Display:

Results

Viewing 241 to 270 of 5890
2014-04-01
Technical Paper
2014-01-0389
Hongjie Ma, Hui Xie, Shuangxi Chen, Ying Yan, DengGao Huang
Abstract Approximately 50% energy is consumed during the acceleration of a city bus. Fuel consumption during acceleration is significantly affected by driving behavior. In this study, 13 characteristic parameters were selected to describe driving style based on analysis of how driving influences fuel consumption during acceleration. The 100,000 km real-world vehicle running data of six drivers on three city buses in a particular bus line in Tianjin, China were sampled using a vehicle-on-line data logger. Based on the selected characteristic parameters and collected driving data, an evaluation model of the fuel consumption level of a driver was established by adopting the method of decision tree C4.5. For two-level classification, the model has over 85% prediction accuracy. The model also has the advantages of having a few training samples and strong generalization. As an example of the model application, the fuel-saving potential of a driver under optimal operations was analyzed.
2014-04-01
Technical Paper
2014-01-0434
Nicholas P. Skinner, John D. Bullough
Abstract Rear automotive lighting systems employing dynamic features such as sweeping or flashing are not commonly used on vehicles in North America, in part because they are not clearly addressed in vehicle lighting regulations. Nor is there abundant evidence suggesting they have a substantial role to play in driver safety. The results of a human factors investigation of the potential impacts of dynamic rear lighting systems on driver responses are summarized and discussed in the context of safety, visual effectiveness and the present regulatory context.
2014-04-01
Technical Paper
2014-01-0439
Xingyu Liang, Kang Sun, Yuesen Wang, Gequn Shu, Lin Tang, Lei Ling, Xu Wang
Abstract Like outside scenery, the car interior noise and road condition will affect the driver's mental state when driving. In order to explore the influence of external visual and auditory factors on the driver's mood in the driving process based on research of traffic soundscape, this paper has selected four backbone roads of Tianjin city (China) to test and drive a gasoline passenger vehicle at different speeds. Near Acoustic Holographic was used to scan interior acoustic field distribution, while the tracking shot of the driver's location was recorded by a Sony camera. People with different characteristics were invited to watch the video and completed a self-designed survey questionnaire. The external factors affecting the driver's mood were explored by analyzing all these data.
2014-04-01
Technical Paper
2014-01-0443
Michael Tschirhart, Kathleen Ku
Abstract The vehicle environment is known to be a demanding context for efficiently displaying information to the driver. Research in typography reveals some factors that influence reading performance measures, but there is limited research on the influence of typographic design elements in a driver-vehicle interface on user performance with a simulated driver task. Participants in these studies completed a set of vehicle infotainment tasks that involved a text-based item search in a custom-designed interface that employed a family of Helvetica Neue fonts, in a static environment and a driving simulator environment. Analysis of the data from the two studies reveals a modest but statistically significant effect of font on certain driving-related task performance measures. In both studies, fonts with intermediate values of character width and line thickness were associated with the best performance on a simulated driving task.
2014-04-01
Technical Paper
2014-01-0441
Takahiro Adachi, Takashi Yonekawa, Yoshitaka Fuwamoto, Shoji Ito, Katsuhiko Iwazaki, Sueharu Nagiri
Abstract The driving simulator (DS) developed by Toyota Motor Corporation simulates acceleration using translational (XY direction) and tilting motions. However, the driver of the DS may perceive a feeling of rotation generated by the tilting motion, which is not generated in an actual vehicle. If the driver perceives rotation, a vestibulo-ocular reflex (VOR) is generated that results in an unnecessary correction in the driver's gaze. This generates a conflict between the vestibular and visual sensations of the driver and causes motion sickness. Although such motion sickness can be alleviated by reducing the tilting motion of the DS, this has the effect of increasing the amount of XY motion, which has a limited range. Therefore, it is desirable to limit the reduction in the tilting motion of the DS to the specific timing and amount required to alleviate motion sickness. However, the timing and extent of the VOR has yet to be accurately identified.
2014-04-01
Technical Paper
2014-01-0488
Peter Kempf
Abstract Discuss the basics of posturing and positioning of the full range of occupants necessary to cover the required anthropometric demographics in combat vehicles, both ground and air, since there are similarities to both and that they are both very different than the traditional automotive packaging scenarios. It is based on the Eye Reference Point and the Design Eye Point. Discuss the three Reach Zones: Primary, Secondary and Tertiary. Discuss Vision Zones and potentially ground intercepts. Discuss body clearances, both static and dynamic. Discuss the basic effects of packaging occupants with body armor with respect to SRP's and MSRP's.
2014-04-01
Technical Paper
2014-01-0452
Helen S. Loeb, Thomas Seacrist, Catherine McDonald, Flaura Winston
Abstract Driving simulators provide a safe, highly reproducible environment in which to assess driver behavior. Nevertheless, data reduction to standardized metrics can be time-consuming and cumbersome. Further, the validity of the results is challenged by inconsistent definitions of metrics, precluding comparison across studies and integration of data. No established tool has yet been made available and kept current for the systematic reduction of literature-derived safety metrics. The long term goal of this work is to develop DriveLab, a set of widely applicable routines for reducing simulator data to expert-approved metrics. Since Matlab™ is so widely used in the research community, it was chosen as a suitable environment. This paper aims to serve as a case study of data reduction techniques and programming choices that were made for simulator analysis of a specific research project, the Simulated Driving Assessment.
2014-04-01
Technical Paper
2014-01-0450
Tobias Karlsson, Magdalena Lindman, Jordanka Kovaceva, Bo Svanberg, Henrik Wiberg, Lotta Jakobsson
Abstract Different types of driver workload are suggested to impact driving performance. Operating a vehicle in a situation where the driver feel uneasy is one example of driver workload. In this study, passenger car driving data collected with Naturalistic Driving Study (NDS) data acquisition equipment was analyzed, aiming to identify situations corresponding to a high driver's subjective rating of ‘unease’. Data from an experimental study with subjects driving a passenger car in normal traffic was used. Situations were rated by the subjects according to experienced ‘unease’, and the Controller Area Network (CAN) data from the vehicle was used to describe the driving conditions and identify driving patterns corresponding to the situations rated as ‘uneasy’. These driving patterns were matched with the data in a NDS database and the method was validated using video data. Two data mining approaches were applied.
2014-04-01
Technical Paper
2014-01-0447
Renaud Deborne, Skárlet Khouri Silva, Andras Kemeny
Abstract By the action on the steering wheel, the driver has the capability to control the trajectory of its vehicle. Nevertheless, the steering wheel has also the role of information provider to the driver. In particular, the torque level at the steering wheel informs the driver about the interaction between the vehicle and the road. This information flow is natural due to the mechanical chain between the road and the steering wheel. Many studies have shown that steering wheel torque feedback is crucial to ensure the control of the vehicle. In the context of uncoupled steering (steer-by-wire vehicle or driving simulators), the torque rendering on the steering wheel is a major challenge. In addition, of the trajectory control, the quality of this torque is a key for the immersion of drivers in virtual environment such as in driving simulators. The torque-rendering loop is composed of different steps.
2014-04-01
Technical Paper
2014-01-0445
Flaura Winston, Catherine McDonald, Venk Kandadai, Zachary Winston, Thomas Seacrist
Abstract Driving simulators offer a safe alternative to on-road driving for the evaluation of performance. In addition, simulated drives allow for controlled manipulations of traffic situations producing a more consistent and objective assessment experience and outcome measure of crash risk. Yet, few simulator protocols have been validated for their ability to assess driving performance under conditions that result in actual collisions. This paper presents results from a new Simulated Driving Assessment (SDA), a 35- to-40-minute simulated assessment delivered on a Real-Time® simulator. The SDA was developed to represent typical scenarios in which teens crash, based on analyses from the National Motor Vehicle Crash Causation Survey (NMVCCS). A new metric, failure to brake, was calculated for the 7 potential rear-end scenarios included in the SDA and examined according two constructs: experience and skill.
2014-04-01
Technical Paper
2014-01-0461
Scott Allen Ziolek
Abstract Seat comfort is an important factor in the development of a vehicle; however, comfort can be measured in many ways. Many aspects of the experimental design such as the duration of the drive test, the questions asked, and the make-up of the test subjects are known to influence comfort results. This paper provides the background methodology and results of a Seat comfort study aimed at assessing long-term driving seat comfort.
2014-04-01
Technical Paper
2014-01-0455
Alessandro Naddeo, Nicola Cappetti, Orlando Ippolito
Abstract General comfort may be defined as the “level of well-being” perceived by humans in a working environment. The state-of-the-art about evaluation of comfort/discomfort shows the need for an objective method to evaluate the “effect in the internal body” and “perceived effects” in main systems of comfort perception. In the early phases of automotive design, the seating and dashboard command can be virtually prototyped, and, using Digital Human Modeling (DHM) software, several kinds of interactions can me modeled to evaluate the ergonomics and comfort of designed solutions. Several studies demonstrated that DHM approaches are favorable in virtual reachability and usability tests as well as in macro-ergonomics evaluations, but they appear insufficient in terms of evaluating comfort.
2014-04-01
Technical Paper
2014-01-0664
Manuel Lorenz, Dusan Fiala, Markus Spinnler, Thomas Sattelmayer
Abstract Cabin heating and cooling loads of modern vehicles, notably electrically driven, represent a major portion of the overall vehicle energy consumption. Various concepts to reduce these loads have thus been proposed but quantitative experimental analysis or numerical predictions are scarcely available. Conventional 1D or zonal cabin models do not account adequately for strongly inhomogeneous cabin climate conditions. In this paper a new cabin model is presented, which delivers both temporally and spatially resolved data. The model uses a dynamic coupling algorithm including a CFD simulation of the cabin airflow, a model of the cabin structure and the detailed passenger Fiala Physiological Comfort (FPC) model.
2014-04-01
Technical Paper
2014-01-0456
Se Jin Park, Seung Nam Min, Murali Subramaniyam, Dong-Hoon Lee, Heeran Lee, Dong Gyun Kim
Abstract Seating comfort is one of the most important indicators of the performance of automotive seats. The objective and subjective evaluation of seating comfort plays an important role in the development of seating systems. Objective methods are primarily based on evaluating the influence of vibrations on the driver's seat and assessing the seat pressure ratio. The primary goal of this study was to evaluate the comfort of two car seats (sedan and compact) by comparing a subjective technique with an objective technique like body pressure ratio for a sample of 12 subjects. The results show that the pressure ratio for IT (ischial tuberosity) and L4/L5 were significantly greater for the seat of a compact car than the seat of a sedan car. The subjective comfort was significantly greater for the seat of the sedan car and females than the seat of the compact car and males, respectively.
2014-04-01
Technical Paper
2014-01-0514
Hiroyuki Asanuma, Yukou Takahashi, Miwako Ikeda, Toshiyuki Yanaoka
Abstract Japanese accident statistics show that despite the decreasing trend of the overall traffic fatalities, more than 1,000 pedestrians are still killed annually in Japan. One way to develop further understanding of real-world pedestrian accidents is to reconstruct a variety of accident scenarios dynamically using computational models. Some of the past studies done by the authors' group have used a simplified vehicle model to investigate pedestrian lower limb injuries. However, loadings to the upper body also need to be reproduced to predict damage to the full body of a pedestrian. As a step toward this goal, this study aimed to develop a simplified vehicle model capable of reproducing pedestrian full-body kinematics and pelvis and lower limb injury measures. The simplified vehicle model was comprised of four parts: windshield, hood, bumper and lower part of the bumper. Several different models were developed using different combinations of geometric and stiffness representation.
2014-04-01
Technical Paper
2014-01-0522
Chinmoy Pal, Tomosaburo Okabe, Kulothungan Vimalathithan, Jeyabharath Manoharan, Muthukumar Muthanandam, Satheesh Narayanan
Abstract A logistic regression analysis of accident cases in the NASS-PCDS (National Automotive Sampling System-Pedestrian Crash Data Study) database clearly shows that pedestrian pelvis injuries tend to be complex and depend on various factors such as the impact speed, the ratio of the pedestrian height to that of the bonnet leading edge (BLE) of the striking vehicle, and the gender and age of the pedestrian. Adult female models (50th %ile female AF50: 161 cm and 61 kg; 5th %ile female AF05: 154 cm and 50 kg) were developed by morphing the JAMA 50th %ile male AM50 and substituting the pelvis of the GHBMC AM50 model. The fine-meshed pelvis model thus obtained is capable of predicting pelvis fractures. Simulations conducted with these models indicate that the characteristics of pelvis injury patterns in male and female pedestrians are influenced by the hip/BLE height ratio and to some extent by the pelvis bone shape.
2014-04-01
Technical Paper
2014-01-0493
William R. Bussone, Michael Prange
Abstract Few studies have investigated pediatric head injury mechanics with subjects below the age of 8 years. This paper presents non-injurious head accelerations during various activities for young children (2 to 7 years old). Eight males and five females aged 2-7 years old were equipped with a head sensor package and head kinematics were measured while performing a series of playground-type activities. The maximum peak resultant accelerations were 29.5 G and 2745 rad/s2. The range of peak accelerations was 2.7 G to 29.5 G. The range of peak angular velocities was 4.2 rad/s to 22.4 rad/s. The range of peak angular accelerations was 174 rad/s2 to 2745 rad/s2. Mean peak resultant values across all participants and activities were 13.8 G (range 2.4 G to 13.8 G), 12.8 rad/s (range 4.0 rad/s to 12.8 rad/s), and 1375 rad/s2 (range 105 rad/s2 to 1375 rad/s2) for linear acceleration, angular velocity, and angular acceleration, respectively.
2014-04-01
Technical Paper
2014-01-0489
Chinmoy Pal, Tomosaburo Okabe, Kulothungan Vimalathithan, Muthukumar Muthanandam, Jeyabharath Manoharan, Satheesh Narayanan
Abstract A comprehensive analysis was performed to evaluate the effect of BMI on different body region injuries for side impact. The accident data for this study was taken from the National Automotive Sampling System-Crashworthiness Data System (NASS-CDS). It was found that the mean BMI values for driver and front passengers increases over the years in the US. To study the effect of BMI, the range was divided into three groups: Thin (BMI<21), Normal (BMI 24-27) and Obese (BMI>30). Other important variables considered for this study were model year (MY1995-99 for old vehicles & MY2000-08 for newer vehicles), impact location (side-front F, side-center P & side-distributed Y) and direction of force (8-10 o'clock for nearside & 2-4 o'clock for far-side). Accident cases involving older occupants above 60 years was omitted in order to minimize the bone strength depreciation effect. Results of the present study indicated that the Model Year has influence on lower extremity injuries.
2014-04-01
Technical Paper
2014-01-0275
Dennis A. Attwood
Abstract In its simplest form, an interlock is a device, installed in a vehicle, that monitors the safety of the vehicle and its occupants, decides whether the vehicle or its occupants are in danger and warns the occupants, or influences the operation of the vehicle. The first interlocks were designed to detect alcohol intoxicated drivers. Three categories of performance interlocks can be identified: Type I interlocks sense physiological parameters of the driver (e.g. alcohol content of alveolar air) determine the driver's level of intoxication and, after comparing this level with a criterion level (e.g. the legal limit for driving), decide whether or not the vehicle should be operated. Type II interlocks measure the behaviour of the driver with cockpit-mounted equipment (e.g. eye movement monitors) or on driving-related tasks and compare this behaviour with established norms.
2014-04-01
Technical Paper
2014-01-0270
Rupesh Sonu Kakade, Prashant Mer
Abstract A human thermal comfort, which has been a subject of extensive research, is a principal objective of the climate control systems. Applying the results of research studies to practical problems requires quantitative information of the thermal environment parameters, such as the solar radiation. A photovoltaic-cell based sensor is commonly used in the automotive climate control systems for the measurement of solar radiation information. The erroneous information from the sensors can cause thermal discomfort. The erroneous measurement from sensors can be due to physical or environmental parameters. Shading of a solar sensor due to opaque vehicle body elements is one such environmental parameter that is known to give incorrect measurement. Analytical method that uses fundamental geometric principles is proposed to determine whether sensor is shaded, for a known location of the sun and for a given geometry of the vehicle passenger compartment.
2014-04-01
Technical Paper
2014-01-0276
Adeel Yusuf, John Avery
Abstract The framework for the connected HMI with respect to the configuration and computation of personalization data is presented. The connectivity medium of the future car would be based on either an embedded internet connection through the mobile data services, Bluetooth based data connection based on the user smartphone, Wi-Fi based connection using a wireless network connection or an optimized hybrid approach based on the availability of the connectivity medium or the preference of the user. It is assumed that the car cannot remain directly-connected at all times and the computational requirements of the advanced personalization application cannot be optimized using the inbuilt HMI hardware in the vehicle alone. Our algorithm is based on the concept of Constant Data Availability (CODA) distributed file system and the Distributed Application Processing framework (DAPF).
2014-04-01
Technical Paper
2014-01-0454
Brian Pinkelman
Abstract Experience tells us that one can develop a technically comfortable seat where the seat fits and supports the occupant. The pressure distribution is optimized and the seat and packaging are such that a good posture is attainable by many. The dynamic characteristics of the seat and the vehicle are technically good. Despite all this the customer is not satisfied. Despite it being a technically comfortable seat, it does meet the customers' expectations and/or priorities and thus the comfort provided is lacking. This paper seeks to explore that gap between the seat and the user by modeling comfort using techniques similar to those found in the social sciences where models often focus on user or individual behavior. The model is built upon but diverges from the Cobb Douglas consumer utility model found in economics. It is presented as theory and presents a very different perspective on comfort.
2014-04-01
Technical Paper
2014-01-0146
Lee Carr, Dan Barnes, Jennifer Crimeni
Abstract Prior to the widespread implementation of ABS brake technology in light vehicles, driver training often included instruction to “pump the brakes” to avoid locking the wheels. Many driver education programs now recommend maintaining high brake pedal force and relying on ABS. It is sometimes asserted that drivers desiring to stop a vehicle quickly still “pump the brakes”. Investigators sought to understand whether drivers desiring to decelerate quickly pump the brakes, especially in a way that may deplete the vacuum stored in a vehicle's brake booster if so equipped, or whether they apply the brakes in a manner corresponding to their desired deceleration. The National Highway Traffic Safety Administration (NHTSA) conducted a testing program to examine driver braking behavior in crash avoidance maneuvers.
2014-04-01
Technical Paper
2014-01-0236
Maki Kawakoshi, Takanobu Kaneko, Toru Nameki
Abstract Controllability (C) is the parameter that determines the Automotive Safety Integrity Level (ASIL) of each hazardous event based on an international standard of electrical and/or electronic systems within road vehicles (ISO 26262). C is classified qualitatively in ISO 26262. However, no specific method for classifying C is described. It is useful for C classification to define a specific classification based on objective data. This study assumed that C was classified using the percentage of drivers who could reduce Severity (S) in one or more classes compared with the S class in which the driver did not react to a hazardous event. An experiment simulated a situation with increased risk of collision with a leading vehicle due to insufficient brake force because of brake-assist failure when the experiment vehicle decelerated from 50 km/h on a straight road.
2014-04-01
Technical Paper
2014-01-0299
Amardeep Sathyanarayana, Nitish Krishnamurthy, John H. L. Hansen
Abstract Growing congestion in terms of competing technology within, and traffic outside the vehicle has motivated the evolution of advanced safety systems to be context and situation aware by processing multi-sensor information effectively providing timely decisions to assist the driver in driving safely. Towards vehicular and occupant safety, it is important to understand how drivers drive and to identify any variations in their driving performance. One approach to accomplish this is to analyze driving maneuvers. These maneuvers are influenced by the driver's choice and traffic/road conditions, so analyzing these gives an indication of the driving performance. Various framing strategies have been adopted to analyze these continuous temporal information in manageable lengths of data to obtain analysis results as quickly and accurately as possible. Either fixed time window frames or event based frames are amongst the most widely used.
2014-04-01
Collection
As information and entertainment to and from the vehicle (Telematics) become more prolific it is critical to increase our understanding of how the driver understands and uses Telematics functions. Equally critical is how those functions impact the driver. The papers in this technical paper collection will address these issues.
2014-04-01
Technical Paper
2014-01-0527
William N. Newberry, Stacy Imler, Michael Carhart, Alan Dibb, Karen Balavich, Jeffrey Croteau, Eddie Cooper
Abstract It is well known from field accident studies and crash testing that seatbelts provide considerable benefit to occupants in rollover crashes; however, a small fraction of belted occupants still sustain serious and severe neck injuries. The mechanism of these neck injuries is generated by torso augmentation (diving), where the head becomes constrained while the torso continues to move toward the constrained head causing injurious compressive neck loading. This type of neck loading can occur in belted occupants when the head is in contact with, or in close proximity to, the roof interior when the inverted vehicle impacts the ground. Consequently, understanding the nature and extent of head excursion has long been an objective of researchers studying the behavior of occupants in rollovers.
2014-04-01
Technical Paper
2014-01-0492
Lisa P. Gwin, Herbert Guzman, Enrique Bonugli, William Scott, Mark Freund
Abstract There is a paucity of recent data quantifying the injury risk of forces and accelerations that act on the whole body in a back-to-front direction. The purpose of this study was to quantify the level of back-to-front accelerations that volunteers felt were tolerable and non-injurious. Instrumented volunteers were dropped supine onto a mattress, and their accelerations during the impact with the mattress were measured. Accelerometers were located on the head, upper thoracic and lower lumbar regions. Drop heights started at 0.6 m (2 ft) and progressed upward as high as 1.8 m (6 ft) based on the test subjects' consent. The test panel was comprised of male and female subjects whose ages ranged from 25 to 63 years of age and whose masses ranged from 62 to 130 kg (136 to 286 lb). Peak head, upper thoracic and lower lumbar accelerations of 25.9 g, 29.4 g and 39.6 g were measured.
2014-04-01
Journal Article
2014-01-0460
Chuqi Su, Zhengzhong Chu
Driving comfort is one of the most important indexes for automobile comfort. Driving posture comfort is closely related to the drivers' joint angles and joint torques. In present research, a new method is proposed to identify the most comfortable driving posture based on studying the relation between drivers' joint angles and joint torques. In order to truly reflect a driving situation, the accurate human driving model of 50 percent of the size of Chinese male is established according to the human body database of RAMSIS firstly. Biomechanical model based on accurate human driving model is also developed to analyze and obtain dynamic equations of human driving model by employing Kane method. The joint torque-angle curves of drivers' upper and lower limbs during holding wheel or pedal operation can be obtained through dynamic simulation in the MATLAB. Through curve-fitting analysis, the minimum joint torque of a driver' limb and the optimal joint angel can be found.
2014-04-01
Journal Article
2014-01-0463
Clive D'Souza
The purpose of this paper is to demonstrate the impact of low- floor bus seating configuration, passenger load factor (PLF) and passenger characteristics on individual boarding and disembarking (B-D) times -a key component of vehicle dwell time and overall transit system performance. A laboratory study was conducted using a static full-scale mock-up of a low-floor bus. Users of wheeled mobility devices (n=48) and walking aids (n=22), and visually impaired (n=17) and able-bodied (n=17) users evaluated three bus layout configurations at two PLF levels yielding information on B-D performance. Statistical regression models of B-D times helped quantify relative contributions of layout, PLF, and user characteristics viz., impairment type, power grip strength, and speed of ambulation or wheelchair propulsion. Wheeled mobility device users, and individuals with lower grip strength and slower speed were impacted greater by vehicle design resulting in increased dwell time.
Viewing 241 to 270 of 5890

Filter