Criteria

Text:
Topic:
Display:

Results

Viewing 1 to 30 of 2187
2017-03-28
Technical Paper
2017-01-0059
Barbaros Serter, Christian Beul, Manuela Lang, Wiebke Schmidt
Today, highly automated driving is paving the road for full autonomy. From basic cruise control to complex automated systems, there is a wide range of technology on the road and more highly automated systems are being rigorously tested that are soon going to be available to consumers. Highly automated vehicles can monitor the environment and make decisions more accurately and faster than humans to create safer driving conditions while ultimately achieving full automation to relieve the driver completely from participating in driving. As much as this transition from advanced driving assistance systems to fully automated driving will create frontiers for re-designing the in-vehicle experience for customers, it will continue to pose significant challenges for the industry as it did in the past and does so today.
2017-03-28
Technical Paper
2017-01-0264
Venkatesh Babu, Ravi Thyagarajan, Jaisankar Ramalingam
In this paper, the capability of three methods of modelling detonation of high explosives (HE) buried in soil viz., (1) coupled discrete element & particle gas methods (DEM-PGM) (2) Structured - Arbitrary Lagrangian-Eulerian (S-ALE), and (3) Arbitrary Lagrangian-Eulerian (ALE),are investigated. The ALE method of modeling the effects of buried charges in soil is well known and widely used in blast simulations today Due to high computational costs, inconsistent robustness and long run times, alternate modeling methods such as Smoothed Particle Hydrodynamics (SPH) and DEM are gaining more traction. In all these methods, accuracy of the analysis relies not only on the fidelity of the soil and high explosive models but also on the robustness of fluid-structure interaction. These high-fidelity models are also useful in generating fast running models (FRM) useful for rapid generation of blast simulation results of acceptable accuracy.
2017-03-28
Technical Paper
2017-01-1429
Sung Rae kim, Inju Lee, Hyung joo Kim
In motor-vehicle frontal crashes, occupants often suffer from the abdominal injuries when the lap belt excurses over the pelvic bone, commonly referred to as submarining. Especially, it is well known that the obese occupants frequently get injured caused by submarining due to out-of-position belt fittings. This paper aims to investigate the interaction between the pelvis and the lap belt during a frontal crash event. For this purpose, twelve sled tests on four obese female Post-Mortem Human Subjects (PMHS) and four sled tests on the Hybrid III 50th dummy were carried out. In each test, a 3D motion capture system was installed to track the movement of the pelvis and the lap belt. Moreover, the validated subject specific FE model scaled from the 50th percentile male GHBMC model to fit to obese female PMHS in prior study was also simulated.
2017-03-28
Technical Paper
2017-01-1430
Tony R. Laituri, Scott G. Henry
To consider injury trends and to establish bases for potential future risk analyses, we categorized head injuries in real-world frontal crashes as being "brain-related," "bone-related," and/or "otherwiserelated." Specifically, we studied adult drivers in towaway, 11-1 o'clock, full-engagement frontal crashes in the National Automotive Sampling System (NASS, 1995-2012 calendar years, 1985-2012 model-year light passenger vehicles). Those data were considered subject to three levels injury (AIS1+, AIS2+, AIS3+) , two levels of restraint (properly-belted, unbelted), and two eras of technology, based on driverairbag fitment (Older Vehicles, Newer Vehicles). For each injury level, 88 possible bins of data were formed to quantify injury rates for the various head-injury categories, eras, restraint levels, speed changes, and crash severities.
2017-03-28
Technical Paper
2017-01-1431
Ke Dong, Brian Putala, Kristen Ansel
Out-of-position (OOP) driver tests were designed to address concerns about airbag introduced injury in situations while the occupant is nearer to the airbag module than in a normal seated position. The 5th percentile female has instrumentation for measuring ATD sternum displacement (potentiometer) and acceleration (accelerometers) which can be used to compute compression rate. This paper documents a study investigating the capability of the chest accelerometers to accurately assess non-distributed loading of the chest during this test configuration. The study included ATD mechanical loading and instrumentation review. Finite element analysis was conducted using a Hybrid 3 - 5th percentile female ATD correlated to testing. The correlated restraint model was utilized with a Hybrid 3 – 50th percentile male ATD. A 50th percentile male Global Human Body Model was then applied for enhanced anatomical review.
2017-03-28
Technical Paper
2017-01-1433
Enrique Bonugli, Joseph Cormier, Matthew Reilly, Lars Reinhart
The purpose of this study was to determine the frictional properties between the exterior surface of a motorcycle helmet and ‘typical’ roadway surfaces. These values were compared to abrasive papers currently recommended by government helmet safety standards and widely used by researchers in the field of oblique motorcycle helmet impacts. A guided freefall test fixture was utilized to obtain nominal impact velocities of 5, 7 and 9 m/s. The impacting surfaces were mounted to an angled anvil to simulate off-centered oblique collision. Head accelerations and impact forces were measured for each test. Analysis of the normal and tangential forces imparted to the contact surface indicated that the frictional properties of abrasive papers differ from asphalt and cement in magnitude, duration and onset. Reduction in head acceleration, both linear and angular, were observed when asphalt and cement were used as the impacting surface.
2017-03-28
Technical Paper
2017-01-1462
Haiyan Li, Xin Jin, Hongfei Zhao, Shihai Cui, Binghui Jiang, King H. Yang
Computational human body models, especially detailed finite element models are suitable for investigation of human body kinetic responds and injury mechanisim. A real-world lateral vehicle-tree impact accident was reconstructed by using finite element method according to the accident description in the CIREN database. At first, a baseline vehicle FE model was modified and validated according to the NCAP lateral impact test. The interaction between the car and the tree in the accident was simulated using LS-Dyna software. Patameters that affect the simulation results, such as the initial pre-crash speed, impact direction, and the initial impact location on the vehicle, was analyzed. The parameters were determined by matching the simulated vehicle body deformations and kinematics to the accident reports.
2017-03-28
Technical Paper
2017-01-1446
Allen Charles Bosio, Paul Marable, Marcus Ward, Bradley Staines
With the introduction of the new USNCAP protocols, which incorporated assessment of a 5th percentile occupant in the passenger seat, a variety of solutions were introduced to achieve 5 star accreditation using additional restraint solutions such as, but not exclusively, knee airbags, dual pretensioning and adaptive venting . The engineering challenge was to understand and design a passenger airbag system that recognized and adapted itself to the smaller, belted, 5th percentile female, while adequately restraining the larger, unbelted, 50th percentile male. In this paper we describe the development of an airbag restraint which achieves 5 star performance levels, where the design focus from the outset was to achieve minimal head, neck & chest injury risk. This was achieved without the need for active adaptive features. The CAE tools Madymo and Radioss were critical to the design of a new patented airbag which repeatedly demonstrated USNCAP RRS <=0.66.
2017-03-28
Technical Paper
2017-01-1428
Berkan Guleyupoglu, Ryan Barnard, F. Scott Gayzik
Abstract Computational modeling of the human body is increasingly used to evaluate countermeasure performance during simulated vehicle crashes. Various injury criteria can be calculated from such models and these can either be correlative (HIC, BrIC, etc.) or based on local deformation and loading (strain-based rib fracture, organ damage, etc.). In this study, we present a method based on local deformation to extract failed rib region data. The GHMBC M50-O model was used in a Frontal-NCAP severity sled simulation. Failed Rib Regions (FRRs) in the M50-O model are handled through element deletion once the element surpasses 1.8% effective strain. The algorithm central to the methodology presented extracts FRR data and requires 4-element connectivity to register a failure. Furthermore, the FRRs are localized to anatomical sections (Lateral, Anterior, and Posterior), rib level (1,2,3 etc.) and element strain data is recorded.
2017-03-28
Journal Article
2017-01-1432
Tadasuke Katsuhara, Yoshiki Takahira, Shigeki Hayashi, Yuichi Kitagawa, Tsuyoshi Yasuki
Abstract This study used finite element (FE) simulations to analyze the injury mechanisms of driver spine fracture during frontal crashes in the World Endurance Championship (WEC) series and possible countermeasures are suggested to help reduce spine fracture risk. This FE model incorporated the Total Human Model for Safety (THUMS) scaled to a driver, a model of the detailed racecar cockpit and a model of the seat/restraint systems. A frontal impact deceleration pulse was applied to the cockpit model. In the simulation, the driver chest moved forward under the shoulder belt and the pelvis was restrained by the crotch belt and the leg hump. The simulation predicted spine fracture at T11 and T12. It was found that a combination of axial compression force and bending moment at the spine caused the fractures. The axial compression force and bending moment were generated by the shoulder belt down force as the driver’s chest moved forward.
2017-03-28
Technical Paper
2017-01-1453
Sudip Sankar Bhattacharjee, Shahuraj Mane, Harsha Kusnoorkar, Sean Hwang, Matt Niesluchowski
Abstract Pedestrian protection assessment methods require multiple head impact tests on a vehicle’s hood and other front end parts. Hood surfaces are often lifted up by using pyrotechnic devices to create more deformation space prior to pedestrian head impact. Assessment methods for vehicles equipped with pyrotechnic devices must also validate that the hood deployment occurs prior to head impact event. Estimation of pedestrian head impact time, thus, becomes a critical requirement for performance validation of deployable hood systems. In absence of standardized physical pedestrian models, Euro NCAP recommends a list of virtual pedestrian models that could be used by vehicle manufacturers, with vehicle FEA (Finite Element Analysis) models, to predict the potential head impact time along the vehicle front end profile. FEA simulated contact time is used as target for performance validation of sensor and pyrotechnic deployable systems.
2017-03-28
Technical Paper
2017-01-1458
Tack Lam, B. Johan Ivarsson
Abstract Disc herniations in the spine are commonly associated with degenerative changes, and the prevalence increases with increasing age. With increasing number of older people on U.S. roads, we can expect an increase in clinical findings of disc herniations in occupants involved in rear impacts. Whether these findings suggest a causal relationship is the subject of this study. We examined the reported occurrence of all spine injuries in the National Automotive Sampling System - Crashworthiness Data System (NASS-CDS) database from 1993 to 2014. There were over 4,000 occupants that fit the inclusion criteria. The findings in this study showed that, in the weighted data of 2.9 million occupants, the most common spine injury is an acute muscle strain of the neck, followed by strain of the low back. The delta-V of a rear impact is a reliable indicator of the rate of acute cervical strain in occupants exposed to such impacts.
2017-01-10
Technical Paper
2017-26-0003
Chandrashekhar Thorbole
Abstract The seatbelt is the primary restraint device that increases the level of occupant protection in a frontal crash. The belt performance is enhanced by the supplemental restraint provided by the airbag; seat and knee bolster working in combination with this primary restraining device. Small occupants are vulnerable to upper neck injuries when seated very close to the steering wheel. A lot of research and data availability for this situation ultimately led to the development of countermeasures capable of reducing upper neck loading. However, no data or research is available on the lower neck dynamic response of a small occupant primarily a 5th percentile female seated away from the steering wheel. MADYMO (Mathematical Dynamic Modeling), a biodynamic code is employed to validate a standard NHTSA (National Highway Traffic Safety Administration) frontal impact rigid barrier test with a 5th percentile ATD (Anthropomorphic Test Device) in the driver position.
2017-01-10
Technical Paper
2017-26-0019
Kantilal P. Patil, Viswanatha Saddala
Abstract The objective of this paper is to minimize occupant injuries in offset frontal crash with pulse characterization, by keeping vehicle front crush space & occupant survival space constant. Crash pulse characterization greatly simplifies the representation of crash pulse time histories. The parameters used to characterize the crash pulse are velocity change, time & value of dynamic crush, and zero cross-over time. The crash pulse slope, peaks, average values at discrete time intervals have significant role on occupant injuries. Vehicle crash pulse of different trends have different impact on occupant injury. The intension of crash pulse characterization study is to come out with one particular crash pulse which shows minimum occupant injuries. This study will have significant impact in terms of front loading on crash development of vehicle.
2017-01-10
Technical Paper
2017-26-0016
Jeya Padmanaban, R. Ravishankar, Ajit Dandapani
Abstract The Road Accident Sampling System - India (RASSI) accident database being developed by an international consortium of manufacturers and safety researchers is currently India’s only source of in-depth crash data. The database includes information on accident, vehicle, and driver factors associated with each crash, which is collected through on-scene crash investigations conducted by trained crash investigators, from four key sample regions (Coimbatore, Pune, Ahmedabad, and Kolkata). As the RASSI database continues to grow, the next step is to ensure that the sample data can be reliably extrapolated to the whole of India. This paper is an initial attempt to develop national estimates by crash type based on a few sampling locations currently being investigated by the RASSI teams in India. RASSI data was treated as a stratified sample of Indian accidents, and the locations, where the crash data is being collected, were considered as primary sampling units.
2016-11-08
Technical Paper
2016-32-0057
Yuji Arai, Makoto Hasegawa, Takeshi Harigae
Abstract ISO 26262 was established in 2011 as a functional safety standard for road vehicles. This standard provides safety requirements according to ASIL (Automotive Safety Integrity Level) in order to avoid unreasonable residual risk caused by malfunctioning behavior of electrical and/or electronic systems. The ASIL is determined by considering the estimate of three factors including injury severity. While applicable only to passenger cars at present, motorcycles will be included in the scope of application of ISO 26262 in the next revision. Therefore, our previous study focused on severity class evaluation for motorcycles. A method of classifying injury severity according to vehicle speed was developed on the basis of accident data. In addition, a severity table for motorcycles was created using accident data in representative collision configurations involved with motorcycles in Japan.
2016-11-07
Technical Paper
2016-22-0006
John R. Humm, Narayan Yoganandan, Frank A. Pintar, Richard L. DeWeese, David M. Moorcroft, Amanda M. Taylor, Brian Peterson
The objective of the present exploratory study is to understand occupant responses in oblique and side-facing seats in the aviation environment, which are increasingly installed in modern aircrafts. Sled tests were conducted using intact Post Mortem Human Surrogates (PMHS) seated in custom seats approximating standard aircraft geometry. End conditions were selected to represent candidate aviation seat and restraint configurations. Three-dimensional head center-of-gravity linear accelerations, head angular velocities, and linear accelerations of the T1, T6, and T12 spinous processes, and sacrum were obtained. Three-dimensional kinematics relative to the seat were obtained from retroreflective targets attached to the head, T1, T6, T12, and sacrum. All specimens sustained spinal injuries, although variations existed by vertebral level.
2016-11-07
Technical Paper
2016-22-0007
Yasuhiro Matsui, Shoko Oikawa, Kazuhiro Sorimachi, Akira Imanishi, Takeshi Fujimura
This study aimed to clarify the relationship between truck-pedestrian crash impact velocity and the risks of serious injury and fatality to pedestrians. We used micro and macro truck-pedestrian accident data from the Japanese Institute for Traffic Accident Research and Data Analysis (ITARDA) database. We classified vehicle type into five categories: heavy-duty trucks (gross vehicle weight [GVW] ≥11 × 103 kg [11 tons (t)], medium-duty trucks (5 × 103 kg [5 t] ≤ GVW < 11 × 103 kg [11 t]), light-duty trucks (GVW <5 × 103 kg [5 t]), box vans, and sedans. The fatality risk was ≤5% for light-duty trucks, box vans, and sedans at impact velocities ≤ 30 km/h and for medium-duty trucks at impact velocities ≤20 km/h. The fatality risk was ≤10% for heavy-duty trucks at impact velocities ≤10 km/h. Thus, fatality risk appears strongly associated with vehicle class.
2016-11-07
Technical Paper
2016-22-0001
Harold J. Mertz, Priya Prasad, Dainius J. Dalmotas, Annette L. Irwin
Injury Risk Curves are developed from cadaver data for sternal deflections produced by anterior, distributed chest loads for a 25, 45, 55, 65 and 75 year-old Small Female, Mid-Size Male and Large Male based on the variations of bone strengths with age. These curves show that the risk of AIS ≥ 3 thoracic injury increases with the age of the person. This observation is consistent with NASS data of frontal accidents which shows that older unbelted drivers have a higher risk of AIS ≥ 3 chest injury than younger drivers.
2016-11-07
Technical Paper
2016-22-0004
Rakshit Ramachandra, Yun-Seok Kang, John H. Bolte, Alena Hagedorn, Rodney Herriott, Jason A. Stammen, Kevin Moorhouse
Past studies have found that a pressure based injury risk function was the best predictor of liver injuries due to blunt impacts. In an effort to expand upon these findings, this study investigated the biomechanical responses of the abdomen of post mortem human surrogates (PMHS) to high-speed seatbelt loading and developed external response targets in conjunction with proposing an abdominal injury criterion. A total of seven unembalmed PMHS, with an average mass and stature of 71 kg and 174 cm respectively were subjected to belt loading using a seatbelt pull mechanism, with the PMHS seated upright in a free-back configuration. A pneumatic piston pulled a seatbelt into the abdomen at the level of the umbilicus with a nominal peak penetration speed of 4.0 m/s. Pressure transducers were placed in the re-pressurized abdominal vasculature, including the inferior vena cava (IVC) and abdominal aorta, to measure internal pressure variation during the event.
2016-11-07
Technical Paper
2016-22-0005
Matthieu Lebarbé, Pascal Baudrit, Pascal Potier, Philippe Petit, Xavier Trosseille, Sabine Compigne, Mitsutoshi Masuda, Takumi Fujii, Richard Douard
The aim of this study was to investigate the sacroiliac joint injury mechanism. Two test configurations were selected from full scale car crashes conducted with the WorldSID 50th dummy resulting in high sacroiliac joint loads and low pubic symphysis force, i.e. severe conditions for the sacroiliac joint. The two test conditions were reproduced in laboratory using a 150-155 kg guided probe propelled respectively at 8 m/s and 7.5 m/s and with different shapes and orientations for the plate impacting the pelvis. Nine Post Mortem Human Subject (PMHS) were tested in each of the two configurations (eighteen PMHS in total). In order to get information on the time of fracture, eleven strain gauges were glued on the pelvic bone of each PMHS. Results - In the first configuration, five PMHS out of nine sustained AIS2+ pelvic injuries. All five presented sacroiliac joint injuries associated with pubic area injuries.
2016-11-07
Technical Paper
2016-22-0008
Shoko Oikawa, Toshiya Hirose, Shigeru Aomura, Yasuhiro Matsui
The purpose of this study is to clarify the mechanism of traffic accidents involving cyclists. The focus is on the characteristics of cyclist accidents and scenarios, because the number of traffic accidents involving cyclists in Tokyo is the highest in Japan. First, dangerous situations in traffic incidents were investigated by collecting data from 304 cyclists in one city in Tokyo using a questionnaire survey. The survey indicated that cyclists used their bicycles generally while commuting to work or school in the morning. Second, the study investigated the characteristics of 250 accident situations involving cyclists that happened in the city using real-world bicycle accident data. The results revealed that the traffic accidents occurred at intersections of local streets, where cyclists collided most often with vehicles during commute time in the morning. Third, cyclists’ behavior was observed at a local street intersection in the morning in the city using video pictures.
2016-11-07
Technical Paper
2016-22-0009
Hollie A. Pietsch, Kelly E. Bosch, David R. Weyland, E. Meade Spratley, Kyvory A. Henderson, Robert S. Salzar, Terrance A. Smith, Brandon M. Sagara, Constantine K. Demetropoulos, Christopher J. Dooley, Andrew C. Merkle
Three laboratory simulated sub-injurious under-body blast (UBB) test conditions were conducted with whole-body Post Mortem Human Surrogates (PMHS) and the Warrior Assessment Injury Manikin (WIAMan) Technology Demonstrator (TD) to establish and assess UBB biofidelity of the WIAMan TD. Test conditions included a rigid floor and rigid seat with independently varied pulses. On the floor, peak velocities of 4 m/s and 6 m/s were applied with a 5 ms time to peak (TTP). The seat peak velocity was 4 m/s with varied TTP of 5 and 10 ms. Tests were conducted with and without personal protective equipment (PPE). PMHS response data was compiled into preliminary biofidelity response corridors (BRCs), which served as evaluation metrics for the WIAMan TD. Each WIAMan TD response was evaluated against the PMHS preliminary BRC for the loading and unloading phase of the signal time history using Correlation Analysis (CORA) software to assign a numerical score between 0 and 1.
2016-11-07
Technical Paper
2016-22-0011
David Gorman, Ebram Handy, Sikui Wang, Annette L. Irwin
Previous studies of frontal crash databases reported that ankle fractures are among the most common lower extremity fractures. While not generally life threatening, these injuries can be debilitating. Laboratory research into the mechanisms of ankle fractures has linked dorsiflexion with an increased risk of tibia and fibula malleolus fractures. However, talus fractures were not produced in the laboratory tests and appear to be caused by more complex loading of the joint. In this study, an analysis of the National Automotive Sampling System - Crashworthiness Data System (NASS-CDS) for the years 2004-2013 was conducted to investigate foot-ankle injury rates in front seat occupants involved in frontal impact crashes. A logistic regression model was developed indicating occupant weight, impact delta velocity and gender to be significant predictors of talus fracture (p<0.05).
2016-11-07
Technical Paper
2016-22-0010
Frank A. Pintar, Michael B. Schlick, Narayan Yoganandan, Liming Voo, Andrew C. Merkle, Michael Kleinberger
A new anthropomorphic test device (ATD) is being developed by the US Army to be responsive to vertical loading during a vehicle underbody blast event. To obtain design parameters for the new ATD, a series of non-injurious tests were conducted to derive biofidelity response corridors for the foot-ankle complex under vertical loading. Isolated post mortem human surrogate (PMHS) lower leg specimens were tested with and without military boot and in different initial foot-ankle positions. Instrumentation included a six-axis load cell at the proximal end, three-axis accelerometers at proximal and distal tibia, and calcaneus, and strain gages. Average proximal tibia axial forces for a neutral-positioned foot were about 2 kN for a 4 m/s test, 4 kN for 6 m/s test and 6 kN for an 8 m/s test. The force time-to-peak values were from 3 to 5 msec and calcaneus acceleration rise times were 2 to 8 msec.
2016-11-07
Technical Paper
2016-22-0013
Chiara Giordano, Svein Kleiven
This study describes a method to identify laboratory test procedures and impact response requirements suitable for assessing the biofidelity of finite element head models used in prediction of traumatic brain injury. The selection of the experimental data and the response requirements were result of a critical evaluation based on the accuracy, reproducibility and relevance of the available experimental data. A weighted averaging procedure was chosen in order to consider different contributions from the various test conditions and target measurements based on experimental error. According to the quality criteria, 40 experimental cases were selected to be a representative dataset for validation. Based on the evaluation of response curves from four head finite element models, CORA was chosen as a quantitative method to compare the predicted time history response to the measured data.
2016-11-07
Technical Paper
2016-22-0012
Tony R. Laituri, Scott Henry, Kevin Pline, Guosong Li, Michael Frankstein, Para Weerappuli
The National Highway Traffic Safety Administration (NHTSA) recently published a Request for Comments regarding a potential upgrade to the US New Car Assessment Program (US NCAP) - a star-rating program pertaining to vehicle crashworthiness. Therein, NHTSA (a) cited two metrics for assessing head risk: Head Injury Criterion (HIC15) and Brain Injury Criterion (BrIC), and (b) proposed to conduct risk assessment via its risk curves for those metrics, but did not prescribe a specific method for applying them. Recent studies, however, have indicated that the NHTSA risk curves for BrIC significantly overstate field-based head injury rates. Therefore, in the present three-part study, a new set of BrIC-based risk curves was derived, an overarching head risk equation involving risk curves for both BrIC and HIC15 was assessed, and some additional candidate-predictor-variable assessments were conducted. Part 1 pertained to the derivation.
2016-11-07
Technical Paper
2016-22-0016
Annette L. Irwin, Greg Crawford, David Gorman, Sikui Wang, Harold J. Mertz
Injury risk curves for SID-IIs thorax and abdomen rib deflections proposed for future NCAP side impact evaluations were developed from tests conducted with the SID-IIs FRG. Since the floating rib guide is known to reduce the magnitude of the peak rib deflections, injury risk curves developed from SID-IIs FRG data are not appropriate for use with SID-IIs build level D. PMHS injury data from three series of sled tests and one series of whole-body drop tests are paired with thoracic rib deflections from equivalent tests with SID-IIs build level D. Where possible, the rib deflections of SID-IIs build level D were scaled to adjust for differences in impact velocity between the PMHS and SID-IIs tests. Injury risk curves developed by the Mertz-Weber modified median rank method are presented and compared to risk curves developed by other parametric and non-parametric methods.
2016-11-07
Technical Paper
2016-22-0018
Harold J. Mertz, Annette L. Irwin, Priya Prasad
In 1983, General Motors Corporation (GM) petitioned the National Highway Traffic Safety Administration (NHTSA) to allow the use of the biofidelic Hybrid III midsize adult male dummy as an alternate test device for FMVSS 208 compliance testing of frontal impact, passive restraint systems. To support their petition, GM made public to the international automotive community the limit values that they imposed on the Hybrid III measurements, which were called Injury Assessment Reference Values (IARVs). During the past 20 years, these IARVs have been updated based on relevant biomechanical studies that have been published and scaled to provide IARVs for the Hybrid III and CRABI families of frontal impact dummies. Limit values have also been developed for the biofidelic side impact dummies, BioSID, ES-2 and SID-IIs.
2016-04-05
Technical Paper
2016-01-1539
Do Hoi KIm
Abstract Given the importance of vehicle safety, OEMs are focused on ensuring the safety of passengers during car accidents. Injury is related to the passenger’s kinematics and interaction with airbag, seatbelt, and vehicle drop. However, the correlation between vehicle drop (vehicle pitch) and passengers’ injury is the main issue recently being discussed. This paper presents the definition of vehicle drop and analyzes the relationship through a dynamic sled test. This study defines the relationship between individual vehicle systems (body, chassis, tire, etc.) and vehicle drop, and how to control the amount of vehicle drop to minimize the injury of passengers.
Viewing 1 to 30 of 2187