Viewing 1 to 30 of 727
Technical Paper
Matthias Busch, Benedikt Faupel
The integration of omega stringers to panels made of carbon fiber reinforced plastic (CFRP) by adhesive bonding, which are joined together in an autoclave, must be subject to high quality standards. Defects such as porosity, kissing bonds, voids or inclusion must be detected safely to guaranty the functionality of the component. Therefore, an inspection system is required to verify these bonds and detect different kinds of defects. In this contribution, the advantages of a robotic inspection system, which will be achieved through continuous testing, will be introduced. The testing method is the active thermography. The active thermography has major advantages compared with other non-destructive testing methods. Compared to testing with ultrasonic there is no coupling medium necessary, thus testing will be significantly enhanced.
WIP Standard
This SAE Aerospace Recommended Practice (ARP) is intended as a guide in establishing inspection procedures to determine the condition of inservice accumulators. A minimum inspection program is recommended to determine the existence of corrosion and damage. Recommendations are also provided for corrective action if it is determined that the environment is contributing to the deterioration of the surface protection system treatments.
This specification covers the technical requirements for SAE ITC AS series, blind, Aluminium alloy rivets that are self-plugging & have a mechanically locked, flush break stem, in both the plain & Lock Creator versions.
Technical Paper
Whitney Poling, Vesna Savic, Louis Hector, Anil Sachdev, Xiaohua Hu, Arun Devaraj, Fadi Abu-Farha
Abstract The strain-induced diffusionless shear transformation of retained austenite to martensite during straining of transformation induced plasticity (TRIP) assisted steels increases strain hardening and delays necking and fracture leading to exceptional ductility and strength, which are attractive for automotive applications. A novel technique that provides the retained austenite volume fraction variation with strain with improved precision is presented. Digital images of the gauge section of tensile specimens were first recorded up to selected plastic strains with a stereo digital image correlation (DIC) system. The austenite volume fraction was measured by synchrotron X-ray diffraction from small squares cut from the gage section. Strain fields in the squares were then computed by localizing the strain measurement to the corresponding region of a given square during DIC post-processing of the images recorded during tensile testing.
This specification establishes hardness and electrical conductivity acceptance criteria of finished or semi-finished parts of wrought aluminum alloys.
This specification covers a procedure for revealing the macrostructure and microstructure of selected titanium alloys.
WIP Standard
This standard presents the colors used by Government Activities in a format suitable for color selection, color matching and for quality control inspection. This document describes the designation and use of the color chips of this standard. Formats for color chip representation and precise color matching formats are as described below:
This code is intended only for the inspection and maintenance of lighting equipment on motor vehicles that are in use.
This standard presents the colors used by Government Activities in a format suitable for color selection, color matching and for quality control inspection. This document describes the designation and use of the color chips of this standard. Formats for color chip representation and precise color matching formats are as described below: Color Chip Representation, Fan Deck: Suitable for color identification and selection. Color Chip Representation, Color Book: Suitable for color identification, comparison and selection. Precise Color Matching, Individual Color Chips: A 3 × 5 inch color chip supplied in a 3 × 5 inch protective envelope, suitable for color matching and quality control inspection purposes. Precise Color Matching, Sets of Color Chips: A set containing one 3 × 5 inch color chip in its protective envelope for each Fed-Std-595 color, suitable for color matching and quality control inspection purposes.
Journal Article
Joshua Cemenska, Todd Rudberg, Michael Henscheid
Abstract In many existing AFP cells manual inspection of composite plies accounts for a large percentage of production time. Next generation AFP cells can require an even greater inspection burden. The industry is rapidly developing technologies to reduce inspection time and to replace manual inspection with automated solutions. Electroimpact is delivering a solution that integrates multiple technologies to combat inspection challenges. The approach integrates laser projectors, cameras, and laser profilometers in a comprehensive user interface that greatly reduces the burden on inspectors and decreases overall run time. This paper discusses the implementation of each technology and the user interface that ties the data together and presents it to the inspector.
Journal Article
Perla Maiolino, Richard A. J. Woolley, Atanas Popov, Svetan Ratchev
Abstract The assembly and manufacture of aerospace structures, in particular legacy products, relies in many cases on the skill, or rather the craftsmanship, of a human operator. Compounded by low volume rates, the implementation of a fully automated production facility may not be cost effective. A more efficient solution may be a mixture of both manual and automated operations but herein lies an issue of human error when stepping through the build from a manual operation to an automated one. Hence the requirement for an advanced automated assembly system to contain functionality for inline structural quality checking. Machine vision, used most extensively in manufacturing, is an obvious choice, but existing solutions tend to be application specific with a closed software development architecture.
This SAE Aerospace Standard (AS) establishes requirements for the manufacture and certification of tool steel rings for magnetic particle inspection.
WIP Standard
This recommended practice covers the procedures and method for establishing acceptance criteria when performing Barkhausen noise testing of surface-hardened steel components to detect grinding burns (metallurgical damage caused by over-heating) in bare or chromium-plated parts. Primarily for nondestructive testing of heat treated, high strength low-alloy steel parts which have been ground, in accordance with MIL-STD-866 or commercial standard, before or after chromium plating. This test method may be used as an independent test or to confirm grinding damage detected in accordance with AMS 2440 or MIL-STD-867 in bare or chromium plated components.
Conventional attribute sampling plans based upon nonzero acceptance numbers are no longer desirable. In addition, emphasis is now placed on the quality level that is received by the customer. This relates directly to the Lot Tolerance Percent Defective (LTPD) value or the Limiting Quality Protection of MIL-STD-105. Measuring quality levels in precent nonconforming, although not incorrect, has been replaced with quality levels measured in parts per million (PPM). As a result, this standard addresses the need for sampling plans that can augment MIL-STD-105, are based upon a zero acceptance number, and address quality (nonconformance) levels in the parts per million range. This document does not address minor nonconformances, which are defined as nonconformances that are not likely to reduce materially the usability of the unit of product for its intended purpose.
This specification covers two types of refined hydrocarbon compounds in the form of liquids.
WIP Standard
This specification covers the procedure for ultrasonic inspection of wrought titanium and titanium alloy products 0.25 inch (6.4 mm) and over in cross-section (thickness) or diameter.
Technical Paper
Marc Rosenbaum
Abstract A new generation of 3D inspection machines is now available to verify in line 3D dimensional conformity of complex parts - especially Powertrain ones - with accuracy down to 0.1 μm within manufacturing cycle time of large series. Inspecting in line 100% of production with an accuracy and at speed compatible with the most demanding part accuracy and fastest cycle time is presently already a reality for some large tier1 suppliers in Europe. Purpose of this paper is to introduce this breakthrough technology using state of the art non-contact sensing technology allied with innovative mechanics and the latest developments in 3D metrology software
Technical Paper
Oliver Scholz, Nikolas Doerfler, Lars Seifert, Uwe Zöller
Abstract Polymer seals are used throughout the automobile for a variety of purposes, and the consequences of a failure of such a seal can range from annoying in case of an A/C component to catastrophic in the case of brake components. With the constantly increasing demands for these components regarding e.g. pressure, tighter tolerances or new refrigerants come more stringent requirements for ensuring surface properties according to the specification for the specific application. While automatic inspection systems are available for a variety of defects, the area of seal inspection is still dominated by manual labor, partly because handling of these small, inexpensive parts is difficult and partly because visual coverage of the entire sealing surface poses a problem. It is also difficult for a human inspector to objectively assess whether or not a surface defect is critical, especially given that inspection of each seal must be completed within a few seconds.
This document covers the process to be applied to design characteristics (as defined in AS9102), parts or inspection processes as defined by the purchaser. Design characteristics not included within the scope include electronic, electromechanical or mechanical systems where alternative means of acceptance are approved such as through acceptance test procedures (ATPs). This document does not define processes for identifying or communicating the classification of the parts or design characteristics. This document does not define the procedure to qualify a supplier to undertake these requirements. It is expected that each purchaser will have a procedure to manage the flow-down of these requirements. This document applies to suppliers that demonstrate adequate proficiency in applicable process control methods as determined by the purchaser.
This document is for establishing tire removal criteria of on-wing civil aircraft tires only. This document is primarily intended for use with commercial aircraft but may be used on other categories of civil aircraft as applicable. The criteria are harmonized with the Care and Service Manuals of the tire manufacturers for both radial and bias tires.
This standard establishes the baseline requirements for performing and documenting FAI. Should there be a conflict between the requirements of this standard and applicable statutory or regulatory requirements, the applicable statutory or regulatory requirements shall take precedence.
WIP Standard
The purpose of this military standard is to provide uniform methods for the ultrasonic inspection of wrought metals and wrought metal products.
This specification details requirements and procedures for the detection of defects in aircraft and engine components during maintenance and overhaul operations.
This specification establishes the requirements for etch inspection of steel parts to detect overheating (rehardening or overtempering) caused by abusive machining or grinding, or to detect localized discontinuous carburization.
This specification establishes the classification, technical requirements, tests, and test procedures for the qualification, approval, and quality verification of all materials used in the liquid penetrant methods of inspection with the exception of those excluded in the application section.
This SAE Aerospace Recommended Practice (ARP) covers the requirements for the types of glass to be utilized in the fabrication of cover glasses and lighting wedges used in aerospace instruments. It defines the maximum extent of physical defects and recommends standard methods of inspection and evaluation. Definitions of terminology used in this document are covered in 2.2.
Technical Paper
Muralidhar Suryanarayan Bhat
This paper deals with setting of Inspection parameters for selected automotive transmission parts in various bench tests. This paper we are discuss about critical dimension's measured for particular type of test. It is not possible to measure all the dimensions of a component for doing a particular test. This is due to time constraints set by program delivery deadlines. From above statement it can be deduced that it is almost impossible to measure all dimensions of a component. A bench level test may consist of two major tests. They are maximum load test and gear shift durability test. The maximum load test deals with gear box durability test and torque carrying capacity of gearbox. Parameters to be measured for some of above parts will be identified. More importantly it will also identify see reasons for that parameter to be measured.
Technical Paper
Joshua Smith, Duncan Kochhar-Lindgren
Precision hole inspection is often required for automated aircraft assembly. Direct contact measurement has been proven reliable and accurate for over 20 years in production applications. At the core of the hole measurement process tool are high precision optical encoders for measurement of diameter and countersink depth. Mechanical contact within the hole is via standard 2-point split ball tips, and diametric data is collected rapidly and continuously enabling the system to profile the inner surface at 0 and 90 degrees. Hole profile, countersink depth, and grip length data are collected in 6 seconds. Parallel to the active process, auto-calibration is performed to minimize environmental factors such as thermal expansion. Tip assemblies are selected and changed automatically. Optional features include concave countersink and panel position measurement.
Viewing 1 to 30 of 727