Criteria

Text:
Display:

Results

Viewing 1 to 2 of 2
2017-09-04
Technical Paper
2017-24-0126
Christian Zöllner, Dieter Brueggemann
The removal of particulate matter (PM) from diesel exhaust is necessary to protect the environment and human health. To meet the strict emission standards for diesel engines an additional exhaust aftertreatment system is essential. Diesel particulate filters (DPF) are established devices to remove emitted PM from diesel exhaust. But the deposition and the accumulation of soot in the DPF influences the filter back pressure and therefore the engine performance and the fuel consumption which is why a periodical regeneration through PM oxidation is necessary. The oxidation behavior should result in an effective regeneration mode that minimizes the fuel penalty and limits the temperature rise while maintaining a high regeneration efficiency. Excessive and fast regenerations have to be avoided as well as uncontrolled oxidations leading to damages of the filter and fuel penalty.
2017-09-04
Technical Paper
2017-24-0109
Nic Van Vuuren, Lucio Postrioti, Gabriele Brizi, Federico Picchiotti
ABSTRACT: Selective Catalytic Reduction (SCR) diesel exhaust aftertreatment systems are virtually indispensable to meet NOx emissions limits worldwide. These systems generate the NH3 reductant by injecting aqueous urea solution (AUS-32/AdBlue®/DEF) into the exhaust for the SCR NOx reduction reactions. Understanding the AUS-32 injector spray performance is critical to proper optimization of the SCR system. Specifically, better knowledge is required of urea sprays under operating conditions including those where fluid temperatures exceed the atmospheric fluid boiling point. Results were previously presented from imaging of an AUS-32 injector spray which showed substantial structural differences in the spray between room temperature fluid conditions, and conditions where the fluid temperature approached and exceeded 104º C and “flash boiling” of the fluid was initiated.
2017-06-05
Technical Paper
2017-01-1874
Tongyang Shi, Yangfan Liu, J Stuart Bolton, Frank Eberhardt, Warner Frazer
Abstract Wideband Acoustical Holography (WBH), which is a monopole-based, equivalent source procedure (J. Hald, “Wideband Acoustical Holography,” INTER-NOISE 2014), has proven to offer accurate noise source visualization results in experiments with a simple noise source: e.g., a loudspeaker (T. Shi, Y. Liu, J.S. Bolton, “The Use of Wideband Holography for Noise Source Visualization”, NOISE-CON 2016). From a previous study, it was found that the advantage of this procedure is the ability to optimize the solution in the case of an under-determined system: i.e., when the number of measurements is much smaller than the number of parameters that must be estimated in the model. In the present work, a diesel engine noise source was measured by using one set of measurements from a thirty-five channel combo-array placed in front of the engine.
2017-06-05
Technical Paper
2017-01-1872
Masao Nagamatsu
Abstract The almost current sound localization methods do not have enough resolution in low frequency sound localization. To overcome this disadvantage, I am now developing the new sound localization method, Double Nearfield Acoustic Holography (DNAH) method. This method is a converted method of conventional Nearfield Acoustic Holography (NAH) method. In this proposing method, the resolution of low frequency sound localization is improved by using sound propagation information on doubled measurement planes. To prove the performance of proposing method, the basic experiments with variable conditions are conducted. In these experiments, the small speakers are used as sound sources. In this paper, to discuss the ability to apply to actual industry, the effect of measurement distance from the sound source is explained. Some experimental results with changing measurement distance are shown in this paper.
2017-05-18
Journal Article
2017-01-9678
G Agawane, Varun Jadon, Venkatesham Balide, R Banerjee
Abstract Liquid sloshing noise from an automotive fuel tank is becoming increasingly important during frequent accelerating/decelerating driving conditions. It is becoming more apparent due to significant decrease in other noise sources in a vehicle, particularly in hybrid vehicles. As a step toward understanding the dynamics of liquid sloshing and noise generation mechanism, an experimental study was performed in a partially filled rectangular tank. A systematic study was performed to understand the effects of critical parameters like fill level and acceleration/deceleration magnitude. Response parameters like dynamic pressure, dynamic force, dynamic acceleration and sound pressure levels along with high speed video images were recorded. The proposed experimental setup was able to demonstrate major events leading to sloshing noise generation. These events in the sloshing mechanism have been analysed from the dynamic sensor data and correlated with high speed video images.
2017-03-28
Journal Article
2017-01-0674
Benjamin Matthew Wolk, Isaac Ekoto
Abstract Pulsed nanosecond discharges (PND) can achieve ignition in internal combustion engines through enhanced reaction kinetics as a result of elevated electron energies without the associated increases in translational gas temperature that cause electrode erosion. Atomic oxygen (O), including its electronically excited states, is thought to be a key species in promoting low-temperature ignition. In this paper, high-voltage (17-24 kV peak) PND are examined in oxygen/nitrogen/carbon dioxide/water mixtures at engine-relevant densities (up to 9.1 kg/m3) through pressure-rise calorimetry and direct imaging of excited-state O-atom and molecular nitrogen (N2) in an optically accessible spark calorimeter, with the anode/cathode gap distance set to 5 mm or with an anode-only configuration (DC corona). The conversion efficiency of pulse electrical energy into thermal energy was measured for PND with secondary streamer breakdown (SSB) and similar low-temperature plasmas (LTP) without.
2017-03-28
Technical Paper
2017-01-0753
Marcus Olof Lundgren, Zhenkan Wang, Alexios Matamis, Oivind Andersson, Mattias Richter, Martin Tuner, Marcus Alden, Andersson Arne
Abstract Gasoline partially premixed combustion (PPC) has shown potential in terms of high efficiency with low emissions of oxides of nitrogen (NOx) and soot. Despite these benefits, emissions of unburned hydrocarbons (UHC) and carbon monoxide (CO) are the main shortcomings of the concept. These are caused, among other things, by overlean zones near the injector tip and injector dribble. Previous diesel low temperature combustion (LTC) research has demonstrated post injections to be an effective strategy to mitigate these emissions. The main objective of this work is to investigate the impact of post injections on CO and UHC emissions in a quiescent (non-swirling) combustion system. A blend of primary reference fuels, PRF87, having properties similar to US pump gasoline was used at PPC conditions in a heavy duty optical engine. The start of the main injection was maintained constant. Dwell and mass repartition between the main and post injections were varied to evaluate their effect.
2017-03-28
Journal Article
2017-01-0716
Randy Hessel, Zongyu Yue, Rolf Reitz, Mark Musculus, Jacqueline O'Connor
Abstract One way to develop an understanding of soot formation and oxidation processes that occur during direct injection and combustion in an internal combustion engine is to image the natural luminosity from soot over time. Imaging is possible when there is optical access to the combustion chamber. After the images are acquired, the next challenge is to properly interpret the luminous distributions that have been captured on the images. A major focus of this paper is to provide guidance on interpretation of experimental images of soot luminosity by explaining how radiation from soot is predicted to change as it is transmitted through the combustion chamber and to the imaging. The interpretations are only limited by the scope of the models that have been developed for this purpose. The end-goal of imaging radiation from soot is to estimate the amount of soot that is present.
2017-03-28
Journal Article
2017-01-1543
Jonathan Jilesen, Adrian Gaylard, Jose Escobar
Abstract Vehicle rear and side body soiling has been a concern since the earliest cars. Traditionally, soiling has been seen to be less importance than vehicle aerodynamics and acoustics. However, increased reliance on sensors and cameras to assist the driver means that there are more surfaces of the vehicle that must be kept clean. Failure to take this into consideration means risking low customer satisfaction with new features. This is because they are likely to fail under normal operating conditions and require constant cleaning. This paper numerically investigates features known to have an influence on side and rear face soiling with a demonstration vehicle. These changes include rim design, diffuser strakes and diffuser sharpening. While an exhaustive investigation of these features is beyond the scope of this study, examples of each feature will be considered.
2017-03-28
Technical Paper
2017-01-0109
Yi Zhang, Madeline J. Goh, Vidya Nariyambut Murali
Abstract This work describes a single camera based object distance estimation system. As technology on vehicles is constantly advancing on the road to autonomy, it is critical to know the locations of objects in 3D space for safe behavior of the vehicle. Though significant progress has been made on object detection in 2D sensor space from a single camera, this work additionally estimates the distance to said object without requiring stereo vision or absolute knowledge of vehicle motion. Specifically, our proposed system is comprised of three modules: vision based ego-motion estimation, object-detection, and distance estimation. In particular, we compensate for the vehicle ego-motion by using pin-hole camera model to increase the accuracy of the object distance estimation.
2017-03-28
Technical Paper
2017-01-0099
Jose E. Solomon, Francois Charette
Abstract The proposed technique is a tailored deep neural network (DNN) training approach which uses an iterative process to support the learning of DNNs by targeting their specific misclassification and missed detections. The process begins with a DNN that is trained on freely available annotated image data, which we will refer to as the Base model, where a subset of the categories for the classifier are related to the automotive theater. A small set of video capture files taken from drives with test vehicles are selected, (based on the diversity of scenes, frequency of vehicles, incidental lighting, etc.), and the Base model is used to detect/classify images within the video files. A software application developed specifically for this work then allows for the capture of frames from the video set where the DNN has made misclassifications. The corresponding annotation files for these images are subsequently corrected to eliminate mislabels.
2017-03-28
Technical Paper
2017-01-0395
Xin Xie, Danielle Zeng, Boyang Zhang, Junrui Li, Liping Yan, Lianxiang Yang
Abstract Vehicle front panel is an interior part which has a major impact on the consumers’ experience of the vehicles. To keep a good appearance during long time aging period, most of the front panel is designed as a rough surface. Some types of surface defects on the rough surface can only be observed under the exposure of certain angled sun light. This brings great difficulties in finding surface defects on the production line. This paper introduces a novel polarized laser light based surface quality inspection method for the rough surfaces on the vehicle front panel. By using the novel surface quality inspection system, the surface defects can be detected real-timely even without the exposure under certain angled sun light. The optical fundamentals, theory derivation, experiment setup and testing result are shown in detail in this paper.
2017-03-28
Technical Paper
2017-01-0394
Junrui Li, Ruiyan Yang, Zhen Li, Changqing Du, Dajun Zhou, Lianxiang Yang
Abstract Advanced high-strength steel (AHSS) is gaining popularity in the automotive industry due to its higher final part strength with the better formability compares to the conventional steel. However, the edge fracture occurs during the forming procedure for the pre-strained part. To avoid the edge fracture that happens during the manufacturing, the effect of pre-strain on edge cracking limit needs to be studied. In this paper, digital image correlation (DIC), as an accurate optical method, is adopted for the strain measurement to determining the edge cracking limit. Sets of the wide coupons are pre-strained to obtain the samples at different pre-strain level. The pre-strain of each sample is precisely measured during this procedure using DIC. After pre-straining, the half dog bone samples are cut from these wide coupons. The edge of the notch in the half dog bone samples is created by the punch with 10% clearance for the distinct edge condition.
2017-03-28
Technical Paper
2017-01-1675
Genís Mensa, Núria Parera, Alba Fornells
Abstract Nowadays, the use of high-speed digital cameras to acquire relevant information is a standard for all laboratories and facilities working in passive safety crash testing. The recorded information from the cameras is used to develop and improve the design of vehicles in order to make them safer. Measurements such as velocities, accelerations and distances are computed from high-speed images captured during the tests and represent remarkable data for the post-crash analysis. Therefore, having the exact same position of the cameras is a key factor to be able to compare all the values that are extracted from the images of the tests carried out within a long-term passive safety project. However, since working with several customers involves a large amount of different cars and tests, crash facilities have to readapt for every test mode making it difficult for them to reproduce the correct and precise position of the high-speed cameras throughout the same project.
2017-03-28
Technical Paper
2017-01-1422
Toby Terpstra, Seth Miller, Alireza Hashemian
Abstract Photogrammetry and the accuracy of a photogrammetric solution is reliant on the quality of photographs and the accuracy of pixel location within the photographs. A photograph with lens distortion can create inaccuracies within a photogrammetric solution. Due to the curved nature of a camera’s lens(s), the light coming through the lens and onto the image sensor can have varying degrees of distortion. There are commercially available software titles that rely on a library of known cameras, lenses, and configurations for removing lens distortion. However, to use these software titles the camera manufacturer, model, lens and focal length must be known. This paper presents two methodologies for removing lens distortion when camera and lens specific information is not available. The first methodology uses linear objects within the photograph to determine the amount of lens distortion present. This method will be referred to as the straight-line method.
2017-03-28
Technical Paper
2017-01-1401
Trong-Duy Nguyen, Joseph Lull, Satish Vaishnav
Abstract In this paper, a method of improving the automated vehicle’s perception using a multi-pose camera system (MPCS) is presented. The proposed MPCS is composed of two identical colored and high frame-rate cameras: one installed in the driver side and the other in the passenger side. Perspective of MPCS varies depending on the width of vehicle type in which MPCS is installed. To increase perspective, we use the maximum width of the host vehicle as camera to camera distance for the MPCS. In addition, angular positions of the two cameras in MPCS are controlled by two separate electric motor-based actuators. Steering wheel angle, which is available from the vehicle Controller Area Network (CAN) messages, is used to supply information to the actuators to synchronize MPCS camera positions with the host vehicle steering wheel.
2017-03-28
Technical Paper
2017-01-1405
Tzu-Sung Wu
Abstract Autonomous Emergency Braking Systems (AEBS) usually contain radar, (stereo) camera and/or LiDAR-based technology to identify potential collision partners ahead of the car, such that to warn the driver or automatically brake to avoid or mitigate a crash. The advantage of camera is less cost: however, is inevitable to face the defects of cameras in AEBS, that is, the image recognition cannot perform good accuracy in the poor or over-exposure light condition. Therefore, the compensation of other sensors is of importance. Motivated by the improvement of false detection, we propose a Pedestrian-and-Vehicle Recognition (PVR) algorithm based on radar to apply to AEBS. The PVR employs the radar cross section (RCS) and standard deviation of width of obstacle to determine whether a threshold value of RCS and standard deviation of width of the pedestrian and vehicle is crossed, and to identity that the objective is a pedestrian or vehicle, respectively.
2017-03-28
Technical Paper
2017-01-1434
Dongran Liu, Marcos Paul Gerardo-Castro, Bruno Costa, Yi Zhang
Abstract Heart rate is one of the most important biological features for health information. Most of the state-of-the-art heart rate monitoring systems rely on contact technologies that require physical contact with the user. In this paper, we discuss a proof-of-concept of a non-contact technology based on a single camera to measure the user’s heart rate in real time. The algorithm estimates the heart rate based on facial color changes. The input is a series of video frames with the automatically detected face of the user. A Gaussian pyramid spatial filter is applied to the inputs to obtain a down-sampled high signal-to-noise ratio images. A temporal Fourier transform is applied to the video to get the signal spectrum. Next, a temporal band-pass filter is applied to the transformed signal in the frequency domain to extract the frequency band of heart beats. We then used the dominant frequency in the Fourier domain to find the heart rate.
2017-03-28
Journal Article
2017-01-0927
Carl Justin Kamp, Shawn Zhang, Sujay Bagi, Victor Wong, Greg Monahan, Alexander Sappok, Yujun Wang
Abstract Diesel engine exhaust aftertreatment components, especially the diesel particulate filter (DPF), are subject to various modes of degradation over their lifetimes. One particular adverse effect on the DPF is the significant rise in pressure drop due to the accumulation of engine lubricant-derived ash which coats the inlet channel walls effectively decreasing the permeability of the filter. The decreased permeability due to ash in the DPF can result in increased filter pressure drop and decreased fuel economy. A unique two-step approach, consisting of experimental measurements and direct numerical simulations using ultra-high resolution 3D imaging data, has been utilized in this study to better understand the effects of ash accumulation on engine aftertreatment component functionality.
2017-03-28
Technical Paper
2017-01-0537
Murat Ates, Ronald D. Matthews, Matthew J. Hall
Abstract A quasi-dimensional model for a direct injection diesel engine was developed based on experiments at Sandia National Laboratory. The Sandia researchers obtained images describing diesel spray evolution, spray mixing, premixed combustion, mixing controlled combustion, soot formation, and NOx formation. Dec [1] combined all of the available images to develop a conceptual diesel combustion model to describe diesel combustion from the start of injection up to the quasi-steady form of the jet. The end of injection behavior was left undescribed in this conceptual model because no clear image was available due to the chaotic behavior of diesel combustion. A conceptual end-of-injection diesel combustion behavior model was developed to capture diesel combustion throughout its life span. The compression, expansion, and gas exchange stages are modeled via zero-dimensional single zone calculations.
2017-03-14
Journal Article
2017-01-9750
Shawn Harrington, Joseph Teitelman, Erica Rummel, Brendan Morse, Peter Chen, Donald Eisentraut, Daniel McDonough
Abstract With the prevalence of satellite imagery in the analysis of collision events growing in the field of accident reconstruction, this research aims to quantify, refine, and compare the accuracies of measurements obtained utilizing conventional instruments to the measurements obtained using Google Earth Pro software. Researchers documented and obtained 1305 unique measurements from 68 locations in 25 states and provinces in the United States, Canada, and Australia using measuring wheels and tape measures. Measurements of relevant features at each location (crosswalks, curved roadways, off-road features, etc.) were documented and subdivided into three groups: On-Road, Off-Road, and Curved Path measurements. These measurements were compared to the measurements obtained of the same features from current and historical satellite imagery within Google Earth Pro.
2016-11-08
Technical Paper
2016-32-0005
Kotaro Takeda, Shimada Takashi, Yuki Yoshida, ZhiMin Lin, Akira Iijima, Hideo Shoji
Abstract In-cylinder visualization of the entire bore area at an identical frame rate was used to investigate knocking conditions under spark ignition (SI) combustion and under Homogeneous Charge Compression Ignition (HCCI) combustion in the same test engine. A frequency analysis was also conducted on the measured pressure signals. The results revealed that a combustion regime accompanied by strong pressure oscillations occurred in both the SI and HCCI modes, which was presumably caused by rapid autoignition with attendant brilliant light emission that took place near the cylinder wall. It was found that the knocking timing was the dominant factor of this combustion regime accompanied by cylinder pressure oscillations in both the SI and HCCI combustion modes.
2016-11-07
Technical Paper
2016-22-0003
Anicet Le Ruyet, Fabien Berthet, Frédéric Rongiéras, Philippe Beillas
A protocol based on ultrafast ultrasound imaging was applied to study the in situ motion of the liver while the abdomen was subjected to compressive loading at 3 m/s by a hemispherical impactor or a seatbelt. The loading was applied to various locations between the lower abdomen and the mid thorax while feature points inside the liver were followed on the ultrasound movie (2000 frames per second). Based on tests performed on five post mortem human surrogates (including four tested in the current study), trends were found between the loading location and feature point trajectory parameters such as the initial angle of motion or the peak displacement in the direction of impact. The impactor tests were then simulated using the GHBMC M50 human body model that was globally scaled to the dimensions of each surrogate. Some of the experimental trends observed could be reproduced in the simulations (e.g. initial angle) while others differed more widely (e.g. final caudal motion).
2016-10-25
Technical Paper
2016-36-0163
Márcio Expedito Guzzo, Fernando Antonio Rodrigues Filho, Carlos Alberto Gomes Júnior, Sérgio Augusto Passos Costa, José Eduardo Mautone Barros, Ramón Molina Valle
Abstract A multi-hole direct injection injector was studied by means of image analysis. Methodologies based on an automatic process of cone angle measurement and edge detection were applied for the spray images generated by a 100 bar injection pressure discharged into a pressurized rigid chamber. A criterion based on pixel values was taken to localize the spray edges as angular coordinates and also with x and y position data. The high pixel values were associated with liquid phase while the low pixel values were associated to its absence. Computational codes written in MATLAB environment were used to analyze the numerical matrices associated to the images. Using the written MATLAB codes, a comparison of the effect of atmospheric back pressure, inside the chamber, on the spray pattern, cone angle and spray penetration were evaluated. The chamber was pressurized with 2.5, 5.0, 7.5 and 10 bar of back pressure. The tested fluid injected was EXXSOL D60 for simulating ethanol fuel behavior.
2016-10-24
Journal Article
2016-01-9079
Ryoko Sanui, Katsunori Hanamura
Time-lapse images of particulate matter (PM) deposition on diesel particulate filters (DPFs) at the PM-particle scale were obtained via field-emission scanning electron microscopy (FE-SEM). This particle scale time-series visualization showed the detailed processes of PM accumulation inside the DPF. First, PM introduced into a micro-pore of the DPF wall was deposited onto the surface of SiC grains composing the DPF, where it formed dendritic structures. The dendrite structures were locally grown at the contracted flow area between the SiC grains by accumulation of PM, ultimately constructing a bridge and closing the porous channel. To investigate the dominant parameters governing bridge formation, the filtration efficiency by Brownian diffusion and by interception obtained using theoretical filtration efficiency analysis of a spherical collector model were compared with the visualization results.
2016-10-17
Technical Paper
2016-01-2261
Maira Alves Fortunato, Aurelie Mouret, Chrsitine Dalmazzone, Laurie Starck
Abstract The use of biodiesel has risen worldwide in the last decade. Different countries use different biodiesel feedstocks which will depend on the resources available locally. Some problems due to biodiesel content and feedstock quality have been pointed out in the literature, which include cold flow properties issues of several methyl esters, especially Palm Methyl Ester (PME). The present work was carried out on diesel-biodiesel blends from 0 to 30%v/vPME in order to evaluate the impact of crystals formation on fuel filter plugging using a rig test. The fuel was maintained at 5°C and 20°C during soaking. The crystal particles formation was evaluated by the Turbiscan™ technique (based on multiple light scattering with near infra-red light), followed by particles mass weight determination by filtration. The fuel was then evaluated in the test rig until performances degradation in terms of fuel flow rate and filter pressure drop.
2016-09-27
Technical Paper
2016-01-2117
Rustam M. Baytimerov, Pavel Lykov, Sergei Sapozhnikov, Dmitry Zherebtsov, Konstantin Bromer
Abstract The development of Additive Technologies (SLS/SLM, EBM, DMD) suggests the increase of range expansion of materials used. One of the most promising directions is products manufacturing from composite materials. The technology of composite micro-powders production on the basis of heat-resistant nickel alloy EP648 and Al2O3 is proposed. The aim of this research is to develop a method of producing composite micropowders for additive technology application. This method is based on modification of the metal micropowders surface by the second phase in a planetary mixer (mechanochemical synthesis).The obtained composite micropowders are compared with powders which are recommended for selective laser melting usage (produced by MTT Technology). The equipment used in the research: planetary mixer, scanning electron microscopy (SEM), optical granulomorphometer Occio 500nano.
2016-09-27
Technical Paper
2016-01-2121
Pavel Lykov, Rustam M. Baytimerov, Artem Leyvi, Dmitry Zherebtsov, Alexey Shultc
Abstract The copper-nickel alloys are widely used in various industries. The adding of nickel significantly enhances mechanical properties, corrosion resistance and thermoelectric properties of copper. The technology was proposed of production of copper-nickel composite micro-powders by the gaseous deposition of nickel on the surface of copper powder. The vaporization of nickel was implemented by using magnetron. The relationship between mode of processing and the ratio of phases in the powder was investigated. The proposed method allows to modify the powder surface without deformation of the particles. The possibility of using of obtained composite powder in selective laser melting (SLM) was evaluated. It is assumed that the structure of the obtained composite material (SLM) will have inclusions of nickel and continuous chain of copper. This structure will have high mechanical properties and high electrical conductivity.
2016-09-20
Technical Paper
2016-01-1978
Philippe Coni, Sylvain Hourlier, Xavier Servantie, Laurent Laluque, Aude Gueguen
Abstract A 3D Stereoscopic Head-Up Display (HUD) using direct projection on a transparent screen is presented. Symbol incrustation in conformity with the landscape is performed through the use of simulated collimation offering a large eye-box, in excess of conventional HUD. The use of spectral glasses for our transparent screen was decided as most commonly used polarizing or active glasses were not adapted. Furthermore it gave ususeful green laser attack protection.
2016-05-18
Journal Article
2016-01-9043
Timo van Overbrueggen, Marco Braun, Michael Klaas, Wolfgang Schroder
Abstract The interaction of biofuel sprays from an outward opening hollow cone injector and the flow field inside an internal combustion engine is analyzed by Mie-Scattering Imaging (MSI) and high-speed stereoscopic particle-image velocimetry (stereo-PIV). Two fuels (ethanol and methyl ethyl ketone (MEK)), four injection pressures (50, 100, 150, and 200 bar), three starting points of injection (60°, 277°, and 297° atdc), and two engine speeds (1,500 rpm and 2,000 rpm) define the parameter space of the experiments. The MSI measurements determine the vertical penetration length and the spray cone angle of the ethanol and MEK spray. Stereo-PIV is used to investigate the interaction of the flow field and the ethanol spray after the injection process for a start of injection at 60° atdc. These measurements are compared to stereo-PIV measurements without fuel injection performed in the same engine [19].
Viewing 1 to 2 of 2