Display:

Results

Viewing 241 to 270 of 5872
2014-04-01
Technical Paper
2014-01-0275
Dennis A. Attwood
Abstract In its simplest form, an interlock is a device, installed in a vehicle, that monitors the safety of the vehicle and its occupants, decides whether the vehicle or its occupants are in danger and warns the occupants, or influences the operation of the vehicle. The first interlocks were designed to detect alcohol intoxicated drivers. Three categories of performance interlocks can be identified: Type I interlocks sense physiological parameters of the driver (e.g. alcohol content of alveolar air) determine the driver's level of intoxication and, after comparing this level with a criterion level (e.g. the legal limit for driving), decide whether or not the vehicle should be operated. Type II interlocks measure the behaviour of the driver with cockpit-mounted equipment (e.g. eye movement monitors) or on driving-related tasks and compare this behaviour with established norms.
2014-04-01
Technical Paper
2014-01-0270
Rupesh Sonu Kakade, Prashant Mer
Abstract A human thermal comfort, which has been a subject of extensive research, is a principal objective of the climate control systems. Applying the results of research studies to practical problems requires quantitative information of the thermal environment parameters, such as the solar radiation. A photovoltaic-cell based sensor is commonly used in the automotive climate control systems for the measurement of solar radiation information. The erroneous information from the sensors can cause thermal discomfort. The erroneous measurement from sensors can be due to physical or environmental parameters. Shading of a solar sensor due to opaque vehicle body elements is one such environmental parameter that is known to give incorrect measurement. Analytical method that uses fundamental geometric principles is proposed to determine whether sensor is shaded, for a known location of the sun and for a given geometry of the vehicle passenger compartment.
2014-04-01
Technical Paper
2014-01-0276
Adeel Yusuf, John Avery
Abstract The framework for the connected HMI with respect to the configuration and computation of personalization data is presented. The connectivity medium of the future car would be based on either an embedded internet connection through the mobile data services, Bluetooth based data connection based on the user smartphone, Wi-Fi based connection using a wireless network connection or an optimized hybrid approach based on the availability of the connectivity medium or the preference of the user. It is assumed that the car cannot remain directly-connected at all times and the computational requirements of the advanced personalization application cannot be optimized using the inbuilt HMI hardware in the vehicle alone. Our algorithm is based on the concept of Constant Data Availability (CODA) distributed file system and the Distributed Application Processing framework (DAPF).
2014-04-01
Technical Paper
2014-01-0454
Brian Pinkelman
Abstract Experience tells us that one can develop a technically comfortable seat where the seat fits and supports the occupant. The pressure distribution is optimized and the seat and packaging are such that a good posture is attainable by many. The dynamic characteristics of the seat and the vehicle are technically good. Despite all this the customer is not satisfied. Despite it being a technically comfortable seat, it does meet the customers' expectations and/or priorities and thus the comfort provided is lacking. This paper seeks to explore that gap between the seat and the user by modeling comfort using techniques similar to those found in the social sciences where models often focus on user or individual behavior. The model is built upon but diverges from the Cobb Douglas consumer utility model found in economics. It is presented as theory and presents a very different perspective on comfort.
2014-04-01
Technical Paper
2014-01-0146
Lee Carr, Dan Barnes, Jennifer Crimeni
Abstract Prior to the widespread implementation of ABS brake technology in light vehicles, driver training often included instruction to “pump the brakes” to avoid locking the wheels. Many driver education programs now recommend maintaining high brake pedal force and relying on ABS. It is sometimes asserted that drivers desiring to stop a vehicle quickly still “pump the brakes”. Investigators sought to understand whether drivers desiring to decelerate quickly pump the brakes, especially in a way that may deplete the vacuum stored in a vehicle's brake booster if so equipped, or whether they apply the brakes in a manner corresponding to their desired deceleration. The National Highway Traffic Safety Administration (NHTSA) conducted a testing program to examine driver braking behavior in crash avoidance maneuvers.
2014-04-01
Technical Paper
2014-01-0236
Maki Kawakoshi, Takanobu Kaneko, Toru Nameki
Abstract Controllability (C) is the parameter that determines the Automotive Safety Integrity Level (ASIL) of each hazardous event based on an international standard of electrical and/or electronic systems within road vehicles (ISO 26262). C is classified qualitatively in ISO 26262. However, no specific method for classifying C is described. It is useful for C classification to define a specific classification based on objective data. This study assumed that C was classified using the percentage of drivers who could reduce Severity (S) in one or more classes compared with the S class in which the driver did not react to a hazardous event. An experiment simulated a situation with increased risk of collision with a leading vehicle due to insufficient brake force because of brake-assist failure when the experiment vehicle decelerated from 50 km/h on a straight road.
2014-04-01
Technical Paper
2014-01-0299
Amardeep Sathyanarayana, Nitish Krishnamurthy, John H. L. Hansen
Abstract Growing congestion in terms of competing technology within, and traffic outside the vehicle has motivated the evolution of advanced safety systems to be context and situation aware by processing multi-sensor information effectively providing timely decisions to assist the driver in driving safely. Towards vehicular and occupant safety, it is important to understand how drivers drive and to identify any variations in their driving performance. One approach to accomplish this is to analyze driving maneuvers. These maneuvers are influenced by the driver's choice and traffic/road conditions, so analyzing these gives an indication of the driving performance. Various framing strategies have been adopted to analyze these continuous temporal information in manageable lengths of data to obtain analysis results as quickly and accurately as possible. Either fixed time window frames or event based frames are amongst the most widely used.
2014-04-01
Collection
As information and entertainment to and from the vehicle (Telematics) become more prolific it is critical to increase our understanding of how the driver understands and uses Telematics functions. Equally critical is how those functions impact the driver. The papers in this technical paper collection will address these issues.
2014-04-01
Technical Paper
2014-01-0527
William N. Newberry, Stacy Imler, Michael Carhart, Alan Dibb, Karen Balavich, Jeffrey Croteau, Eddie Cooper
Abstract It is well known from field accident studies and crash testing that seatbelts provide considerable benefit to occupants in rollover crashes; however, a small fraction of belted occupants still sustain serious and severe neck injuries. The mechanism of these neck injuries is generated by torso augmentation (diving), where the head becomes constrained while the torso continues to move toward the constrained head causing injurious compressive neck loading. This type of neck loading can occur in belted occupants when the head is in contact with, or in close proximity to, the roof interior when the inverted vehicle impacts the ground. Consequently, understanding the nature and extent of head excursion has long been an objective of researchers studying the behavior of occupants in rollovers.
2014-04-01
Technical Paper
2014-01-0492
Lisa P. Gwin, Herbert Guzman, Enrique Bonugli, William Scott, Mark Freund
Abstract There is a paucity of recent data quantifying the injury risk of forces and accelerations that act on the whole body in a back-to-front direction. The purpose of this study was to quantify the level of back-to-front accelerations that volunteers felt were tolerable and non-injurious. Instrumented volunteers were dropped supine onto a mattress, and their accelerations during the impact with the mattress were measured. Accelerometers were located on the head, upper thoracic and lower lumbar regions. Drop heights started at 0.6 m (2 ft) and progressed upward as high as 1.8 m (6 ft) based on the test subjects' consent. The test panel was comprised of male and female subjects whose ages ranged from 25 to 63 years of age and whose masses ranged from 62 to 130 kg (136 to 286 lb). Peak head, upper thoracic and lower lumbar accelerations of 25.9 g, 29.4 g and 39.6 g were measured.
2014-04-01
Journal Article
2014-01-0460
Chuqi Su, Zhengzhong Chu
Driving comfort is one of the most important indexes for automobile comfort. Driving posture comfort is closely related to the drivers' joint angles and joint torques. In present research, a new method is proposed to identify the most comfortable driving posture based on studying the relation between drivers' joint angles and joint torques. In order to truly reflect a driving situation, the accurate human driving model of 50 percent of the size of Chinese male is established according to the human body database of RAMSIS firstly. Biomechanical model based on accurate human driving model is also developed to analyze and obtain dynamic equations of human driving model by employing Kane method. The joint torque-angle curves of drivers' upper and lower limbs during holding wheel or pedal operation can be obtained through dynamic simulation in the MATLAB. Through curve-fitting analysis, the minimum joint torque of a driver' limb and the optimal joint angel can be found.
2014-04-01
Journal Article
2014-01-0463
Clive D'Souza
The purpose of this paper is to demonstrate the impact of low- floor bus seating configuration, passenger load factor (PLF) and passenger characteristics on individual boarding and disembarking (B-D) times -a key component of vehicle dwell time and overall transit system performance. A laboratory study was conducted using a static full-scale mock-up of a low-floor bus. Users of wheeled mobility devices (n=48) and walking aids (n=22), and visually impaired (n=17) and able-bodied (n=17) users evaluated three bus layout configurations at two PLF levels yielding information on B-D performance. Statistical regression models of B-D times helped quantify relative contributions of layout, PLF, and user characteristics viz., impairment type, power grip strength, and speed of ambulation or wheelchair propulsion. Wheeled mobility device users, and individuals with lower grip strength and slower speed were impacted greater by vehicle design resulting in increased dwell time.
2014-04-01
Journal Article
2014-01-1980
Vincent Laurent, Christophe Then, Gerhard Silber
Comfort is a main factor in customer's decision when buying a car. The seat plays a very important role, as it is the interface between occupant and vehicle. Pressure distribution is today's most common approach to characterize seat comfort, but it shows limitations. Analysis of human inter-tissue stress tends to be relevant for an objective comfort assessment. This paper presents the construction and validation of a CAE human model, based on Magnetic Resonance Imaging scans and in-vivo tests data. Correlation between objective criteria and subjective evaluation will be investigated, comfort performance of a real seat will be predicted.
2014-04-01
Journal Article
2014-01-0262
Kasiraja Thangapandian, Kumaran Bharatheedasan, Binoy Melatt Vythakkatt
With ongoing integration of various systems in the Vehicle, the usage of display unit is increasing day-by day. The necessity to access data, stored on a remote system, via a human machine interface (HMI) is growing and also the need for developing a Graphical User Interface (GUI) in an efficient manner. The customer/user request to view or browse the system via display is becoming more complex and it is very annoying for the customer/user to wait for a system reaction on his input to the local system for a longer time. With the above limitations we would need to develop the GUI for quick turnaround with high quality. In this paper we are about to discuss on the Model View Controller (MVC) architecture, platform based approach, modular approach based on Core - Server for GUI development, auto code generation, behavioral model simulation, reusable packages and various tools that are used in development of GUI.
2014-04-01
Journal Article
2014-01-0263
Tawhid Khan, Mark Williams
This paper describes a comparative study aimed at identifying cultural differences in automotive-HMI usability. This was part of a larger research to investigate in depth the problems users experience with vehicle-HMI in emerging-regions and help in the development of HMI design guidelines to include cultural consideration. Culture is recognised as a significant influence on user behaviour, as it correlates with certain preferences and abilities. A system may be fully usable for one group of users and environmental conditions but totally unsuitable for another. Even if a conscientious engineer designs a proper human-machine-interface for use in a given environment, the designer is often unable to foresee effects of a different culture on vehicle's HMI usability. Culture has different patterns of social behaviour and interaction which have led many researchers to develop cultural-models to describe these differences.
2014-04-01
Journal Article
2014-01-0272
Amardeep Sathyanarayana, Seyed Omid Sadjadi, John H. L. Hansen
Towards developing of advanced driver specific active/passive safety systems it is important to be able to continuously evaluate driving performance variations. These variations are best captured when evaluated against similar driving patterns or maneuvers. Hence, accurate maneuver recognition in the preliminary stage is vital for the evaluation of driving performance. Rather than using simulated or fixed test track data, it is important to collect and analyze on-road real-traffic naturalistic driving data to account for all possible driving variations in different maneuvers. Towards this, massive free style naturalistic driving data corpora are being collected. Human transcription of these massive corpora is not only a tedious task, but also subjective and hence prone to errors/inconsistencies which can be due to multiple transcribers as well as lack of enough training/instructions.
2014-04-01
Journal Article
2014-01-0444
Yinghao Huang, Wenduo Wang, Chen Fang, Yi Murphey, Dev S. Kochhar
A transportable instrumentation package to collect driver, vehicle and environmental data is described. This system is an improvement on an earlier system and is called TIP-II [13]. Two new modules were designed and added to the original system: a new and improved physiological signal module (PH-M) replaced the original physiological signals module in TIP, and a new hand pressure on steering wheel module (HP-M) was added. This paper reports on exploratory tests with TIP-II. Driving data were collected from ten driver participants. Correlations between On-Board-Diagnostics (OBD), video data, physiological data and specific driver behavior such as lane departure and car following were investigated. Initial analysis suggested that hand pressure, skin conductance level, and respiration rate were key indicators of lane departure lateral displacement and velocity, immediately preceding lane departure; heart rate and inter-beat interval were affected during lane changes.
2014-04-01
Journal Article
2014-01-0446
Richard Young
A key aim of research into cell phone tasks is to obtain an unbiased estimate of their relative risk (RR) for crashes. This paper re-examines five RR estimates of cell phone conversation in automobiles. The Toronto and Australian studies estimated an RR near 4, but used subjective estimates of driving and crash times. The OnStar, 100-Car, and a recent naturalistic study used objective measures of driving and crash times and estimated an RR near 1, not 4 - a major discrepancy. Analysis of data from GPS trip studies shows that people were in the car only 20% of the time on any given prior day at the same clock time they were in the car on a later day. Hence, the Toronto estimate of driving time during control windows must be reduced from 10 to 2 min.
2014-04-01
Journal Article
2014-01-0448
Richard Young
This study reanalyzes the data from a recent experimental report from the University of Utah investigating the effect on driving performance of auditory-vocal secondary tasks (such as cell phone and passenger conversations, speech-to-text, and a complex artificial cognitive task). The current objective is to estimate the relative risk of crashes associated with such auditory-vocal tasks. Contrary to the Utah study's assumption of an increase in crash risk from the attentional effects of cognitive load, a deeper analysis of the Utah data shows that driver self-regulation provides an effective countermeasure that offsets possible increases in crash risk. For example, drivers self-regulated their following distances to compensate for the slight increases in brake response time while performing auditory-vocal tasks. This new finding is supported by naturalistic driving data showing that cell phone conversation does not increase crash risk above that of normal baseline driving.
2014-04-01
Journal Article
2014-01-0484
Bryan Randles, Daniel Voss, Isaac Ikram, Christopher Furbish, Judson Welcher, Thomas Szabo
Determination of vehicle speed at the time of impact is frequently an important factor in accident reconstruction. In many cases some evidence may indicate that the brake pedal of a striking vehicle was disengaged, and the vehicle was permitted to idle forward prior to impacting the target vehicle. This study was undertaken to analyze the kinematic response of various vehicles equipped with automatic transmissions while idling, with the transmissions in drive and the brake pedals disengaged. An array of sedans, SUV's and pickup trucks were tested under 3 roadway conditions (flat, medium slope and high slope). The vehicle responses are reported and mathematical relationships were developed to model the idle velocity profiles for flat and sloped roadway surfaces.
2014-04-01
Journal Article
2014-01-1985
Michael Flannagan, Mitsuhiro Uchida, John Michael Sullivan, Mary Lynn Buonarosa
This study was designed to investigate how the spectral power distribution (SPD) of LED headlamps (including correlated color temperature, CCT) affects both objective driving performance and subjective responses of drivers. The results of this study are not intended to be the only considerations used in choosing SPD, but rather to be used along with results on how SPD affects other considerations, including visibility and glare. Twenty-five subjects each drove 5 different headlamps on each of 5 experimental vehicles. Subjects included both males and females, in older (64 to 85) and younger (20 to 32) groups. The 5 headlamps included current tungsten-halogen (TH) and high-intensity discharge (HID) lamps, along with three experimental LED lamps, with CCTs of approximately 4500, 5500, and 6500 K. Driving was done at night on public roads, over a 21.5-km route that was selected to include a variety of road types.
2014-04-01
Journal Article
2014-01-0086
Masashi Tsushima, Eiichi Kitahara, Taichi Shiiba, Takumi Motosugi
The adoption of the electronic controlled steering systems with new technologies has been extended in recent years. They have interactions with other complex vehicle subsystems and it is a hard task for the vehicle developer to find the best solution from huge number of the combination of parameter settings with track tests. In order to improve the efficiency of the steering system development, the authors had developed a steering bench test method for steering system using a Hardware-In-the-Loop Simulation (HILS). In the steering HILS system, vehicle dynamics simulation and the tie rod axial force calculation are required at the same time in the real-time simulation environment. The accuracy of the tie rod axial force calculation is one of the key factors to reproduce the vehicle driving condition. But the calculation cannot be realized by a commercial software for the vehicle dynamics simulation.
2014-04-01
Journal Article
2014-01-0148
Ibrahim A. Badiru
The automotive industry is one of the most competitive enterprises in the world. Customers face an ever-expanding number of entries in each market segment vying for their business. Sales price, brand image, marketing, etc. all play a role in purchase decisions, but the factor distinguishing products that consistently perform in the market place is the ability to satisfy the customer. Steering character plays a critical role in the customer driving experience and can be one of the most heavily debated topics during a new vehicle program. The proliferation of EPS steering systems now allows engineers to calibrate steering feel to almost any desired specification. This raises a key question: What subjective & objective characteristics satisfy customers in a particular market segment?
2014-04-01
Journal Article
2014-01-0686
Mingyu Wang, Edward Wolfe, Debashis Ghosh, Jeffrey Bozeman, Kuo-huey Chen, Taeyoung Han, Hui Zhang, Edward Arens
Traditional vehicle air conditioning systems condition the entire cabin to a comfortable range of temperature and humidity regardless of the number of passengers in the vehicle. The A/C system is designed to have enough capacity to provide comfort for transient periods when cooling down a soaked car. Similarly for heating, the entire cabin is typically warmed up to achieve comfort. Localized heating and cooling, on the other hand, focuses on keeping the passenger comfortable by forming a micro climate around the passenger. This is more energy efficient since the system only needs to cool the person instead of the entire cabin space and cabin thermal mass. It also provides accelerated comfort for the passenger during the cooling down periods of soaked cars. Additionally, the system adapts to the number of passengers in the car, so as to not purposely condition areas that are not occupied.
2014-04-01
Technical Paper
2014-01-0431
John D. Bullough
Abstract Present standards for vehicle forward lighting specify two headlamp beam patterns: a low beam when driving in the presence of other nearby vehicles, and a high beam when there is not a concern for producing glare to other drivers. Adaptive lighting technologies such as curve lighting systems with steerable headlamps may be related to increments in safety according to the Insurance Institute for Highway Safety, but isolating the effects of lighting is difficult. Recent analyses suggest that visibility improvements from adaptive curve lighting systems might reduce nighttime crashes along curves by 2%-3%. More advanced systems such as adaptive high-beam systems that reduce high-beam headlamp intensity toward oncoming drivers are not presently allowed in the U.S. The purpose of the present study is to analyze visual performance benefits and quantify potential safety benefits from adaptive high-beam headlamp systems.
2014-04-01
Technical Paper
2014-01-0442
James K. Sprague, Peggy Shibata, Jack L. Auflick
Abstract A complete analysis of any vehicular collision needs to consider certain aspects of human factors. However, this is especially true of nighttime collisions, in which a more specialized approach is required. Classical collision investigation (frequently referred to as accident reconstruction) is comprised of kinetic and kinematic considerations including skid analysis, momentum techniques and other methods. While analysis based on these concepts is typically unaffected by low visibility conditions, the opposite is true of the perceptual and cognitive aspects of a “humans-in-the-loop” analysis, which can be enormously impacted by low visibility. Only by applying appropriate human factors techniques can the analyst make a defensible determination of how and why a nighttime collision occurred.
2014-04-01
Technical Paper
2014-01-0437
Rudolf Mortimer, Errol Hoffmann, Aaron Kiefer
Abstract Relative velocity detection thresholds of drivers are one factor that determines their ability to avoid rear-end crashes. Laboratory, simulator and driving studies show that drivers could scale relative velocity when it exceeded the threshold of about 0.003 rad/sec. Studies using accident reconstruction have suggested that the threshold may be about ten times larger. This paper discusses this divergence and suggests reasons for it and concludes that the lower value should be used as a true measure of the psychological threshold for detection of relative velocity.
2014-03-31
Standard
J2972_201403
This Information Report contains a definition of road vehicle hands-free operation. This definition applies to driver inputs to a wireless communications device used for person-to-person wireless communications while driving. This report applies to both original equipment manufacturers’ and aftermarket devices. The definition does not apply to outputs, e.g., visual or haptic feedback, from a communication system or device, regardless of the modality of human-machine interface. It also does not apply to parallel or redundant manual control operating modes.
2014-03-25
Article
The company is continuing to develop foundation tools for future autonomous driving by advancing the fundamentals of sensing, planning, and then acting to guide vehicle response. Mimicking a human-like response is requiring new algorithm and systems engineering that better exploits existing sensors.
2014-03-24
Technical Paper
2014-01-2006
Peerapat Phondeenana, Raksit Thitipatanapong, Sanya Klongnaivai, Nuksit Noomwongs, Sunhapos Chantranuwathana
Abstract Driver behavior is one of the most important factors in safe mobility. In general, various driver maneuvers can be determined from acceleration of the vehicle. Physically, the acceleration and brake can be detected with longitudinal acceleration while turning and lane change can be detected with lateral acceleration. Normally, IMU (inertia measurement unit) has been designated to get these data. However, the IMU is not convenience to install in the vehicles especially as aftermarket parts. Nowadays, navigation system technologies have been much improved, both on availability and accuracy with combination of multiple navigation satellite systems. Normally, it's called Multi-GNSS (multiple global navigation satellite system). In particular, the satellite navigation systems available in this work are GPS, GLONASS, and QZSS. With decimeter precision and the update rate scale up to 10-Hz, the GNSS can be a viable alternative for driver behavior detection.
Viewing 241 to 270 of 5872

Filter