Display:

Results

Viewing 181 to 210 of 6141
2015-09-29
Technical Paper
2015-01-2838
Dharmar Ganesh, Riyaz Mohammed, Hareesh Krishnan, Radakrishnan Rambabu
Abstract In-vehicle displays such as an instrument cluster in a vehicle provide vital information to the user. The information in terms of displays and tell-tales needs to be perceived by the user with minimal glance during driving. Drivers must recognize the condition of the vehicle and the state of its surroundings through primarily visual means. Drivers then process this in the brain, draw on their memory to identify problem situations, decide on a plan of action and execute it in order to avoid an accident. There are visual hindrances seen in real world scenario such as obscuration, reflection and glare on the instrument cluster which prevents the vital information flow from vehicle to the driver. In order to ensure safety while driving, the instrument cluster or driver displays should be placed in an optimized location.
2015-09-29
Technical Paper
2015-01-2767
Sanjay Lakshmanan, Arthanareeswaran Palaniappan, Vijayakumar Chekuri
Abstract The emerging trends in commercial vehicle technology have increased the necessity for critical attribute engineering refinements. Drivability is emerging as one of the most significant attributes in the automotive sector. The degree of smoothness in a vehicle's response to the driver's input is termed as drivability. This attribute has to be rigorously refined in order to achieve brand specific vehicle characteristics, which will ensure a thorough product differentiation. In order to calibrate for a positive drivability feel, a methodology for evaluation of drivability is a prerequisite. The scope of this paper is aimed at describing the methodology for subjective and objective evaluation of drivability attributes in commercial vehicles. Drivability is a highly subjectively perceived attribute, therefore a subjective assessment technique to assess drivability attributes and sub-attributes are essential.
2015-09-29
Journal Article
2015-01-2843
Xu Kuang, Jianqiang Wang, Keqiang Li
Abstract Transport vehicles consume a large amount of fuel with low efficiency, which is significantly affected by drivers' behaviors. An assessment system of eco-driving pattern for buses could identify the deficiencies of driver operation as well as assist transportation enterprises in driver management. This paper proposes an assessment method regarding drivers' economic efficiency, considering driving conditions. To this end, assessment indexes are extracted from driving economy theories and ranked according to their effect on fuel consumption, derived from a database of 135 buses using multiple regression. A layered structure of assessment indexes is developed with application of AHP, and the weight of each index is estimated. The driving pattern score could be calculated with these weights.
2015-09-29
Journal Article
2015-01-2834
James Roger Lackore, Kevin Voss
Abstract Access method design for entry and egress of medium and heavy duty truck cabs and bodies is a critical aspect of vehicle design. Occupational injuries due to entering or exiting the truck cab, or climbing onto and off of the truck body, can be a significant percentage of a fleet's lost-time incident rate. Many vocational trucks operate in both off-road and on-road conditions, and the slip resistance of the stepping surface is an important design aspect. Examples of vocational vehicles that involve off-road operation include dump, refuse, utility, tree-trimming, and concrete trucks. Stepping surfaces in these applications must provide a balance between traction and the ability to shed water, snow, and mud. While there are a few methods and devices for measuring walking surface slip resistance, they are either complicated, or not well suited to measuring aggressive surfaces.
2015-09-29
Journal Article
2015-01-2870
Sanket Pawar
Abstract Displacement joystick controls are considered as most suitable for manual controls wherever proportional outputs are required for dynamic applications such as when variable speed sensitivity or position are required. These joysticks are being used widely in both open loop as well as in close loop controls. The operator applies force to either the joystick itself or to its proportional linear displacement thumb wheel switches. This movement is then detected by either resistive or Hall Effect sensors, placed right inside joystick, and converted into an electrical signal. These joysticks, along with proportional linear displacement thumb wheel switches, find a wide range of applications in off-road vehicles such construction and forestry vehicles, harvester machines, and etc. for applications like attachment speed controls, boom position control, rotation speed control, and etc.
2015-09-29
WIP Standard
J386
This standard provides performance and test requirements for operator restraint systems provided for off-road self-propelled work machines. This document applies to pelvic restraint systems (Type 1) for off-road, self-propelled work machines fitted with ROPS and commonly used in construction, earthmoving, forestry, and mining as referred to in SAE J1040 and industrial machines fitted with ROPS as referred to in SAE J1042.
2015-09-29
Technical Paper
2015-01-2766
Sai Venkatesh Muravaneni, Egalaivan Srinivasan, Jagankumar Mari
Abstract Steering wheel being the most used tactile point in a vehicle, its feel and response is an important factor based on which the vehicle quality is judged. Engineering the right feel and response into the system requires knowledge of the objective parameters that relate to the driver perception. Extensive correlation work has been done in the past pertaining to passenger cars, but the driver requirements for commercial vehicles vary significantly. Often it becomes difficult to match the right parameters to the steering feel experienced by the drivers, since most of the standard ISO weave test units used to describe them are of zero or first order parameters. Analyzing the second order parameters gave a better method to reason driver related feel. Also, each subjective attribute was fragmented into sub-attributes to identify the reason for such a rating resulting in the identification of the major subjective parameters affecting driver ratings.
2015-09-27
Technical Paper
2015-01-2674
Dragan Aleksendric, Velimir Cirovic, Dusan Smiljanic
Abstract Customer perception of brake pedal feel quality, depends on both the customer's subjective judgment of quality and the actual build quality of the brake system. The brake performance stability represents an important aspect of a vehicle performance and its quality of use. This stability is needed especially in brake by wire system and braking system with regenerative braking. In order to provide stable braked pedal feel i.e. consistent the brake performance against the brake pedal travel, the model of the brake performance versus the brake pedal travel needs to be established. In this paper new hybrid neuro-genetic optimization model was developed for dynamic control and optimization of the disc brake performance during a braking cycle versus the brake pedal travel. Based on such model, the brake performance optimization of the passenger car has been provided against the brake pedal travel.
2015-09-27
Technical Paper
2015-01-2696
Shuichi Okada
We had developed Electric Servo Brake System, which can control brake pressure accurately with a DC motor according to brake pedal force. Therefore, the system attains quality brake feeling while reflecting intentions of a driver. By the way, “Build-up” is characteristics that brake effectiveness increases in accordance with the deceleration of the vehicle, which is recognized as brake feeling with a sense of relief as not to elongate an expected braking distance at a downhill road due to large-capacity brake pad such as sports car and large vehicles. Then, we have applied the optical characteristic control to every car with Electric Servo Brake System by means of brake pressure control but not brake pad. Hereby, we confirmed that the control gives a driver the sense of relief and the reduction of pedal load on the further stepping-on of the pedal. In this paper, we describe the development of brake feel based on the control overview.
2015-09-22
WIP Standard
AIR6256
The aim of this document is to provide a comprehensive synopsis of regulations applicable to aircraft oxygen systems. The context of physiological requirements, international regulations, operational requirements and airworthiness standards is shown to understand the role of aircraft oxygen systems and to demonstrate under which circumstances is needed on aircraft. With regards to National Aviation Regulations States are committed to the Convention on International Aviation (Chicago Convention). The majority of states have adopted, with some deviations, FAA and EASA systems including operational and airworthiness requirements. Accordingly the extent of this document is primarily focused on FAA/EASA requirements.
2015-09-22
Technical Paper
2015-36-0211
Bruno Afonso, Walace Chicuta, Roberto Bortolussi
Abstract This paper shows the elaboration of studies about the driver’s comfort in a Baja SAE vehicle in different track conditions. The multibody model was designed in ADAMS VIEW software with full vehicle components aim evaluate frequencies, accelerations and displacements in any part of the vehicle. Several tests and measurements were made to acquire springs, dampers and tire data to ensure the model represents the real vehicle. The full vehicle and also the driver were modeled through a CAD software, thus all geometries, mass and inertias were inputted in the multibody model based on the built vehicle. The vertical displacements were modeled in the multibody software simulating the road profile, so it was possible to analyze the vehicle ride behavior with different set ups in different tracks. The validation of multibody mathematical model was made by modeling the same maneuver that the vehicle instrumented with data acquisition was submitted.
2015-09-22
Technical Paper
2015-36-0205
Heloisa Rodrigues Lourenço, Marko Ackermann
Abstract Vehicle ergonomics, more specifically driver ergonomics, has been the subject of interest in the automotive industry as a way to provide customers vehicles that have more than modern project, efficiency and competitive price. The driver ergonomics is related to the way the driver interacts with the vehicle interior, particularly, with the seat, hand and foot controls, considering aspects such as ease of access, space, proper upper and lower limb motion and drivers comfort and fatigue. Regarding the lower limbs, the driver’s comfort can be evaluated in terms of joint moments and muscle forces, which are influenced by the hip, knee and ankle joint angles, which in turn depend on the distances between the seat and pedal.
2015-09-18
WIP Standard
J2395
This SAE Recommended Practice applies to both Original Equipment Manufacturer (OEM) and aftermarket ITS message-generating systems for passenger vehicles and heavy trucks. The recommended practice describes the method for prioritizing ITS in-vehicle messages and/or displayed information based on a defined set of criteria. Each criterion has a fixed number of levels that are used to rate/rank a given message or information item to determine its prioritization value. The prioritization value is used to determine the priority in which simultaneous, or overlapping, in-vehicle messages are presented to the driver.
2015-09-15
Technical Paper
2015-01-2401
Michael Schmidt, Philipp Nguyen, Mirko Hornung
Abstract The projected uptick in world passenger traffic challenges the involved stakeholders to optimise the current aviation system and to find new solutions being able to cope with this trend. Since especially large hub airports are congested, operate at their capacity limit and further extensions are difficult to realise. Delays due to late arrival of aircraft or less predictable ground operation processes disrupt the airport operations in a serious way. Various concepts improving the current turnaround processes have been presented thus far, whereby radical aircraft design changes have little chances for realisation in the short term. By maintaining the established overall aircraft configuration, the concepts promote higher probability to become commercially available for aircraft manufactures and operators.
2015-09-15
Technical Paper
2015-01-2429
Rickard Olsen, Kerstin Johansen, Magnus Engstrom
Abstract The increased diffusion of cooperation between humans and robotics in manufacturing systems is one of the next things to implement within robotics. Since the computer power gets more and more powerful, the possibilities increase to achieve safer working environment, due to that all safety signals demands fast management of data. This could lead to a possibility to work closer and more direct with a robot, using the robot as a third hand. Within an EU FW7 funded project called LOCOMACHs (Low Cost Manufacturing and Assembly of Composite and Hybrid Structures) there are one study focusing on how to support a future higher TRL-leveled HMI cell (Human Machine Interaction) in an assembly task. The main objective in this paper is to present how different external safety systems could support the whole HMI assembly cell to work properly in an industrial context.
2015-09-15
Technical Paper
2015-01-2537
Sylvain Hourlier
Abstract The efficiency of the glass cockpit paradigm has faded away with the densification of the aeronautical environment. Today's problem lies with “non-defective aircraft” monitored by “perfectly trained crews” still involved in fatal accidents. One explanation is, at crew level, that we have reached a system complexity that, while acceptable in normal conditions, is hardly compatible with human cognitive abilities in degraded conditions. The current mitigation of such risk still relies on the enforcement through intensive training of an ability to manage extremely rare (off-normal) situations. These are explained by the potential combination of failures of highly complex systems with variable environment & with variable humans.
2015-09-15
Technical Paper
2015-01-2601
Zhejun Yao, Wiltrud Weidner, Robert Weidner, Jens Wulfsberg
Abstract Despite the increasing application of automated systems, manual tasks still plays an important role in industrial production. The intelligence and flexibility of human enable quick response and adaptive production for the individual requirements and the changes in market. Moreover, some manufacturing tasks with sensible and high-value components (e.g., in electronic and aircraft production) requires attentive manual handling. Regarding the requirement of increasing productivity as well as ergonomic improvement and the aging of the employees, there is a significant need for technologies which support the staff individually by performing tasks. Human Hybrid Robot, a hybrid system with direct coupling (serial and/or parallel) of human and mechatronic elements, is a new trend in application of robotic technologies for supporting manual tasks. It realizes a synchronous and bidirectional interaction between human and mechatronic and/or mechanic elements in the same workspace.
2015-09-15
Technical Paper
2015-01-2536
Rinky Babul Prasad, Vinukonda Siddartha
Abstract Recent years have seen a rise in the number of air crashes and on board fatalities. Statistics reveal that human error constitutes upto 56% of these incidents. This can be attributed to the ever growing air traffic and technological advancements in the field of aviation, leading to an increase in the electronic and mechanical controls in the cockpit. Accidents occur when pilots misinterpret gauges, weather conditions, fail to spot mechanical faults or carry out inappropriate actions. Currently, pilots rely on flight manuals (hard copies or an electronic tablet) to respond to an emergency. This is prone to human error or misinterpretation. Also, a considerable amount of time is spent in seeking, reading, interpreting and implementing the corrective action. The proposed augmented head mount virtual assist for the pilot eliminates flight manuals, by virtually guiding the pilot in responding to in-flight necessities.
2015-09-15
Journal Article
2015-01-2485
Mark Benjamin Geiger, John Michael Ster
Abstract A joint US Department of Defense (DOD), General Services Administration (GSA) and National Institute for Occupational Safety and Health (NIOSH) project initially addressing procurement criteria for powered hand tools stimulated involvement of the SAE EG1-B Hand Tools committee and affiliated industry participants, producers of powered hand tools. It became apparent of the need to develop a standard that addresses occupational disease, productivity, life-cycle cost in the selection of Hand Power Tools. Committee efforts focused upon development of an SAE International Standard that considers productivity hand-arm vibration, noise, other safety and health factors and life-cycle costs in procurement criteria for powered hand tools. Aerospace Standard, AS 6228 Safety Requirements for Procurement, Maintenance and Use of Hand-held Powered Tools, was published in September 2014.
2015-09-15
Journal Article
2015-01-2440
Robert Moehle, Jason Clauss
Abstract Labor costs rank second only to fuel in expenses for commercial air transports. Labor issues are a growing concern in the airline industry, with an impending worldwide pilot shortage. One solution proposed and requested by some of the industry leaders is to allow a single flight crew member to operate the aircraft. Safety concerns represent the dominant barrier to single-pilot Part 121 operations. The FAA and Congress consistently demonstrate a bias toward conservatism in their regulation of airlines and commercial aircraft. Bureaucrats and the general public fall prey to isolated news stories that highlight pilot error and anchor their viewpoint on further regulating a two-person crew. Yet, in an alarming spate of recent airline accidents, the presence of multiple crewmembers did nothing to prevent, and actually may have contributed to, the crash. Technology is not the problem.
2015-09-15
Journal Article
2015-01-2532
Sylvain Hourlier, Sandra Guérard, Jean Luc BAROU, Xavier Servantie
Abstract As touch screens are everywhere in the consumer market Thales has launched in depth evaluations on their introduction in the cockpit. One of the challenges is to verify its compatibility with in flight use under turbulence conditions, including light, moderate and severe. In flight accelerometer collections were performed to provide us with a baseline for choosing between possible simulation solutions. Thales recognized early on the need for such a tool as it would enable us to define recommendations for our HMI designs. The objectives were first to validate specific complex touch/gestures using all the potential of touch interactions for novel cockpit Human Machine Interfaces and second to look into the various physical anchoring solutions capable of facilitating touch screens interactions in aeronautical turbulent environments.
2015-09-14
WIP Standard
AIR1168/10A
This AIR is arranged in the following two sections: 2E - thermodynamic characteristics of working fluids, which contains thermodynamic diagrams for a number of working fluids currently in use and supplied by various industrial firms; and 2F - properties of heat transfer fluids, which contains data, primarily in graphical form, on fluids that are frequently used in fluid heat transfer loops. Other properties of the environment, gases, liquids, and solids, can be found, as follows, in AIR 1168/9: 2A-Properties of the natural environment; 2B-Properties of gases; 2C-Properties of liquids and 2D- Properties of solids.
2015-09-03
Article
It’s widely predicted that vehicle-to-vehicle communications technology will be required on all vehicles due to its significant role in improving safety. These transmissions are mainly for safety, but the wealth of real-time information will undoubtedly be useful for something else.
2015-08-25
Article
For automakers, earning a 5-star safety rating in the government and insurance industry tests is a major source of pride. In this episode of SAE Eye on Engineering, Senior Editor Lindsay Brooke looks at the latest vehicle to earn 5 stars: Honda's 2016 Pilot.
2015-08-20
Article
The automaker is developing a camera-based lighting system that can automatically widen dipped beams at road junctions and roundabouts. It is also researching infrared image triggered spotlighting and an intelligent GPS linked system.
2015-08-19
WIP Standard
J2831
This Information Report provides recommendations for alphanumeric messages that are supplied to the vehicle by external (e.g., RDS, satellite radio) or internal (e.g., infotainment system) sources while the vehicle is in-motion. Information/design recommendations contained in this report apply to OEM (embedded) and aftermarket systems. Ergonomic issues with regard to display characteristics (e.g., viewing angle, brightness, contrast, font design, etc.) should review ISO 15008.
2015-07-23
Article
The company is looking at adjacent markets for its large video screens and sees the truck industry as a potential opportunity. The Safety Truck prototype was developed with the aim of improving road safety.
2015-07-13
Article
Mark Brooks of Southwest Research Institute’s Automation and Data Systems Division discusses the latest issues and technologies related to cybersecurity for commercial vehicles.
2015-07-09
WIP Standard
AIR6341
The purpose of this AIR is to compile in one definitive source, commonly accepted calibration, acceptance criteria and procedures for simulation of Supercooled Large Droplet (SLD) conditions within icing wind tunnels. Facilities that meet the criteria for either some or all of the recognized conditions will have known SLD icing simulation capability.
2015-07-08
Standard
J2286_201507
This interface document SAE J2286 revises the requirements for file formats as were originally described in SAE J1924. This document describes Interface 1 (I/F 1) in SAE J2461. This document does not imply the use of a specific hardware interface, but may be used with other hardware interfaces such as SAE J1939, ISO 15765 or ISO 14229. The requirements of SAE J2286 supersede the requirements defined by SAE J1924. SAE J2461 establishes the requirements for Interface 1 (I/F 1), as a replacement of the file-based interface described by SAE J1924, as shown by Figure 1. Interface 1 (I/F) is a bi-directional link between the OEM Shop Floor Program (CSCI 1) and the Vendor Component Program (CSCI 2). Using I/F 1, the OEM Shop Floor Program communicates the desired parameters and programming limits for an assembly job to the Vendor Component Program (VCP). In response, the VCP returns programming results to the OEM Shop Floor Program (CSCI 1).
Viewing 181 to 210 of 6141

Filter