10 kg of Martian regolith and deposit the regolith into a collector bin within 10 minutes as part of the competition. A systems engineering approach was employed to conduct this design project. The designed mining robot consisted of two major components: (1) mechanical system and (2) control system. In this paper, design, prototyping, and assessment of the mechanical system are demonstrated. The final mining robot consists of an aluminum frame driven by four motors and wheels, and a scoop and lifting arm subsystem for collecting and depositing Martian regolith, which was powered by two computers and used two commercially-of-the-shelf sensors to navigate the Martian terrain. Engineering students and faculty from different engineering disciplines collaboratively participated in this effort.
2017-03-28
Technical Paper
2017-01-1308
Abhishek Softa, Anuj Shami, Rajdeep Singh Khurana
The automotive world is under constant challenge to go green or not harm our planet. Engineers are trying hard every day to meet this challenge. Increase in usage of personal transport is again a question for car producers. Every new car on road is increasing the carbon footprint. High fuel efficiency is one of the answers of this problem. Engineers all over the world are working on alternative and unconventional fuels, hybrid engines, fuel cells etc. As body designers we are solving this problem by new designs and usage of lightweight techniques. Car bodies are made lighter by optimizing old designs and by usage of different lightweight materials. In addition to this approach replacement of conventional material like steel by plastic (PU) is viable solution for this problem. This paper is focusing on the usage of new material and design concept. Areas of usage are roof rails that are used for improving vehicle aesthetics or as a load carrying structure or sometimes as both.
2017-03-28
Technical Paper
2017-01-1298
Kamlesh Yadav, Abhishek Sinha, Rajdeep Singh Khurana
Vehicle Hood being the face of a passenger car poses a challenge to meet the regulatory and aesthetic requirements. However, the urge to make a saleable product makes aesthetics a primary condition. This eventually makes the role of structure optimization much more important. A recent development in the Indian automotive industry, which is known for dynamics of cost competitive cars, has posed the challenge to make passenger cars meeting the regulation and having optimized cost. This work is application of structure optimization of Hood and design of peripheral parts for meeting pedestrian protection performance keeping the focus on having cost-effective solution. This paper discusses Headform compliance of the work done on one of the flagship model of Maruti Suzuki India Ltd., providing detailed analysis of the procedure followed from introduction stage of regulatory requirement in the project to final validation of the engineering intent.
2017-03-28
Technical Paper
2017-01-1300
Raj Jayachandran, Bhimaraddi Alavandi, Matt Niesluchowski, Erika Low, Yafang Miao, Yi Zhang
An engine cooling system in an automotive vehicle comprises of heat exchangers such as a radiator, charge air cooler, and oil coolers along with engine cooling fans. Typical automotive engine-cooling fan assembly includes an electric motor mounted on to a shroud that encloses radiator core. Typically a fan shroud is made of plastic material and holds one or two motors and is supported at four corners. One of the main drivers of a fan shroud design is Noise, Vibration, and Harshness requirements, without compromising the main function - airflow requirement for cooling. Usually, stiffness requirement is not given adequate attention in arriving at optimal design of a fan shroud. Research Council for Automotive Repairs (RCAR), based in Europe, issues vehicle ratings on the basis of its performance in Low Speed Damageability (LSD) tests. One such test is a 15kph, 40% offset rigid wall impact to the front of the vehicle.
2017-03-28
Technical Paper
2017-01-0492
Mahendra Beera, Dinesh Pahuja, Arpit Kapila, Rajat Handa, Sandeep Raina
Plastic plays a major role in automotive interiors. Till now most of the automobile industries are using plastics mainly to cover the bare sheet metal panels and to reduce the weight of the vehicle along with safety concerns. Now a day's customer requirement is changing towards luxury vehicles. Premium look and luxury feel of the vehicle plays an equal role along with fuel economy and cost. Interior cabin is the place where aesthetics and comfort is the key to attract customers. Door Trims are one of the major areas of interiors where one can be able to provide premium feeling to the customer by giving PVC skin and decorative inserts. This paper deals with different types of PVC skins and its construction based on process constraints, complexity of the inserts. Door trim inserts can be manufactured by various methods like adhesive pasting, Thermo -compression molding and low pressure injection molding etc.
2017-03-28
Technical Paper
2017-01-1303
Nobuhisa Yasuda, Shinichi Nishizawa, Maiko Ikeda, Tadashi Sakai
The purpose of this study is to validate a reverse engineering based design method for automotive trunk lid torsion bars (TLTB) in order to determine a free shape that meets a target closed shape as well as a specified torque. A TLTB is a trunk lid component that uses torsional restoring force to facilitate the lifting open of a trunk lid, as well as to maintain the open position. Bend points and torque at a closed trunk position are specified by a car maker. Conventionally, a TLTB supplier determines bend points of the free shape by rotating the given bend points from a closed position around a certain axis to satisfy the specified torque at the closed position. Bend points of a deformed TLTB shape in the closed position often do not match the target bend points given by a car maker when designed by the conventional method, which can potentially cause interference issues with surrounding components.
2017-03-28
Technical Paper
2017-01-1678
Joseph Antony John Selvaraj, Sivapalan Balanayagam
Modern Instrument Panel Clusters (IPC) are equipped with thin film transistor (TFT) based displays. Contrary to conventional IPCs with hard gauges and liquid crystal diode (LCD) displays, TFT displays offer versatile usage of display area with soft gauges, reconfigurable menus, tell tales, graphics and warning messages etc., At the same time, the number of possible screen combinations become huge and thereby display validation turn out to be one of the complex and time consuming tasks in IPC validation. The task becomes even more complex when change requests are to be incorporated during final phases of development stage. This paper provides a novel solution that helps to validate late changes with minimum effort and maximum accuracy.
2016-11-23
WIP Standard
AS407E
To specify minimum requirements for Fuel Flowmeters for use primarily in reciprocating engine powered civil transport aircraft, the operation of which may subject the instruments to the environmental conditions specified in Section 3.3. This Aeronautical Standard covers two basic types of instruments, or combinations thereof, intended for use in indicating fuel consumption of aircraft engines as follows: TYPE I - Measure rate of flow of fuel used. TYPE II - Totalize amount of fuel consumed or remaining.
2016-10-24
WIP Standard
J3132
This SAE Standard specifies the minimum performance recommendation for spark plugs intended for use in various internal combustion engines including Automotive, Marine, Motorcycle and Utility engine applications. This standard is not intended to supply information for spark plugs used in aircraft applications of any type.
2016-10-03
WIP Standard
ARP4102/12B
This document specifies requirements for an Airborne Landing Guidance System (ALGS) electronic device. This equipment shall derive relative aircraft position and situation information for flight along precision three-dimensional paths within the appropriate coverage area. The precision three-dimensional path may be an ILS straight-in look-alike path or a complex, curved path. The requirements are applicable to electronic devices capable of receiving signals or other information from one or more sources, including but not limited to ILS, MLS, GNSS, or IRU inputs.
2016-09-28
WIP Standard
ARP4102/13B
This document recommends criteria for a system designed to manage and communicate information via data link to support flight operations.
2016-09-28
WIP Standard
ARP4102/5SECT3A
This document recommends design criteria for the flight deck installation of electrically signaled flight control systems on fixed wing airplanes.
2016-09-28
WIP Standard
ARP4102/5SECT1A
This document recommends design criteria for the flight deck installation of electrically signaled engine control systems.
2016-09-28
WIP Standard
ARP4102/11D
This document recommends criteria for Airborne Windshear Systems, including operational objectives, characteristics and functional requirements. The recommendations of the document apply to transport aircraft, and describe the operational objectives of windshear alerting systems, situational displays, guidance systems and avoidance/detection systems.
2016-04-05
Technical Paper
2016-01-1370
Vali Farahani, Salamah Maaita, Aditya Jayanthi
Abstract During the course of automobile Instrument Panel (IP) design development, the occupant head impact CAE simulation on IP are routinely performed to validate FMVSS201 requirements. Based on FMVSS201 requirements, the potential head impact zones on the IP are first identified. Then, the head impact zones are used to locate the various target points that must be impacted on IP. Once the critical target locations on IP are chosen, there are several computational steps that are required to calculate impact angles and head form (HF) center of rotation in reference to target points. Then, CAE engineer performs a repetitive process that involves positioning each individual HF with proper impact angle, assigning initial velocity to HF, and defining surface contacts within the finite element model (FEM). To simplify these lengthy manual steps, a commercially available software HyperMesh® CAE software tool is used to automate these steps.
2016-04-05
Journal Article
2016-01-0524
Venkat Pisipati, Srikanth Krishnaraj, Amy McGuckin Webb, Pavankumar Reddy Kandukuri
Abstract The Automotive industry’s use of digital technology such as Computer Aided Engineering (CAE) to perform virtual validation has progressed to effectively replace a large percentage of physical validation. This is primarily due to the increased accuracy and cost/time efficiencies that virtual validation offers compared to conventional physical prototyping and testing. With product development (PD) cycles becoming more compressed, CAE has assumed a more significant role in early, advanced design and structural evaluation. One of the areas where CAE is widely employed is in development of the Instrument Panel (IP) commonly referred to as the dashboard. For the purposes of this study, the term IP represents the plastic/polymer structure only, and not the full IP sub-system. The IP sub-system includes the structural member, the Cross Car Beam (CCB) assembly and all the IP mounted modules.
2016-04-05
Journal Article
2016-01-0523
Lauren Abro
Abstract North American customer perception of Quality has changed over time and has shifted from Quality, Dependability, and Reliability (QDR) to Interior Sensory Quality (ISQ). ISQ is defined as the harmony of characteristics that combine to make an emotional connection to the vehicles’ interior. Vehicles need to correctly appeal to customers emotional side through providing class-leading ISQ. Hypotheses for specific interior areas were developed in order to identify key ISQ strengths, weaknesses, and preferences. These hypotheses were then tested at customer clinics held across the country. The key goals were to understand customer judgment of ISQ execution, understand customer ISQ priority, and understand customer preference of detailed component areas.
CURRENT
2016-03-16
Standard
AS50571B
This specification covers the general requirements for red and white individual instrument lights. This document has been streamlined. Appendix A to MIL-L-5057F lists those documents required for MIL-L-5057F acquisition and is a mandatory part of MIL-L-5057F. Those documents listed in Appendix A have the same status as those referenced directly in MIL-L-5057F (first tier documents). All other documents, referenced through tiering, may be used as guidance and information to supplement MIL-L-5057F. This document’s scope is limited to lamp source designs solely. Furthermore, the use of red lighting should not be considered for new design and included within this document to support requirements for existing military aircraft that still operate with this system of lighting.
CURRENT
2016-03-16
Standard
AS6296
This SAE Aerospace Standard (AS) specifies minimum performance standards for Electronic Flight Information System (EFIS) displays that are head-down and intended for use in the flight deck by the flight crew in all 14 CFR Part 23, 25, 27, and 29 aircraft. This document is expected to be used by multiple regulatory agencies as the basic requirement for a technical standard order for EFIS displays. The requirements and recommendations in this document are intended to apply to, but are not limited to, the following types of display functions: Primary Flight and Primary Navigation displays, including vertical situation and horizontal situation functions. Displays that provide flight crew alerts, which may include engine instrument, aircraft systems information/control. Control displays including communication, navigation and system control displays.
2016-02-10
WIP Standard
ARP4927A
This SAE Aerospace Recommended Practice (ARP) provides guidance to achieve the optimum integration of new aircraft systems which have an impact on the cockpit layout or crew operating procedures. This process may also be used for modification of existing cockpits.
2016-02-03
WIP Standard
ARP6377
Develop and propagate recommended practices for the design, development, testing and implementation of head worn displays in piloted airborne platforms
CURRENT
2016-02-03
Standard
J2976_201602
This recommended practice is intended to provide industry technical personnel with an overview of vehicle speedometer system accuracy and offset requirements and odometer system accuracy requirements. Speedometer and odometer systems covered by this document are integrated into a vehicle's electrical and electronics system, assembled directly into the vehicle by the OEM, and use rotational data from at least one vehicle wheel that is appropriately converted into longitudinal vehicle speed and distance traveled information. This standard is limited to radial ply tires on new (as manufactured) cars, light trucks, and medium duty trucks. Other methods for measuring vehicle speed and distance traveled may be used provided they meet the performance recommendations herein. Any local market regulatory requirements must be met and shall supersede this document. Service parts are beyond the scope of this recommended practice.
2016-02-01
Technical Paper
2016-28-0233
Sindhu Ls, Vishwas Vaidya
Abstract The OEM's aim is to reduce development time and testing cost, hence the objective behind this work is to achieve a flexible stateflow model so that changes in the application during supply chain or development, on adding/deleting any switches, varying timer cycle, changing the logic for future advancements or else using the logic in different application, would end in minimal changes in the chart or in its states which would reflect least changes in the code. This research is about designing state machine architecture for chime/buzzer warning system and wiper/washer motor control system. The chime/buzzer stateflow chart includes various input switches like ignition, parking, seat belt buckle, driver door and speed accompanied with warning in the form of LED, lamp and buzzer. The logic is differentiated according to gentle and strong warning. Various conditions and scenarios of the vehicle and driver are considered for driver door and seat belt which is resolved in the chart.
2016-01-25
WIP Standard
AIR6373
pilots, air traffic controllers, dispatchers, aviation meteorologists
Viewing 1 to 30 of 965

Filter