Display:

Results

Viewing 91 to 120 of 6140
2016-04-05
Technical Paper
2016-01-0147
Toshiya Hirose, Tomohiro Makino, Masanobu Taniguchi, Hidenobu Kubota
Abstract Vehicle to vehicle communication system (V2V) can send and receive the vehicle information by wireless communication, and can use as a safety driving assist for driver. Currently, it is investigated to clarify an appropriate activation timing for collision information, caution and warning in Japan. This study focused on the activation timing of collision information (Provide objective information for safe driving to the driver) on V2V, and investigated an effective activation timing of collision information, and the relationship between the activation timing and the accuracy of the vehicle position. This experiment used Driving Simulator. The experimental scenario is four situations of (1) “Assistance for braking”, (2) “Assistance for accelerating”, (3) “Assistance for right turn” and (4) “Assistance for left turn” in blind intersection. The activation timing of collision information based on TTI (Time To Intersection) and TTC (Time To Collision).
2016-04-05
Technical Paper
2016-01-1555
Jack Ekchian, William Graves, Zackary Anderson, Marco Giovanardi, Olivia Godwin, Janna Kaplan, Joel Ventura, James R. Lackner, Paul DiZio
Abstract It is widely anticipated that autonomous vehicles will offer increased productivity and convenience by freeing occupants from the responsibility of driving. However, studies indicate that the occurrence of motion sickness in autonomous vehicles will be substantially higher than in conventionally driven vehicles. Occupants of autonomous vehicles are more likely to be involved in performing tasks and activities, such as reading, writing and using a computer or tablet, that typically increase the occurrence of motion sickness. The authors present a novel high bandwidth active suspension system, GenShock®, and tailored control algorithms targeted toward mitigating motion sickness in autonomous vehicles. GenShock actuators can actively push and pull the wheels of a vehicle in order to keep the chassis level and reduce heave, pitch, and roll motion.
2016-04-05
Technical Paper
2016-01-1442
David Miller, Mishel Johns, Hillary Page Ive, Nikhil Gowda, David Sirkin, Srinath Sibi, Brian Mok, Sudipto Aich, Wendy Ju
Abstract Age and experience influence driver ability to cope with transitions between automated and manual driving, especially when drivers are engaged in media use. This study evaluated three age cohorts (young/new drivers, adults, and seniors) on their performance in transitions from automated driving to manual vehicle control in a laboratory driving simulator. Drivers were given three tasks to perform during the automated driving segments: to watch a movie on a tablet, to read a story on a tablet, or to supervise the car's driving. We did not find significant differences in people's driving performance following the different tasks. We also did not find significant differences in driving performance between the people in each age group who successfully completed the study; however, the rejection rate of the senior age group was over 30% because many of the people in this age group had difficulty hearing instructions, understanding tasks, or remembering what to do.
2016-04-05
Technical Paper
2016-01-1500
Renran Tian, Keyu Ruan, Lingxi Li, Jerry Le, Mike Rao
Abstract Driver state sensing technologies start to be widely used in vehicular systems developed from different manufacturers. To optimize the cost and minimize the intrusiveness towards driving, majority of these systems rely on in-cabin camera(s) and other optical sensors. With their great capabilities of detecting and intervening driver distraction and inattention, these technologies might become key components in future vehicle safety and control systems. However, currently there are no common standards available to compare the performance of these technologies, thus it is necessary to develop one standardized process for the evaluation purpose.
2016-04-05
Technical Paper
2016-01-1487
Zhenhai Gao, Chuzhao Li, Hongyu Hu, Chaoyang Chen, Hui Zhao, Helen Yu
Abstract At the collision moment, a driver’s lower extremity will be in different foot position, which leads to the different posture of the lower extremity with various muscle activations. These will affect the driver’s injury during collision, so it is necessary to investigate further. A simulated collision scene was constructed, and 20 participants (10 male and 10 female) were recruited for the test in a driving simulator. The braking posture and muscle activation of eight major muscles of driver’s lower extremity (both legs) were measured. The muscle activations in different postures were then analyzed. At the collision moment, the right leg was possible to be on the brake (male, 40%; female, 45%), in the air (male, 27.5%; female, 37.5%) or even on the accelerator (male, 25%; female, 12.5%). The left leg was on the floor all along.
2016-04-05
Technical Paper
2016-01-1536
Chung-Kyu Park, Cing-Dao Kan
Abstract In this study, the available metrics to evaluate the crash pulse severity are reviewed and their assessability is investigated by using frontal New Car Assessment Program (NCAP) test data. Linear regression analysis and sled test simulations are conducted. In addition, a new approach is proposed to measure the crash pulse severity and restraint system performance separately and objectively.
2016-04-05
Journal Article
2016-01-1304
Tadayoshi Fukushima, Hitoshi Takagi, Toshio Enomoto, Hiroyuki Sawada, Tomoyuki Kaneda
Abstract Interior noise caused by exterior air flow, or wind noise, is one of the noise-and-vibration phenomena for which a systematic simulation method has been desired for enabling their prediction. One of the main difficulties in simulating wind noise is that, unlike most other noises from the engine or road input, wind noise has not one but two different types of sources, namely, convective and acoustic ones. Therefore, in order to synthesize the interior sound pressure level (SPL), the body sensitivities (interior SPL/outer source level) for both types of sources have to be considered. In particular, sensitivity to the convective input has not been well understood, and hence it has not been determined. Moreover, the high-frequency nature of wind noise (e.g., the main energy range extends up to 4000 Hz) has limited the effective application of CAE for determining body sensitivities, for example, from the side window glass to the occupants’ ears.
2016-04-05
Journal Article
2016-01-1553
Akihito Yamamoto, Wataru Tanaka, Takafumi Makino, Shunya Tanaka, Ken Tahara
Abstract This paper reports that estimation accuracy of suspension stroke velocity is increased by considering the damping force delay characteristics to an observer. Thereby ride comfort is improved, using the simple and low-cost semi active suspension systems that use only three vertical acceleration sensors.
2016-04-05
Journal Article
2015-01-9153
André Lundkvist, Arne Nykänen
Abstract The number of advanced driver assistance systems is constantly increasing. Many of the systems require visual attention, and a way to reduce risks associated with inattention could be to use multisensory signals. A driver's main attention is in front of the car, but inattention to surrounding areas beside and behind the car can be a risk. Therefore, there is a need for driver assistance systems capable of directing attention to the sides. In a simulator study, combined visual, auditory and vibrotactile signals for directional attention capture were designed for use in driver assistance systems, such as blind spot information, parking assistance, collision warnings, navigation, lane departure warning etc. An experiment was conducted in order to measure the effects of the use of different sensory modalities on directional attention (left/right) in driver assistance systems.
2016-04-05
Journal Article
2015-01-9152
André Lundkvist, Arne Nykänen, Roger Johnsson
Abstract Many of the information systems in cars require visual attention, and a way to reduce both visual and cognitive workload could be to use sound. An experiment was designed in order to determine how driving and secondary task performance is affected by the use of information sound signals and their spatial positions. The experiment was performed in a driving simulator utilizing Lane Change Task as a driving scenario in combination with the Surrogate Reference Task as a secondary task. Two different signal sounds with different spatial positions informed the driver when a lane change should be made and when a new secondary task was presented. Driving performance was significantly improved when both signal sounds were presented in front of the driver. No significant effects on secondary task performance were found. It is recommended that signal sounds are placed in front of the driver, when possible, if the goal is to draw attention forward.
2016-04-05
Journal Article
2016-01-1303
Haiqing Xu, Chang Jin, Hong Zhou, Yi Zhou
Abstract On the study of reducing the disturbance on driver’s attention induced by low frequency vehicle interior stationary noise, a subjective evaluation is firstly carried out by means of rank rating method which introduces Distraction Level (DL) as evaluation index. A visual-finger response test is developed to help evaluating members better recognize the Distraction Level during the evaluation. A non-linear back propagation artificial neural network (BPANN) is then modeled for the prediction of subjective Distraction Level, in which linear sound pressure RMS amplitudes of five Critical Band Rates (CBRs) from 20 to 500Hz are selected as inputs of the model. These inputs comprise an input vector of BPANN. Furthermore, active noise equalization (ANE) on DL is realized based on Filtered-x Least Mean Square (FxLMS) algorithm that controls the gain coefficients of inputs of trained BPANN.
2016-04-05
Journal Article
2016-01-1427
Richard Young, Li Hsieh, Sean Seaman
Abstract The Dimensional Model of Driver Demand is extended to include Auditory-Vocal (i.e., pure “voice” tasks), and Mixed-Mode tasks (i.e., a combination of Auditory-Vocal mode with visual-only, or with Visual-Manual modes). The extended model was validated with data from 24 participants using the 2014 Toyota Corolla infotainment system in a video-based surrogate driving venue. Twenty-two driver performance metrics were collected, including total eyes-off-road time (TEORT), mean single glance duration (MSGD), and proportion of long single glances (LGP). Other key metrics included response time (RT) and miss rate to a Tactile Detection Response Task (TDRT). The 22 metrics were simplified using Principal Component Analysis to two dimensions. The major dimension, explaining 60% of total variance, we interpret as the attentional effects of cognitive demand. The minor dimension, explaining 20% of total variance, we interpret as physical demand.
2016-04-05
Journal Article
2016-01-1423
Richard Young, Sean Seaman, Li Hsieh
Abstract Many metrics have been used in an attempt to predict the effects of secondary tasks on driving behavior. Such metrics often give rise to seemingly paradoxical results, with one metric suggesting increased demand and another metric suggesting decreased demand for the same task. For example, for some tasks, drivers maintain their lane well yet detect events relatively poorly. For other tasks, drivers maintain their lane relatively poorly yet detect events relatively well. These seeming paradoxes are not time-accuracy trade-offs or experimental artifacts, because for other tasks, drivers do both well. The paradoxes are resolved if driver demand is modeled in two orthogonal dimensions rather than a single “driver workload” dimension. Principal components analysis (PCA) was applied to the published data from four simulator, track, and open road studies of visual-manual secondary task effects on driving.
2016-04-05
Journal Article
2016-01-1456
Rini Sherony, Renran Tian, Stanley Chien, Li Fu, Yaobin Chen, Hiroyuki Takahashi
Abstract Many vehicles are currently equipped with active safety systems that can detect vulnerable road users like pedestrians and bicyclists, to mitigate associated conflicts with vehicles. With the advancements in technologies and algorithms, detailed motions of these targets, especially the limb motions, are being considered for improving the efficiency and reliability of object detection. Thus, it becomes important to understand these limb motions to support the design and evaluation of many vehicular safety systems. However in current literature, there is no agreement being reached on whether or not and how often these limbs move, especially at the most critical moments for potential crashes. In this study, a total of 832 pedestrian walking or cyclist biking cases were randomly selected from one large-scale naturalistic driving database containing 480,000 video segments with a total size of 94TB, and then the 832 video clips were analyzed focusing on their limb motions.
2016-04-05
Journal Article
2016-01-1439
Nazan Aksan, Lauren Sager, Sarah Hacker, Robert Marini, Jeffrey Dawson, Steven Anderson, Matthew Rizzo
Abstract We examined the effectiveness of a heads-up Forward Collision Warning (FCW) system in 39 younger to middle aged drivers (25-50, mean = 35 years) and 37 older drivers (66-87, mean = 77 years). The warnings were implemented in a fixed based, immersive, 180 degree forward field of view simulator. The FCW included a visual advisory component consisting of a red horizontal bar which flashed in the center screen of the simulator that was triggered at time-to-collision (TTC) 4 seconds. The bar roughly overlapped the rear bumper of the lead vehicle, just below the driver’s line-of-sight. A sustained auditory tone (∼80 dB) was activated at TTC=2 to alert the driver to an imminent collision. Hence, the warning system differed from the industry standard in significant ways. 95% Confidence intervals for the safety gains ranged from -.03 to .19 seconds in terms of average correction time across several activations. Older and younger adults did not differ in terms of safety gains.
2016-04-05
Journal Article
2016-01-1486
Qi Zhang, Bronislaw Gepner, Jacek Toczyski, Jason Kerrigan
Abstract While over 30% of US occupant fatalities occur in rollover crashes, no dummy has been developed for such a condition. Currently, an efficient, cost-effective methodology is being implemented to develop a biofidelic rollover dummy. Instead of designing a rollover dummy from scratch, this methodology identifies a baseline dummy and modifies it to improve its response in a rollover crash. Using computational models of the baseline dummy, including both multibody (MB) and finite element (FE) models, the dummy’s structure is continually modified until its response is aligned (using BioRank/CORA metric) with biofidelity targets. A previous study (Part I) identified the THOR dummy as a suitable baseline dummy by comparing the kinematic responses of six existing dummies with PMHS response corridors through laboratory rollover testing.
2016-04-05
Journal Article
2016-01-1526
Daniel V. McGehee, Cheryl A. Roe, Linda Ng Boyle, Yuqing Wu, Kazutoshi Ebe, James Foley, Linda Angell
Abstract Pedal misapplications may be rare, but the outcomes can be tragic. A naturalistic driving study with 30 drivers was conducted to gain a better understanding of foot pedal behaviors. Foot movements were observed from the moment subjects entered and positioned themselves in their vehicle, and continued through starting the ignition, shifting into gear, accelerating to driving speed, and finally, resting their foot after parking the vehicle. A coding methodology was developed to categorize the various foot movements and behaviors. Over 3,300 startup and parking sequences were coded. This paper describes the unique challenges involved in classifying foot movements and behaviors when drivers’ intentions are not known. For example, hesitant or interrupted foot movements often occurred when a driver was transitioning from a gas pedal press to a brake pedal press.
2016-04-05
Journal Article
2016-01-0084
Paul Weindorf, James Krier, Carl Evans
Abstract An optical configuration has been developed which offers a seamless appearance where the display aperture is less visible in the “off” condition and is minimized in the “on” condition.
2016-04-05
Journal Article
2016-01-0004
Ganesh Dharmar, Rambabu Radakrishnan, Subramanian Premananth, Sarath Padattil
Abstract Achieving comfortable Ingress-Egress (I/E) is a major ergonomic challenge for Occupant packaging engineers during vehicle design. Vehicles should be designed so that the targeted drivers are able to comfortably get in and out of it. Simulating occupant ingress/egress motion for vehicle involves many constraints and capturing actual behavior of human motion is cumbersome. In recent years, there are number of studies to investigate occupant ingress/egress motion and to understand perceived discomfort, influence of specific design parameters, age impact etc. These studies majorly used techniques like real time motion capturing in a vehicle mockup, comparison of joint torques developed during the ingress/egress motions etc., to identify the occupants discomfort aspects. This paper aims to capture the ingress/egress influencing parameters and incorporating the parameters in vehicle architecture layout during concept phase itself considering various anthropometric measurements.
2016-04-05
Journal Article
2016-01-0145
Madeleine Gibson, John Lee, Vindhya Venkatraman, Morgan Price, Jeffrey Lewis, Olivia Montgomery, Bilge Mutlu, Joshua Domeyer, James Foley
Abstract The rapid increase in the sophistication of vehicle automation demands development of evaluation protocols tuned to understanding driver-automation interaction. Driving simulators provide a safe and cost-efficient tool for studying driver-automation interaction, and this paper outlines general considerations for simulator-based evaluation protocols. Several challenges confront automation evaluation, including the limited utility of standard measures of driver performance (e.g., standard deviation of lane position), and the need to quantify underlying mental processes associated with situation awareness and trust. Implicitly or explicitly vehicle automation encourages drivers to disengage from driving and engage in other activities. Thus secondary tasks play an important role in both creating representative situations for automation use and misuse, as well as providing embedded measures of driver engagement.
2016-04-05
Journal Article
2016-01-0260
Yoshiichi Ozeki, Hideaki Nagano, Itsuhei Kohri
Abstract In order to develop various parts and components of electric vehicles, understanding the effects of their structures and thermal performance on the energy consumption and cruising distance is important. However, such essential and detailed information is generally not always available to suppliers of vehicle parts and components. This paper presents the development of a simple model of the energy consumption by an electric vehicle in order to roughly calculate the cruising performance based only on the published information to give to suppliers, who otherwise cannot obtain the necessary information. The method can calculate the cruising distance within an error of 4% compared to the published information. The effects of the glass and body heat transfer characteristics on the cruising performance in winter were considered as an example application of the proposed model.
2016-04-05
Journal Article
2016-01-0461
Wenfei Li, Haiping Du, Weihua Li
Abstract This paper proposes a new braking torque distribution strategy for electric vehicles equipped with a hybrid hydraulic braking and regenerative braking system. The braking torque distribution strategy is proposed based on the required braking torque and the regenerative braking system’s status. To get the required braking torque, a new strategy is designed based on the road conditions and driver's braking intentions. Through the estimated road surface, a robust wheel slip controller is designed to calculate the overall maximum braking torque required for the anti-lock braking system (ABS) under this road condition. Driver's braking intentions are classified as the emergency braking and the normal braking. In the case of emergency braking, the required braking torque is to be equal to the overall maximum braking torque. In the case of normal braking, the command braking torque is proportional to the pedal stroke.
2016-04-05
Journal Article
2016-01-0462
Chunlei Wang, Xinjie Zhang, Konghui Guo, Fangwu Ma, Dong Chen
Abstract With the development of the advanced driver assistance system and autonomous vehicle techniques, a precise description of the driver’s steering behavior with mathematical models has attracted a great attention. However, the driver’s steering maneuver demonstrates the stochastic characteristic due to a series of complex and uncertain factors, such as the weather, road, and driver’s physiological and psychological limits, generating negative effects on the performance of the vehicle or the driver assistance system. Hence, this paper explores the stochastic characteristic of driver’s steering behavior and a novel steering controller considering this stochastic characteristic is proposed based on stochastic model predictive control (SMPC). Firstly, a search algorithm is derived to describe the driver’s road preview behavior.
2016-04-05
Journal Article
2016-01-0466
Daan Roethof, Tarik Sezer, Mustafa Ali Arat, Barys Shyrokau
Research of the past century has demonstrated that wheel camber regulation provides great potential to improve vehicle safety and performance. This led to the development of various prototypes of the camber mechanisms over the last decade. An overview of the existing prototypes is discussed in the presented paper. Most of the investigations related to camber control cover open-loop maneuvers to evaluate a vehicle response. However, a driver’s perception and his reaction can be the most critical factor during vehicle operation. Therefore, the research goal of the presented study is to assess an influence of active camber control on steering feel and driving performance using a driving simulator. In the proposed investigation, a dSPACE ASM vehicle model has been extended by introducing advanced models of steering system and active camber regulation. The steering system describes dynamics of steering components (upper and lower columns, torsion bar, steering rack and others).
2016-04-05
Journal Article
2016-01-0337
Ana M. Djuric, R.J. Urbanic, J.L. Rickli
Abstract Contemporary manufacturing systems are still evolving. The system elements, layouts, and integration methods are changing continuously, and ‘collaborative robots’ (CoBots) are now being considered as practical industrial solutions. CoBots, unlike traditional CoBots, are safe and flexible enough to work with humans. Although CoBots have the potential to become standard in production systems, there is no strong foundation for systems design and development. The focus of this research is to provide a foundation and four tier framework to facilitate the design, development and integration of CoBots. The framework consists of the system level, work-cell level, machine level, and worker level. Sixty-five percent of traditional robots are installed in the automobile industry and it takes 200 hours to program (and reprogram) them.
2016-04-05
Journal Article
2016-01-0340
Tina Hull, Monika A. Minarcin
Abstract Applications using industrial robotics have typically led to establishing a safeguarded space encompassing a wide radius around the robot. Operator access to this hazard zone was restricted by a combination of means, such as hard guarding, safeguarding, awareness means, and personal protective equipment. The introduction of collaborative robots is redefining safeguarding requirements. Many collaborative robots have inherently safe designs that enable an operator and a robot to work within a shared, collaborative workspace. New technology in industrial robotics has opened up opportunities for collaborative operation. Collaborative operation could include either industrial or collaborative robots, depending on its application. The current defined modes of collaborative operation are hand guiding; speed and separation monitoring; safety-rated monitored stop; and, power and force limiting.
2016-04-05
Journal Article
2016-01-0523
Lauren Abro
Abstract North American customer perception of Quality has changed over time and has shifted from Quality, Dependability, and Reliability (QDR) to Interior Sensory Quality (ISQ). ISQ is defined as the harmony of characteristics that combine to make an emotional connection to the vehicles’ interior. Vehicles need to correctly appeal to customers emotional side through providing class-leading ISQ. Hypotheses for specific interior areas were developed in order to identify key ISQ strengths, weaknesses, and preferences. These hypotheses were then tested at customer clinics held across the country. The key goals were to understand customer judgment of ISQ execution, understand customer ISQ priority, and understand customer preference of detailed component areas.
2016-04-05
Technical Paper
2016-01-1417
Toshinao Fukui, Kazuhiko Nakamoto, Hiroyuki Satake
Abstract The use of a head-up display (HUD) system has become popular recently, as it can provide feedback information at a position easily seen by the driver. However, the outline of the HUD bezel often reflects on the windshield of a HUD equipped vehicle. This phenomenon occurs when the sun is at a high position and reflects off the top of the instrument panel and the front view is dark. For this reason, it can occur when driving on asphalt paved roads, causing annoyance to the driver. Under fixed environmental conditions, the vehicle based factors that influence the annoyance caused by reflected boundary lines are the position of the reflection, line thickness, and the contrast of the reflected boundary line. These can be represented by the conspicuity of a striped pattern (contrast sensitivity function). In previous research in 1991, M. S. Banks et al. studied a contrast sensitivity function that included the factors stated above.
2016-04-05
Journal Article
2016-01-1449
Taylor Johnson, Rong Chen, Rini Sherony, Hampton C. Gabler
Abstract Lane departure warning (LDW) systems can detect an impending road departure and deliver an alert to allow the driver to steer back to the lane. LDW has great potential to reduce the number of road departure crashes, but the effectiveness is highly dependent upon driver acceptance. If the driver perceives there is little danger after receiving an alert, the driver may become annoyed and deactivate the system. Most current LDW systems rely heavily upon distance to lane boundary (DTLB) in the decision to deliver an alert. There is early evidence that in normal driving DTLB may be only one of a host of other cues which drivers use in lane keeping and in their perception of lane departure risk. A more effective threshold for LDW could potentially be delivered if there was a better understanding of this normal lane keeping behavior. The objective of this paper is to investigate the lane keeping behavior of drivers in normal driving.
2016-04-05
Journal Article
2016-01-1414
Shigeyoshi Hiratsuka, Shinichi Kojima, Nobuyuki Shiraki, Kazunori Higuchi, Toshihiko Tsukada, Keiichi Shimaoka, Kazuya Asaoka, Sho Masuda, Kazuhiko Nakashima
Abstract We investigated a lighting method that supports pedestrian perception by vehicle drivers. This lighting method makes active use of visual characteristics such as the spatio-temporal frequency of contrast sensitivity. Using reasonable parameter values derived from preliminary experiments using a Campbell-Robson chart, we determined a suitable lighting pattern that improves the driver's pedestrian perception. In order to assess the influence of visual characteristics on a reaction-time-dependent task, such as pedestrian perception in nighttime, tests were performed in the target environment, the results of which validated the proposed method.
Viewing 91 to 120 of 6140

Filter