Display:

Results

Viewing 91 to 120 of 5925
2015-04-14
Journal Article
2015-01-0297
Jianbo Lu, Dimitar Filev, Finn Tseng
Abstract This paper proposes an approach that characterizes a driver's driving behavior and style in real-time during car-following drives. It uses an online learning of the evolving Takagi-Sugeno fuzzy model combined with the Markov model. The inputs fed into the proposed algorithm are from the measured signals of on-board sensors equipped with current vehicles, including the relative distance sensors for Adaptive Cruise Control feature and the accelerometer for Electronic Stability Control feature. The approach is verified using data collected using a test vehicle from several car-following test trips. The effectiveness of the proposed approach has been shown in the paper.
2015-04-14
Technical Paper
2015-01-1414
Jitendra Shah, Mohamed Benmimoun
Abstract The focus of this paper is the threat assessment of perceived threat by drivers in collision avoidance situations. The understanding of the decision making process with regards to the initiation of a driver intervention is a crucial step to gain insight into driver's steering and braking behavior in case of an imminent threat (rear-end collision). Hence a study with various test subjects and a test vehicle has been conducted. The study has helped to understand how drivers behave in potential rear-end collision situations arising from the traffic situation (e.g. start of a traffic jam). This information is of major importance for designing autonomous collision avoidance systems and an important step towards autonomous driving. Autonomous driving in vehicles require system interventions to be initiated as early and safely as possible in order to avoid the collision and to avoid unstable vehicle dynamics situations.
2015-04-14
Journal Article
2015-01-0158
Jackeline Rios-Torres, Pablo Sauras-Perez, Ruben Alfaro, Joachim Taiber, Pierluigi Pisu
Abstract This paper presents the design of an Eco-Driving Assistant System (EDAS) in which the main goal is to minimize the energy use of battery electric vehicles, in particular, vehicles utilized for public transportation. The system optimizes the speed profile of a real route schedule while satisfying the constraints imposed on speed and time. It includes a driver feedback and a driver scoring GUI which allows the driver improving his/her driving skills and comparing him/herself to a “theoretical perfect driver”. The system also includes a backward simulator that generates information related to the vehicle operation under the particular route to be optimized. The output information from the simulator is used as an input to the optimization algorithm. The simulator was validated using real data from a battery electric vehicle. The EDAS system was tested for three different driving profiles and energy consumption reductions of up to 30.33% were achieved.
2015-04-14
Technical Paper
2015-01-1498
Yuyao Jiang, Weiwen Deng, Sumin Zhang, Shanshan Wang, Qingrong Zhao, Bakhtiar Litkouhi
Abstract Steering torque feedback, or steering feel, is widely regarded as an important aspect of driver interface to road feel. To generate a steering feel with the appropriate level of fidelity required by a driver-vehicle system or a driving simulator, it is essential to gain a good understanding of various important influencing factors of steering torque feedback. This paper presents a comprehensive study and analysis of internal and external factors that strongly affect steering torque feedback. A steering torque feedback model with sufficient fidelity is established and verified as the base for this study. The individual- and collective-level influences of these factors on steering torque feedback are analyzed in both time domain and frequency domain, with guidelines provided on how to properly use these influencing factors to control their negative effects in modeling steering torque feedback.
2015-04-14
Journal Article
2015-01-1403
Yi lu Murphey, Dev S. Kochhar, Paul Watta, Xipeng Wang, Tianyu Wang
Abstract Side swipe accidents occur primarily when drivers attempt an improper lane change, drift out of lane, or the vehicle loses lateral traction. Past studies of lane change detection have relied on vehicular data, such as steering angle, velocity, and acceleration. In this paper, we use three physiological signals from the driver to detect lane changes before the event actually occurs. These are the electrocardiogram (ECG), galvanic skin response (GSR), and respiration rate (RR) and were determined, in prior studies, to best reflect a driver's response to the driving environment. A novel system is proposed which uses a Granger causality test for feature selection and a neural network for classification. Test results showed that for 30 lane change events and 60 non lane change events in on-the-road driving, a true positive rate of 70% and a false positive rate of 10% was obtained.
2015-04-14
Journal Article
2015-01-1388
Tatsuya Iwasa, Toshihiro Hashimoto
Abstract We have developed a bench test method to assess driver distraction caused by the load of using infotainment systems. In a previous study, we found that this method can be used to assess the task loads of both visual-manual tasks and auditory-vocal tasks. The task loads are assessed using the performances of both pedal tracking task (PT) and detection response task (DRT) while performing secondary tasks. We can perform this method using simple equipment such as game pedals and a PC. The aim of this study is to verify the reproducibility of the PT-DRT. Experiments were conducted in three test environments in which test regions, experimenters and participants differed from each other in the US, and the test procedures were almost the same. We set two types of visual-manual tasks and two types of auditory-vocal tasks as secondary tasks and set two difficulties for each task type to vary the level of task load.
2015-04-14
Journal Article
2015-01-1489
Raed E. El-jawahri, Tony R. Laituri, Agnes S. Kim, Stephen W. Rouhana, Para V. Weerappuli
Abstract Transfer or response equations are important as they provide relationships between the responses of different surrogates under matched, or nearly identical loading conditions. In the present study, transfer equations for different body regions were developed via mathematical modeling. Specifically, validated finite element models of the age-dependent Ford human body models (FHBM) and the mid-sized male Hybrid III (HIII50) were used to generate a set of matched cases (i.e., 192 frontal sled impact cases involving different restraints, impact speeds, severities, and FHBM age). For each impact, two restraint systems were evaluated: a standard three-point belt with and without a single-stage inflator airbag. Regression analyses were subsequently performed on the resulting FHBM- and HIII50-based responses. This approach was used to develop transfer equations for seven body regions: the head, neck, chest, pelvis, femur, tibia, and foot.
2015-04-14
Journal Article
2015-01-1213
Zifan Liu, Andrej Ivanco, Zoran Filipi
Abstract This paper presents a new way to evaluate vehicle speed profile aggressiveness, quantify it from the perspective of the rapid speed fluctuations, and assess its impact on vehicle fuel economy. The speed fluctuation can be divided into two portions: the large-scale low frequency speed trace which follows the ongoing traffic and road characteristics, and the small-scale rapid speed fluctuations normally related to the driver's experience, style and ability to anticipate future events. The latter represent to some extent the driver aggressiveness and it is well known to affect the vehicle energy consumption and component duty cycles. Therefore, the rapid speed fluctuations are the focus of this paper. Driving data collected with the GPS devices are widely adopted for study of real-world fuel economy, or the impact on electrified vehicle range and component duty cycles.
2015-04-14
Technical Paper
2015-01-1417
Jeffrey Muttart
Abstract Controlled studies identified several factors that influence drivers' swerving when responding to in an emergency situation. Specifically, driver age, time-to-contact, amplitude of the steering action (steer within lane or swerving into the next lane), distraction, fatigue, natural lighting and available buffer space were identified as factors that influence steering behaviors. The goal of the current research was to identify the extent to which each factor changed swerving performances of drivers who were faced with a crash or near crash. Results from crashes and near crashes were obtained from the InSight (SHRP-2) naturalistic driving study. The results from the controlled studies and the results from the naturalistic driving research were consistent in many ways. Drivers engaged in a visual-manual secondary task were much younger than were the drivers who had no distracting secondary task.
2015-04-14
Technical Paper
2015-01-1390
Venk Kandadai, Helen Loeb, Guyrandy Jean-Gilles, Catherine McDonald, Andrew Winston, Thomas Seacrist, Flaura Winston
Abstract Driving simulators offer a safe alternative to on-road driving for the evaluation of driving performance. Standardized procedures for providing individualized feedback on driving performance are not readily available. The aim of this paper is to describe a methodology for developing standardized procedures that provide individualized feedback (“LiveMetrics”) from a simulated driving assessment used to measure driving performance. A preliminary evaluation is presented to test the performance of the LiveMetrics methodology. Three key performance indicators are used to evaluate the performance and utility of the method in the context of the preliminary evaluation. The results from the preliminary evaluation suggest abilities to customize reporting features for feedback and integrate these into existing driver training and education programs.
2015-04-14
Journal Article
2015-01-1478
Michelle Heller, Sarah Sharpe, William Newberry, Alan Dibb, John Zolock, Jeffrey Croteau, Michael Carhart, Jason Kerrigan, Mark Clauser
Abstract Occupant kinematics during rollover motor vehicle collisions have been investigated over the past thirty years utilizing Anthropomorphic Test Devices (ATDs) in various test methodologies such as dolly rollover tests, CRIS testing, spin-fixture testing, and ramp-induced rollovers. Recent testing has utilized steer maneuver-induced furrow tripped rollovers to gain further understanding of vehicle kinematics, including the vehicle's pre-trip motion. The current study consisted of two rollover tests utilizing instrumented test vehicles and instrumented ATDs to investigate occupant kinematics and injury response throughout the entire rollover sequences, from pre-trip vehicle motion to the position of rest. The two steer maneuver-induced furrow tripped rollover tests utilized a mid-sized 4-door sedan and a full-sized crew-cab pickup truck. The pickup truck was equipped with seatbelt pretensioners and rollover-activated side curtain airbags (RSCAs).
2015-04-14
Technical Paper
2015-01-1477
Robert Larson, Jeffrey Croteau, Cleve Bare, John Zolock, Daniel Peterson, Jason Skiera, Jason R. Kerrigan, Mark D. Clauser
Abstract Extensive testing has been conducted to evaluate both the dynamic response of vehicle structures and occupant protection systems in rollover collisions though the use of Anthropomorphic Test Devices (ATDs). Rollover test methods that utilize a fixture to initiate the rollover event include the SAE2114 dolly, inverted drop tests, accelerating vehicle body buck on a decelerating sled, ramp-induced rollovers, and Controlled Rollover Impact System (CRIS) Tests. More recently, programmable steering controllers have been used with sedans, vans, pickup trucks, and SUVs to induce a rollover, primarily for studying the vehicle kinematics for accident reconstruction applications. The goal of this study was to create a prototypical rollover crash test for the study of vehicle dynamics and occupant injury risk where the rollover is initiated by a steering input over realistic terrain without the constraints of previously used test methods.
2015-04-14
Journal Article
2015-01-0612
Weiguo Zhang, Zeyu Ma, Ankang Jin, James Yang, Yunqing Zhang
Abstract Nowadays, studying the human body response in a seated position has attracted a lot of attention as environmental vibrations are transferred to the human body through floor and seat. This research has constructed a multi-body biodynamic human model with 17 degrees of freedom (DOF), including the backrest support and the interaction between feet and ground. Three types of human biodynamic models are taken into consideration: the first model doesn't include the interaction between the feet and floor, the second considers the feet and floor interaction by using a high stiffness spring, the third one includes the interaction by using a soft spring. Based on the whole vehicle model, the excitation to human body through feet and back can be obtained by ride simulation. The simulation results indicate that the interaction between feet and ground exerts non-negligible effect upon the performance of the whole body vibration by comparing the three cases.
2015-04-14
Journal Article
2015-01-1585
Zubin Trivedi, Vivek Lakhera
Abstract In case of design of passenger vehicles, one of the priorities is how the dynamics behavior shall be perceived by the vehicle occupants. One of many such handling parameters is the vehicle body roll, which is usually quantified by the vehicle's Steady State Roll Gradient. This number gives an indication of the rotation of the vehicle body in response to unit lateral force acting on the vehicle, as in the case of cornering. However it does not necessarily indicate the roll as sensed by a person seated inside it. A study showed that the subjective feel is not entirely dependent on roll gradient. In some cases the occupant may feel more confident and comfortable in a vehicle with a relatively higher roll gradient, or vice versa. In such cases, designing for roll gradient alone may not serve the purpose of secure and comfortable feel. To account for this discrepancy, a study was carried out to quantify the motion felt by the occupant.
2015-04-14
Journal Article
2015-01-1386
Devin SJ Caplow-Munro, Helen Loeb, Venk Kandadai, Flaura Winston
Abstract Inadequate situation awareness and response are increasingly recognized as prevalent critical errors that lead to young driver crashes. To identify and assess key indicators of young driver performance (including situation awareness), we previously developed and validated a Simulated Driving Assessment (SDA) in which drivers are safely and reproducibly exposed to a set of common and potentially serious crash scenarios. Many of the standardized safety measures can be calculated in near real-time from simulator variables. Assessment of situation awareness, however, largely relies on time-consuming data reduction and video coding. Therefore, the objective of this research was to develop a near real-time automated method for analyzing general direction and location of driver's gaze in order to assess situation awareness.
2015-04-14
Journal Article
2015-01-1400
Umashankar Nagarajan, Ambarish Goswami
Abstract The number of seniors is rising worldwide. Exoskeleton devices can help seniors regain their lost power, balance, and agility, thus improving their quality of life. Exoskeleton devices and control strategies assist human gait. A common strategy is to use oscillator-based controllers, which “lock in” with the gait and help the subject walk faster using a phase lead characteristic. Such strategies are limited to gait assist only and are less effective in more general movements. These controllers can be detrimental in critical cases such as when the leg needs to execute a fast reactive stepping to stop a fall. We present a control strategy for a hip exoskeleton, which assists human leg motion by providing motion amplification at the hip joint. The controller is “neutral” because it assists any leg motion, not only a gait, and can help avoid falls by assisting reactive stepping.
2015-04-14
Journal Article
2015-01-1392
Se Jin Park, Seung Nam Min, Murali Subramaniyam, Heeran Lee, Yu Kyung Shin, Chang Hee Jang, Soon Hyun Hwang
Abstract Driving posture measurement is essential for the evaluation of a driver workspace and for improved seat comfort design. This study captures the comfortable driving postures for Koreans using a handheld portable Artec L™ 3D scanner. Subjects consisted of 20 healthy individuals (10 males and 10 females) ranging in age from 20 to 40 years and grouped as three weight groups (<59 kg, 60-79 kg and >80 kg). Eighteen land markers were attached (car seat: 9 markers; subject: 9 markers). From the 3D scanned data, the angles (neck, back, headrest, seat back, wrist, elbow, knee, and ankle) and distances (head to headrest, seat height, and seat back and forth) between the land markers were extracted in the Rapidform XOR software. The body pressure distribution was measured using two pressure mats from 17 body part regions. The measured pressure data were analyzed for average pressure, contact area, and body part pressure ratio.
2015-04-14
Journal Article
2015-01-1389
Yu Zhang, Linda Angell, Silviu Pala, Ifushi Shimonomoto
Abstract Objective tools that can assess the demands associated with in-vehicle human machine interfaces (HMIs) could assist automotive engineers designing safer interaction. This paper presents empirical evidence supporting one objective assessment approach, which compares the demand associated with in-vehicle tasks to the demand associated with “benchmarking” or “comparison tasks”. In the presented study, there were two types of benchmarking tasks-a modified surrogate reference task (SuRT) and a delayed digit recall task (n-back task) - representing different levels of visual demand and cognitive demand respectively. Twenty-four participants performed these two types of benchmarking tasks as well as two radio tasks while driving a vehicle on a closed-loop test track. Response measures included physiological (heart rate), glance metrics, driving performance (steering entropy) and subjective workload ratings.
2015-04-14
Journal Article
2015-01-0468
Mingxian Wang, Wei Chen, Yan Fu, Yong Yang
Abstract As the world's largest auto producer and consumer, China is both the most promising and complex market given the country's rapid economic growth, huge population, and many regional and segment preference differences. This research is aimed at developing data-driven demand models for customer preference analysis and prediction under a competitive market environment. Regional analysis is first used to understand the impact of geographical factors on customer preference. After a comprehensive data exploration, a customer-level mixed logit model is built to shed light on fast-growing vehicle segments in the Chinese auto market. By combining the data of vehicle purchase, consideration, and past choice, cross-shopping behaviors and brand influence are explicitly modeled in addition to the impact of customer demographics, usage behaviors, and attributes of vehicles.
2015-04-09
WIP Standard
J185
1. SCOPE 1.1 Minimum criteria are provided for steps, stairways, ladders, walkways, platforms, handrails, handholds, guardrails, and entrance openings which permit ingress to and egress from operator, inspection, maintenance or service platforms on off-road work machines parked in accordance with the manufacturer's instructions. 1.2 This SAE Recommended Practice pertains to off-road self-propelled work machines used in specialized mining machinery categories as defined in SAE J1116. 1.3 The minimum criteria are based on one unladen person using the access system at any one time. 1.4 Purpose This document establishes criteria for access systems primarily to aid in minimizing accidents and injury to personnel getting on, off, or moving about while servicing or preparing to operate off-road machines.
2015-04-08
WIP Standard
AIR1168/4B
This section presents the basic equations for computing ice protection requirements for nontransparent and transparent surfaces and for fog and frost protection of windshields. Simplified graphical presentations suitable for preliminary design and a description of various types of ice, fog, frost, and rain protection systems are also presented.
2015-04-01
Magazine
Deep thinking about deep space NASA is mining the rich fields of knowledge and creativity in the minds of university students to improve living and working conditions in space. Rise of the underdogs Problem-plagued effort last year spurs Baja SAE team from VIT University of India to overhaul itself and its car. Materials, data-aq packages among choices touted in Collegiate Cup contest Central Michigan's Baja team, which did some impressive materials analyses, takes home the SAE Mid-Michigan Section's trophy as part of that professional group's Engineers Week activities. Toyota looks for more from college students than high GPA "Those that participate in an SAE related-activity display passion for the automotive industry, and these candidates are ideal for our organization."
2015-03-25
Article
The move into active safety systems is increasing the need for high-reliability software. AdaCore, a tool supplier that’s used in many aerospace applications, is responding to this demand with tools that can be used by the automotive industry.
2015-03-16
Article
Rain, wind, and visibility can influence driving safety and impact the bottom line for on- and off-highway fleets.
2015-03-13
Standard
USCAR41
This document describes the assessment methods and physical requirements associated with the manual handling of carts and dollies, specific to material handling systems. All possible designs and applications could not be anticipated in creating these guidelines. Where there are questions of adherence to this document, such as use of an "off-the shelf" design, always consult the responsible Ergonomics Department. Force guidelines were primarily developed referencing the push/pull psychophysical Snook data contained in A Guide to Manual Materials Handling (second edition) by Mital, Nicholson and Ayoub (NY: Taylor & Francis, 1997). The force guidelines accommodate 75% of female capabilities and 99% of male capabilities. Factors that were included in the established guideline include: push / pull distances, vertical hand height, horizontal hand height, frequency and wheel / castor alignment and load rating. These factors were used to develop a conservative force guideline.
2015-03-10
Technical Paper
2015-01-0034
Mingyu Choi
Abstract The need for a voice recognition system in the automotive industry is growing day by day. In our current voice recognition system, Hyundai's ‘Blue-Link’ and KIA's ‘UVO’ are developed with Microsoft which is a global software company. The system launched domestic market recently. Since usage of voice recognition system are increasing, research and development of Voice Recognition system also increase very fast. Research is mostly focus on increase recognition rate of speech. However there is no research of interior layout considering voice recognition usability. So in this research, we discover interior design factors for maximizing voice recognition usability.
2015-03-10
Technical Paper
2015-01-0039
Ryuzo Hayashi, Hajime Tsuyuki, Masao Nagai
Abstract This study proposes a method for presenting maneuver request information of accelerator pedal to a driver via the accelerator pedal itself. By applying periodic force like vibration on an accelerator pedal, information is transferred to the driver without displacing the accelerator pedal. In this study, the authors focus on a saw-tooth wave as the periodic force. When the saw-tooth-waved force is applied on the accelerator pedal, a human driver feels as if the accelerator pedal is knocked by someone periodically. In addition, information about the quantity of requested maneuver can be transferred by the amplitude of the saw-tooth wave. Based on these facts, the saw-tooth wave is modified and optimized empirically with ten human drivers so that the information of direction is transferred most reliably. In addition, the relationship between the amplitude of the saw-tooth wave and requested quantity of the pedal maneuver that the drivers feel is formulated.
2015-03-10
Standard
USCAR42
This document describes the design, assessment methods and physical requirements associated with material handling systems. This would include, but not limited to manual dollies, small lot systems and kitting. All possible designs and applications could not be anticipated in creating these guidelines. Where there are questions of adherence to this document, such as use of an “off-the shelf” design, always consult the responsible Ergonomics Department.
2015-03-05
Article
Developed in partnership with IBM and location cloud company HERE, Continental’s latest evolution of its eHorizon software uses digital mapping and cloud-based data analytics to give drivers real-time information on dynamic events such as weather, accidents, and traffic jams.
2015-03-05
Article
Volvo’s 2015 XC90 features RACam, claimed to be the world’s first integrated radar and vision data-fusion system, designed to enable a broad array of active-safety capabilities.
Viewing 91 to 120 of 5925

Filter