Criteria

Text:
Topic:
Content:
Display:

Results

Viewing 1 to 30 of 144
CURRENT
2017-04-06
Standard
J3059_201704
This SAE Information Report describes the testing and reporting procedures that may be used to evaluate and document the excursion of a worker or civilian when transported in a seated and restrained position in the patient compartment of a ground ambulance when exposed to a front, side, or rear impact. Its purpose is to provide seating and occupant restraint manufacturers, ambulance builders, and end-users with testing procedures and documentation methods needed to identify head travel paths in crash loading events. This is a component level test. The seating system is tested in free space to measure maximum head travel paths. The purpose is not to identify stay out zones. Rather, the goal is to provide ambulance manufacturers with the data needed to design safer and functionally sound workstations for Emergency Medical Service workers so that workers are better able to safely perform patient care tasks in a moving ambulance.
CURRENT
2017-03-28
Standard
J3102_201703
This SAE Recommended Practice describes the dynamic and static testing procedures required to evaluate the integrity of the ambulance substructure, to support the safe mounting of an SAE J3027 compliant litter retention device or system, when exposed to a frontal, side or rear impact (i.e., a crash impact). Its purpose is to provide manufacturers, ambulance builders, and end-users with testing procedures and, where appropriate, acceptance criteria that to a great extent ensure the ambulance substructure meets the same performance criteria across the industry. Prospective manufacturers or vendors have the option of performing either dynamic testing or static testing. Descriptions of the test set-up, test instrumentation, photographic/video coverage, test fixture, and performance metrics are included.
CURRENT
2017-01-18
Standard
J2419_201701
This SAE Recommended Practice describes the test procedures for conducting frontal impact restraint system tests for heavy truck applications. Its purpose is to establish recommended test procedures that will standardize restraint system testing for heavy trucks. Descriptions of the test set-up, test instrumentation, photographic/video coverage, and the test fixtures are included.
2017-01-12
WIP Standard
ARP5765B
This SAE Aerospace Recommended Practice (ARP) defines a means of assessing the credibility of computer models of aircraft seating systems used to simulate dynamic impact conditions set forth in Federal Regulations §14 CFR Part 23.562, 25.562, 27.562, and 29.562. The ARP is applicable to lumped mass and detailed finite element seat models. This includes specifications and performance criteria for aviation specific virtual anthropomorphic test devices (v-ATDs). A methodology to evaluate the degree of correlation between a seat model and dynamic impact tests is recommended. This ARP also provides testing and modeling best practices specific to support the implementation of analytical models of aircraft seat systems. Supporting information within this document includes procedures for the quantitative comparison of test and simulation results, as well as test reports for data generated to support the development of v-ATDs and a sample v-ATD calibration report.
CURRENT
2016-11-28
Standard
J2194_201611
Any ROPS meeting the performance requirement of ISO 5700 (Static ROPS Test Standard) or ISO 3463 (Dynamic ROPS Test Standard) meets the performance requirements of this SAE Standard if the ROPS temperature/material and seat belt requirements of this document are also met.
CURRENT
2016-11-23
Standard
J1194_201611
Fulfillment of the intended purpose requires testing as follows:
CURRENT
2016-09-16
Standard
J1981_201609
The test is designed to evaluate the frontal impact resistance of wheel and tire assemblies used with passenger cars, light trucks and multi-purpose vehicles. The test is specifically related to vehicle pothole tests that are undertaken by most vehicle manufacturers. The scope has been expanded to allow the use of a striker that can be angled to preferentially impact the inboard and outboard wheel flange. For side impact of the outboard rim flange only, please refer to SAE J175. This SAE Recommended Practice provides a procedure to test a wheel or a tire and the test failure criteria. The specific test for a vehicle requires input from a pothole test on that vehicle to establish the drop height of the striker used in this test.
CURRENT
2016-06-28
Standard
J2878_201606
This procedure establishes a recommended practice for performing a Low Speed Thorax Impact Test to the Hybrid III Small Female Anthropomorphic Test Device (ATD or crash dummy). This test was created to satisfy the demand by the industry to have a certification test which results in peak chest deflection similar to current full vehicle, frontal impact tests. An inherent problem exists with the current certification procedure because the normal (6.7 m/s) thorax impact test has test results for peak chest deflection that are greater than those currently seen in full vehicle, frontal tests. The intent of this document is to develop a low speed thorax certification procedure for the H-III5F dummy with a 3.0 m/s impact similar to the SAE J2779 procedure for the H-III50M dummy.
CURRENT
2016-06-17
Standard
J3095_201606
This recommended practice provides a procedure for measuring quantitatively the physical characteristics of linear impactors that are believed to effect impact test accuracy, repeatability, and reproducibility. Suggested values and tolerance are also provided for specific applications of linear impactor testing (i.e. Ejection Mitigation tests, Head form Impact tests, Body Block tests). Two functional groups of linear impactors are considered, those whose function is related primarily to displacement and those related to measuring acceleration or force.
CURRENT
2016-03-23
Standard
J175_201603
The SAE Recommended Practice establishes minimum performance requirements and related uniform laboratory test procedures for evaluating lateral (curb) impact collision resistance of all wheels intended for use on passenger cars and light trucks.
2016-03-10
WIP Standard
J3121
Develop a J standard document that test laboratories can use to understand all of the risks involved with crash testing of fuel cell vehicles
CURRENT
2015-12-17
Standard
J3040_201512
The special risks associated with conducting crash tests on E-Vehicles can be divided into two main categories; 1) thermal activity inside the battery (resulting from electrical or mechanical abuse) may lead to energetic emission of harmful and/or flammable gases, thermal runaway, and potentially fire, and 2) the risk of electrocution. Procedures to ensure protection from all types of risk must be integrated into the entire crash test process. This informational report is intended to provide guidance in this endeavor using current best practices at the time of this publication. As both battery technology and battery management system technology is in a phase of expansion, the contents of this report must then be gaged against current technology of the time, and updated periodically to retain its applicability and usefulness.
CURRENT
2015-12-04
Standard
ARP5765A
This SAE Aerospace Recommended Practice (ARP) defines a means of assessing the credibility of computer models of aircraft seating systems used to simulate dynamic impact conditions set forth in Federal Regulations §14 CFR Part 23.562, 25.562, 27.562, and 29.562. The ARP is applicable to lumped mass and detailed finite element seat models. This includes specifications and performance criteria for aviation specific virtual anthropomorphic test devices (v-ATDs). A methodology to evaluate the degree of correlation between a seat model and dynamic impact tests is recommended. This ARP also provides testing and modeling best practices specific to support the implementation of analytical models of aircraft seat systems. Supporting information within this document includes procedures for the quantitative comparison of test and simulation results, as well as test reports for data generated to support the development of v-ATDs and a sample v-ATD calibration report.
2015-11-13
WIP Standard
J2481
Dynamic simulation sled testing can represent various automotive collision conditions. Acceleration conditions during sled testing are readily reproducible and can be tuned to simulate collision events that occur during vehicle impacts with a fixed barrier or vehicle. Sled tests are conducted on automotive vehicle bodies or other structures to obtain valuable information. This information can be used to evaluate the dynamic performance of, but not limited to, vehicle restraint systems, vehicle seating systems, and body closure systems.
2015-10-14
WIP Standard
J1241
This SAE Recommended Practice is applicable to two- or three-wheel motorcycles intended for highway use. Unless noted, requirements apply to both metallic and nonmetallic tanks. Accessory or aftermarket tanks as well as original equipment tanks are covered.
CURRENT
2015-08-27
Standard
J2418_201508
This SAE Recommended Practice describes the test procedures for conducting frontal impact restraint tests for heavy truck applications. Its purpose is to establish recommended test procedures that will standardize restraint system testing for heavy trucks. Descriptions of the test set-up, test instrumentation, photographic/video coverage, and the test fixtures are included.
CURRENT
2015-05-07
Standard
J2876_201505
This procedure establishes a recommended practice for performing a Low Speed Knee Slider test to the Hybrid III 50th Male Anthropomorphic Test Device (ATD or crash dummy). This test was created to satisfy the demand from industry to have a certification test which produces similar results to an actual low energy automotive impact test. An inherent problem exists with the current certification procedure because the normal (2.75 m/s) knee slider test has test corridors that do not represent typical displacements seen in these low energy impact tests. The normal test corridors specify a force requirement at 10 mm and at 18 mm, while the low speed test needs to have a peak displacement around 10 mm.
2015-04-24
WIP Standard
J211/1
This recommended practice outlines a series of performance recommendations, which concern the whole data channel. These recommendations are not subject to any variation and all of them shall be adhered to by any agency conducting tests to this practice. However, the method of demonstrating compliance with the recommendations is flexible and can be adapted to suit the needs of the particular equipment the agency is using. It is not intended that each recommendation be taken in a literal sense, as necessitating a single test to demonstrate that the recommendation is met. Rather, it is intended that any agency proposing to conduct tests to this practice shall be able to demonstrate that if such a single test could be and were carried out, then their equipment would meet the recommendations. This demonstration shall be undertaken on the basis of reasonable deductions from evidence in their possession, such as the results of partial tests.
CURRENT
2015-04-09
Standard
J850_201504
Fixed rigid barrier collisions can represent severe automotive impacts. Barrier collision tests are conducted on automotive vehicles to obtain information of value in reducing occupant injuries and in evaluating structural integrity. The purpose of this SAE Recommended Practice is to establish sufficient standardization of barrier collision methods so that results of similar tests conducted at different facilities can be compared. The barrier device may be of almost any configuration, such as flat, round, offset, etc.
CURRENT
2015-03-13
Standard
J972_201503
Collision tests are conducted on automotive vehicles to obtain information of value in evaluation of structural integrity and in reducing the risk of occupant injuries. The deformation resulting from a moving rigid barrier impact is more severe at a given speed than that produced by using an actual vehicle, but is more readily reproducible than that occurring during vehicle to vehicle impacts. The purpose of this SAE Recommended Practice is to establish sufficient standardization of such moving barriers and moving barrier collision methods so that results of tests conducted at different facilities may be compared.
CURRENT
2015-02-03
Standard
J1727_201502
This SAE Recommended Practice presents a series of standard calculations and numerical methods for processing safety test instrumentation data that has been acquired during impact tests with instruments installed in ATD’s (crash test dummies), vehicle structures, and laboratory fixtures. The output data from performing these calculations may have applications that include energy analysis, biomechanical analysis, regulation compliance, or other purposes. However, application of the output data from these calculations is outside the scope of this document. It is the intent of this document to present a basic set of calculations that are applicable to test labs that follow the practices set forth by SAE J211-1, SAE J211-2, SAE J2570, and SAE J1733. For the calculations that are described in other sources, the relevant documents are referenced.
CURRENT
2014-07-09
Standard
J232_201407
This SAE Standard establishes performance criteria for towed, semi-mounted, or mounted and arm type rotary mowers with one or more blade assemblies of 77.5 cm blade tip circle diameter or over, mounted on a propelling tractor or machine of at least 15 kW, intended for marketing as industrial mowing equipment and designed for cutting grass and other growth in public use areas such as parks, cemeteries, and along roadways and highways. The use of the word “industrial” is not to be confused with “in-plant industrial equipment.” This document does not apply to: a. Turf care equipment primarily designed for personal use, consumption, or enjoyment of a consumer in or around a permanent or temporary household or residence. b. Equipment designed primarily for agricultural purposes but which may be used for industrial use. c. Self-powered or self-propelled mowers or mowing machines.
CURRENT
2014-06-16
Standard
J211/2_201406
The purpose of this SAE Recommended Practice is to define criteria of performance for an optical data channel when numerical time and space data are taken from the images to analyze impact test results.
2014-04-25
WIP Standard
J2570
This SAE Information Report defines the minimum performance specifications for accelerometers, load cells, and angular position transducers used within Anthropomorphic Test Devices (ATDs) when performing impact tests per SAE J211, "Instrumentation for Impact Test". This report does not define methodology and equipment for performing verification tests of the transducers. It is intended that any agency proposing to conduct tests in accordance with SAE J211 should be able to demonstrate that the transducers they use would meet the performance requirements specified in this information report. The purpose of this information report is to provide guidelines for choosing accelerometers, load cells, and angular position transducers for use in impact testing. The aim is to provide uniformity in transducer measurements, and provide a basis for meaningful comparisons of test results from different sources.
CURRENT
2014-04-16
Standard
J288_201404
To provide minimum performance requirements for non-pressurized fuel tanks used on snowmobiles as defined in SAE J33.
CURRENT
2014-04-09
Standard
J89_201404
This SAE Recommended Practice encompasses the significant factors which determine the effectiveness of a seat system in limiting spinal injury during vertical impacts between the rider and the snowmobile seat system. The document is intended to provide a tool for the development of safer snowmobile seats. It is recognized that the seat is only a portion of the entire vehicle protective suspension system. It is, however, usually required that the seat serve as added protection to the suspension system, since the latter may "bottom out" during a severe impact. The term "seat" refers to the occupant-supporting system not normally considered part of the vehicle suspension or frame system. In some cases, it may include more than the foam cushion.
CURRENT
2014-03-31
Standard
J211/1_201403
This recommended practice outlines a series of performance recommendations, which concern the whole data channel. These recommendations are not subject to any variation and all of them shall be adhered to by any agency conducting tests to this practice. However, the method of demonstrating compliance with the recommendations is flexible and can be adapted to suit the needs of the particular equipment the agency is using. It is not intended that each recommendation be taken in a literal sense, as necessitating a single test to demonstrate that the recommendation is met. Rather, it is intended that any agency proposing to conduct tests to this practice shall be able to demonstrate that if such a single test could be and were carried out, then their equipment would meet the recommendations. This demonstration shall be undertaken on the basis of reasonable deductions from evidence in their possession, such as the results of partial tests.
CURRENT
2013-10-29
Standard
J2481_201310
Dynamic simulation sled testing can represent various automotive collision conditions. Acceleration conditions during sled testing are readily reproducible and can be tuned to simulate collision events that occur during vehicle impacts with a fixed barrier or vehicle. Sled tests are conducted on automotive vehicle bodies or other structures to obtain valuable information. This information can be used to evaluate the dynamic performance of, but not limited to, vehicle restraint systems, vehicle seating systems, and body closure systems.
2013-04-19
WIP Standard
J1733
In order to compare test results obtained from different crash test facilities, standardized coordinate systems need to be defined for crash test dummies, vehicle structures, and laboratory fixtures. In addition, recorded polarities for various transducer outputs need to be defined relative to positive directions of the appropriate coordinate systems. This SAE Information Report describes the standardized sign convention and recorded output polarities for various transducers used in crash testing.
Viewing 1 to 30 of 144

Filter

  • Standard
    144