Display:

Results

Viewing 1 to 30 of 4345
2016-06-15
Technical Paper
2016-01-1782
Kyoung-Jin Chang, Dong Chul Park
Abstract This paper discusses approaches to emotionally improve the driving sound based on Active Sound Design (ASD). In the first step, target sound design methods are suggested in order to represent the vehicle’s concept and brand image via a driving sound. In this method, formant filter and musical chords are applied to the target sound synthesis. In the second step, a technique to make a target sound realistic in ASD system is discussed, which enables to stimulate the customers' emotion. In this technique, the process to simulate a musical instrument sound for a vivid driving sound and synthesize the sound with FIR filter is studied. Finally, the improved driving sound is demonstrated in ASD system.
2016-05-31
WIP Standard
AIR4653A
The information contained in this document is based on line experience with current systems. It should be used as a basis for ongoing research and development including the human factors aspects of future flight management systems and their interaction with the ATC environment.
2016-05-31
Standard
ARP4072A
This SAE Aerospace Recommended Practice (ARP) provides information and recommended guidelines for handling carry-on baggage prior to emergencies and during the emergency evacuation of transport category aircraft. Recommendations are provided on limiting the size, amount, and weight of carry-on baggage brought into the cabin, improved stowage of carry-on baggage to minimize hazards to passengers in flight and during emergency evacuations, and procedures to ensure carry-on baggage is not removed during an emergency evacuation.
2016-05-19
WIP Standard
AS1426C
This specification is intended to be used as a general standard for industry use for design and construction of air transport galley equipment and inflight food service systems.
2016-05-18
WIP Standard
AS6906
The standard would include requirements for HSI management [planning, execution, coordination (internal and external) documentation, administration and quality control], including collaboration among HSI domains, coordination between HSI and other disciplines to optimize total system performance, optimize human performance, and minimize personnel-driven risks and customer ownership costs.
2016-04-06
WIP Standard
J1163
This SAE standard specifies a method and the device for use in determining the position of the Seat Index Point (SIP) for any kind of seat. This SAE document provides a uniform method for defining the location of the SIP in relation to some fixing point on the seat.
2016-04-05
Journal Article
2015-01-9152
André Lundkvist, Arne Nykänen, Roger Johnsson
Abstract Many of the information systems in cars require visual attention, and a way to reduce both visual and cognitive workload could be to use sound. An experiment was designed in order to determine how driving and secondary task performance is affected by the use of information sound signals and their spatial positions. The experiment was performed in a driving simulator utilizing Lane Change Task as a driving scenario in combination with the Surrogate Reference Task as a secondary task. Two different signal sounds with different spatial positions informed the driver when a lane change should be made and when a new secondary task was presented. Driving performance was significantly improved when both signal sounds were presented in front of the driver. No significant effects on secondary task performance were found. It is recommended that signal sounds are placed in front of the driver, when possible, if the goal is to draw attention forward.
2016-04-05
Technical Paper
2016-01-1121
Fang Liao, Weimin Gao, Yan Gu, Fei Kang, Yinan Li, Cheng Wang
Abstract Noise signals of the driver’s right ear include those of engine, environment, chassis dynamometer, loaded gears and unloaded gears when they are recorded in full vehicle on chassis dynamometer in semi-anechoic room. Gear rattle noise signals of the driver’s right ear caused by unloaded gear pairs can’t be identified or quantified directly. To solve the problems, relative approaches are used to identify and quantify the gear rattle noise signals. Firstly, the rattle noise signals of the driver’s right ear are filtered by human ear characteristic functions and steady noise signals are extracted by regression and smoothing processes. The noise signals are regressed at 200ms interval in the hearing critical frequency bands and smoothed in the flanking frequencies. Then, the noise relative approaches are obtained by subtracting the steady noise signals from the filtered noise signals, which are the transient noise signals of the unloaded gear pairs inducing the rattle noise.
2016-04-05
Technical Paper
2016-01-1536
Chung-Kyu Park, Cing-Dao Kan
Abstract In this study, the available metrics to evaluate the crash pulse severity are reviewed and their assessability is investigated by using frontal New Car Assessment Program (NCAP) test data. Linear regression analysis and sled test simulations are conducted. In addition, a new approach is proposed to measure the crash pulse severity and restraint system performance separately and objectively.
2016-04-05
Technical Paper
2016-01-1514
Varun Bollapragada, Taewung Kim, Mark Clauser, Jeff Crandall, Jason Kerrigan
Abstract Some rollover testing methodologies require specification of vehicle kinematic parameters including travel speed, vertical velocity, roll rate, and pitch angle, etc. at the initiation of vehicle to ground contact, which have been referred to as touchdown conditions. The complexity of the vehicle, as well as environmental and driving input characteristics make prediction of realistic touchdown conditions for rollover crashes, and moreover, identification of parameter sensitivities of these characteristics, is difficult and expensive without simulation tools. The goal of this study was to study the sensitivity of driver input on touchdown parameters and the risk of rollover in cases of steering-induced soil-tripped rollovers, which are the most prevalent type of rollover crashes. Knowing the range and variation of touchdown parameters and their sensitivities would help in picking realistic parameters for simulating controlled rollover tests.
2016-04-05
Technical Paper
2016-01-1555
Jack Ekchian, William Graves, Zackary Anderson, Marco Giovanardi, Olivia Godwin, Janna Kaplan, Joel Ventura, James R. Lackner, Paul DiZio
Abstract It is widely anticipated that autonomous vehicles will offer increased productivity and convenience by freeing occupants from the responsibility of driving. However, studies indicate that the occurrence of motion sickness in autonomous vehicles will be substantially higher than in conventionally driven vehicles. Occupants of autonomous vehicles are more likely to be involved in performing tasks and activities, such as reading, writing and using a computer or tablet, that typically increase the occurrence of motion sickness. The authors present a novel high bandwidth active suspension system, GenShock®, and tailored control algorithms targeted toward mitigating motion sickness in autonomous vehicles. GenShock actuators can actively push and pull the wheels of a vehicle in order to keep the chassis level and reduce heave, pitch, and roll motion.
2016-04-05
Technical Paper
2016-01-0118
Shinji Niwa, Mori Yuki, Tetsushi Noro, Shunsuke Shioya, Kazutaka Inoue
Abstract This paper presents detection technology for a driver monitoring system using JINS MEME, an eyewear-type wearable device. Serious accidents caused by human error such as dozing while driving or inattentive driving have been increasing recently in Japan. JINS MEME is expected to contribute to reducing the number of traffic deaths by constantly monitoring the driver with an ocular potential sensor. This paper also explains how a driver’s drowsiness level can be estimated from information on their blink rate, which can be calculated from the ocular potential.
2016-04-05
Technical Paper
2016-01-0115
Dev S. Kochhar, Hong Zhao, Paul Watta, Yi Murphey
Abstract Lane change events can be a source of traffic accidents; drivers can make improper lane changes for many reasons. In this paper we present a comprehensive study of a passive method of predicting lane changes based on three physiological signals: electrocardiogram (ECG), respiration signals, and galvanic skin response (GSR). Specifically, we discuss methods for feature selection, feature reduction, classification, and post processing techniques for reliable lane change prediction. Data were recorded for on-road driving for several drivers. Results show that the average accuracy of a single driver test was approx. 70%. It was greater than the accuracy for each cross-driver test. Also, prediction for younger drivers was better.
2016-04-05
Technical Paper
2016-01-0119
Preeti J. Pillai, Veeraganesh Yalla, Kentaro Oguchi
Abstract This paper is an extension of our previous work on the CHASE (Classification by Holistic Analysis of Scene Environment) algorithm, that automatically classifies the driving complexity of a road scene image during day-time conditions and assigns it an ‘Ease of Driving’ (EoD) score. At night, apart from traffic variations and road type conditions, illumination changes are a major predominant factor that affect the road visibility and the driving easiness. In order to resolve the problem of analyzing the driving complexity of roads at night, a brightness detection module is incorporated in our end-to-end nighttime EoD system, which computes the ‘brightness factor’ (bright or dark) for that given night-time road scene. The brightness factor along with a multi-level machine learning classifier is then used to classify the EoD score for a night-time road scene.
2016-04-05
Journal Article
2016-01-0260
Yoshiichi Ozeki, Hideaki Nagano, Itsuhei Kohri
Abstract In order to develop various parts and components of electric vehicles, understanding the effects of their structures and thermal performance on the energy consumption and cruising distance is important. However, such essential and detailed information is generally not always available to suppliers of vehicle parts and components. This paper presents the development of a simple model of the energy consumption by an electric vehicle in order to roughly calculate the cruising performance based only on the published information to give to suppliers, who otherwise cannot obtain the necessary information. The method can calculate the cruising distance within an error of 4% compared to the published information. The effects of the glass and body heat transfer characteristics on the cruising performance in winter were considered as an example application of the proposed model.
2016-04-05
Technical Paper
2016-01-0246
Rupesh Sonu Kakade, Prashant Mer
Abstract Vehicle occupants, unlike building occupants, are exposed to continuously varying, non-uniform solar heat load. Automotive manufacturers use photovoltaic cells based solar sensor to measure intensity and direction of the direct-beam solar radiation. Use of the time of the day and the position - latitude and longitude - of a vehicle is also common to calculate direction of the direct-beam solar radiation. Two angles - azimuth and elevation - are used to completely define the direction of solar radiation with respect to the vehicle coordinate system. Although the use of solar sensor is common in today’s vehicles, the solar heat load on the occupants, because of their exposure to the direct-beam solar radiation remains the area of in-car subjective evaluation and tuning. Since the solar rays travel in parallel paths, application of the ray tracing method to determine solar insolation of the vehicle occupants is possible.
2016-04-05
Technical Paper
2016-01-0158
Toshio Ito, Arata Takata, Kenta Oosawa
Abstract Automation of vehicles can be expected to improve safety, comfort and efficiency, and is being developed in various countries. Introduction of automated driving can be ranked from 0 to 5 (0: no automation, 1: driver assistance, 2: partial automation, 3: conditional automation, 4: high automation, 5: full automation). Currently, feasible automation levels are considered to be levels 2 or 3, and human manual take-over from the automated system is needed when the automated system exceeds these levels. In this situation, time required for take-over is an important issue. This study focuses on describing driving simulator experimental results of time required for take-over. The experimental scenario is that the automated system finds an object ahead during automated driving on the highway, and issues a take-over request to the driver. The subject driver can be in the following driver situations: hands-on or hands-off the steering, and strong or weak distractions.
2016-04-05
Journal Article
2016-01-0523
Lauren Abro
Abstract North American customer perception of Quality has changed over time and has shifted from Quality, Dependability, and Reliability (QDR) to Interior Sensory Quality (ISQ). ISQ is defined as the harmony of characteristics that combine to make an emotional connection to the vehicles’ interior. Vehicles need to correctly appeal to customers emotional side through providing class-leading ISQ. Hypotheses for specific interior areas were developed in order to identify key ISQ strengths, weaknesses, and preferences. These hypotheses were then tested at customer clinics held across the country. The key goals were to understand customer judgment of ISQ execution, understand customer ISQ priority, and understand customer preference of detailed component areas.
2016-04-05
Technical Paper
2016-01-1451
Mingyang Chen, Xichan Zhu, Zhixiong Ma, Lin Li
Abstract In China there are many mixed driving roads which cause a lot of safety problems between vehicles and pedalcyclists. Research on driver behavior under risk scenarios with pedalcyclist is relatively few. In this paper driver brake parameters under naturalistic driving are studied and pedalcyclists include bicyclist, tricyclist, electric bicyclist and motorcyclist. Brake reaction time and maximum brake jerk are used to evaluate driver brake reaction speed. Average deceleration is used to evaluate the effect of driver brake operation. Maximum deceleration is used to evaluate driver braking ability. Driver behaviors collected in China are classified and risk scenarios with pedalcyclist are obtained. Driver brake parameters are extracted and statistical characteristics of driver brake parameters are obtained. Influence factors are analyzed with univariate ANOVA and regression analysis.
2016-04-05
Technical Paper
2016-01-1445
Jonathan Dobres, Bryan Reimer, Bruce Mehler, James Foley, Kazutoshi Ebe, Bobbie Seppelt, Linda Angell
Abstract Driving behaviors change over the lifespan, and some of these changes influence how a driver allocates visual attention. The present study examined the allocation of glances during single-task (just driving) and dual-task highway driving (concurrently tuning the radio using either visual-manual or auditory-vocal controls). Results indicate that older drivers maintained significantly longer single glance durations across tasks compared to younger drivers. Compared to just driving, visual-manual radio tuning was associated with longer single glance durations for both age groups. Off-road glances were subcategorized as glances to the instrument cluster and mirrors (“situationally-relevant”), “center stack”, and “other”. During baseline driving, older drivers spent more time glancing to situationally-relevant targets. During both radio tuning task periods, in both age groups, the majority of glances were made to the center stack (the radio display).
2016-04-05
Technical Paper
2016-01-1443
Nazan Aksan, Lauren Sager, Sarah Hacker, Benjamin Lester, Jeffrey Dawson, Matthew Rizzo
Abstract We examined relative effectiveness of heads-up visual displays for lane departure warning (LDW) 39 younger to middle aged drivers (25-50, mean = 35 years) and 37 older drivers (66-87, mean = 77 years). The LDW included yellow “advisory” visuals in the center screen when the driver started drifting toward the adjacent lane. The visuals turned into red “imminent” when the tires overlapped with the lane markers. The LDW was turned off if the driver activated the turn signal. The visuals could be easily segregated from the background scene, making them salient but not disruptive to the driver’s forward field of view. The visuals were placed adjacent to the left and right lane markers in the lower half of the center screen.
2016-04-05
Technical Paper
2016-01-1444
Shayne McConomy, Johnell Brooks, Paul Venhovens, Yubin Xi, Patrick Rosopa, John DesJardins, Kevin Kopera, Kathy Lococo
Abstract The research objective was to measure and understand the preferred seat position of older drivers and younger drivers within their personal vehicles to influence recommended practices and meet the increased safety needs of all drivers. Improper selection of driver’s seat position may impact safety during a crash event and affect one’s capacity to see the roadway and reach the vehicle’s controls, such as steering wheel, accelerator, brake, clutch, and gear selector lever. Because of the stature changes associated with ageing and the fact that stature is normally distributed for both males and females, it was hypothesized that the SAE J4004 linear regression would be improved with the inclusion of gender and age terms that would provide a more accurate model to predict the seat track position of older drivers. Participants included 97 older drivers over the age of 60 and 20 younger drivers between the ages of 30 to 39.
2016-04-05
Technical Paper
2016-01-1441
Jonathan Frank Antin, Justin Owens, James Foley, Kazutoshi Ebe, Brian Wotring
Abstract This study presents a long-term examination of the effects of two types of perceptual-cognitive brain training programs on senior driver behavior and on-road driving performance. Seniors (70+) engaged in either a Toyota-designed in-vehicle training program based on implicit learning principles or a commercially available computer-based training program developed by Posit Science. Another group served as a no-contact control group; total enrollment was 55 participants. Participants completed a series of four experimental sessions: (1) baseline pre-training, (2) immediate post-training, (3) 6-9 months post-training, and (4) 12-16 months post-training. Experimental metrics taken at each session included measures of vehicle control and driver glance behavior on public roads.
2016-04-05
Technical Paper
2016-01-1442
David Miller, Mishel Johns, Hillary Page Ive, Nikhil Gowda, David Sirkin, Srinath Sibi, Brian Mok, Sudipto Aich, Wendy Ju
Abstract Age and experience influence driver ability to cope with transitions between automated and manual driving, especially when drivers are engaged in media use. This study evaluated three age cohorts (young/new drivers, adults, and seniors) on their performance in transitions from automated driving to manual vehicle control in a laboratory driving simulator. Drivers were given three tasks to perform during the automated driving segments: to watch a movie on a tablet, to read a story on a tablet, or to supervise the car's driving. We did not find significant differences in people's driving performance following the different tasks. We also did not find significant differences in driving performance between the people in each age group who successfully completed the study; however, the rejection rate of the senior age group was over 30% because many of the people in this age group had difficulty hearing instructions, understanding tasks, or remembering what to do.
2016-04-05
Journal Article
2016-01-1439
Nazan Aksan, Lauren Sager, Sarah Hacker, Robert Marini, Jeffrey Dawson, Steven Anderson, Matthew Rizzo
Abstract We examined the effectiveness of a heads-up Forward Collision Warning (FCW) system in 39 younger to middle aged drivers (25-50, mean = 35 years) and 37 older drivers (66-87, mean = 77 years). The warnings were implemented in a fixed based, immersive, 180 degree forward field of view simulator. The FCW included a visual advisory component consisting of a red horizontal bar which flashed in the center screen of the simulator that was triggered at time-to-collision (TTC) 4 seconds. The bar roughly overlapped the rear bumper of the lead vehicle, just below the driver’s line-of-sight. A sustained auditory tone (∼80 dB) was activated at TTC=2 to alert the driver to an imminent collision. Hence, the warning system differed from the industry standard in significant ways. 95% Confidence intervals for the safety gains ranged from -.03 to .19 seconds in terms of average correction time across several activations. Older and younger adults did not differ in terms of safety gains.
2016-04-05
Technical Paper
2016-01-1440
Julia Seeanner, Johnell Brooks, Mary Mossey, Casey Jenkins, Paul Venhovens, Constance Truesdail
Abstract While motorcycle safety frequently focuses on topics like helmet use and engineering aspects such as anti-lock braking systems, little research has investigated aging riders’ use of technologies (i.e., phones, navigation systems, etc.) or the characteristics of older riders (defined as above the age of 40) who use them. This study surveyed a convenience sample of typical motorcycle riders in the United States in order to provide an overview of the types of technologies that riders of different age groups use while riding, problems or concerns about those technologies, as well as rider demographics and riding habits. The sample included 97 riders (84 males and 13 females) between the ages of 20 and 71 years (M= 50.9, SD= 10.6) who were divided into three age groups (under 40 years, between 40 and 50 years, 50 years and older).
2016-04-05
Technical Paper
2016-01-1437
Giorgio Previati, Massimiliano Gobbi, Giampiero Mastinu
Abstract The paper is focused on both the subjective and the objective ride comfort evaluation of farm tractors. The experimental measurement of the relevant accelerations occurring at the tractor body, at the cabin and at the seat was performed on a number of different farm tractors. A subjective rating of the ride comfort level was performed by considering five different drivers. The comfort index was computed according with ISO 2631 and other standards. The acceleration of the seated subject was computed by means of a proper mechanical model of a farm tractor and derived at different positions on the subject body. It turned out that the acceleration of the lower torso was particularly relevant for establishing a matching between the subjective perception and the objective measurement and computation. A number of indices have been derived from the measured data which are able to correlate the subjective driver feeling with the measured accelerations.
2016-04-05
Technical Paper
2016-01-1436
K. Han Kim, Sheila Ebert-Hamilton, Matthew Reed
Abstract Automotive seats are commonly described by one-dimensional measurements, including those documented in SAE J2732. However, 1-D measurements provide minimal information on seat shape. The goal of this work was to develop a statistical framework to analyze and model the surface shapes of seats by using techniques similar to those that have been used for modeling human body shapes. The 3-D contour of twelve driver seats of a pickup truck and sedans were scanned and aligned, and 408 landmarks were identified using a semi-automatic process. A template mesh of 18,306 vertices was morphed to match the scan at the landmark positions, and the remaining nodes were automatically adjusted to match the scanned surface. A principal component (PC) analysis was performed on the resulting homologous meshes. Each seat was uniquely represented by a set of PC scores; 10 PC scores explained 95% of the total variance. This new shape description has many applications.
2016-04-05
Technical Paper
2016-01-1433
Gregory Schaupp, Julia Seeanner, Casey Jenkins, Joseph Manganelli, Sarah Hennessy, Constance Truesdail, Lindsay Swift, Paul Venhovens, Johnell Brooks
Abstract The ability to independently transfer into and out of a vehicle is essential for many wheelchair users to achieve driving independence. This paper presents the results of an exploratory study that investigated the transfer strategies of wheelchair users who drive from their driver’s seat and not from their wheelchair. The goal of this study was to identify typical ingress and egress motions as well as “touch points” of wheelchair users transferring into and out of the driver’s seat. While motion databases exist for the ingress and egress of able-bodied drivers, this study provides insight on drivers with physical disabilities. Twenty-five YouTube videos of wheelchair users who transferred into and out of their own sedans were analyzed.
2016-04-05
Technical Paper
2016-01-1434
Salvatore Trapanese, Alessandro Naddeo, Nicola Cappetti
Abstract The evaluation of perceived comfort inside a car during the early stages of the design process is still an open issue. Modern technologies like CAE (Computer Aided Engineering) and DHM (Digital Human Modeling) already offer several tools for a preventive evaluation of ergonomic parameters for car drivers using detailed CAD (Computer Aided Design) models of car interiors and by a MBS (multi-body-system) solver for evaluating movements and interactions. Such evaluations are, nonetheless, not sufficient because the subjectivity of comfort perception is due to factors that are very difficult to evaluate in the early stage of design. Physical prototypes are needed and these are often too expensive to be realized.
Viewing 1 to 30 of 4345

Filter