Display:

Results

Viewing 91 to 120 of 5734
Technical Paper
2014-04-01
Jan-Mou Li, David Smith
Abstract Driver is a key component in vehicle simulation. An ideal driver model simulates driving patterns a human driver may perform to negotiate road profiles. There are simulation packages having the capability to simulate driver behavior. However, it is rarely documented how they work with road profiles. This paper proposes a new truck driver model for vehicle simulation to imitate actual driving behavior in negotiating road grade and curvature. The proposed model is developed based upon Gipps' car-following model. Road grade and curvature were not considered in the original Gipps' model although it is based directly on driver behavior and expectancy for vehicles in a stream of traffic. New parameters are introduced to capture drivers' choice of desired speeds that they intend to use in order to negotiating road grade and curvature simultaneously. With the new parameters, the proposed model can emulate behaviors like uphill preparation for different truck drivers. Speed variation while cruising can be explained by the empirical model and therefore facilitating a better estimation of performance in vehicle simulation.
Technical Paper
2014-04-01
Prasad Kumbhar, Ning Li, Peijun Xu, James Yang
In vehicle driving environment, the driver is subjected to the vibrations in horizontal, vertical, and fore-aft directions. The human body is very much sensitive to whole body vibration and this vibration transmission to the body depends upon various factors including road irregularities, vehicle suspension, vehicle dynamics, tires, seat design and the human body's properties. The seat design plays a vital role in the vibration isolation as it is directly in contact with human body. Vibration isolation properties of a seat depend upon its dynamic parameters which include spring stiffness and damping of seat suspension and cushion. In this paper, an optimization-based method is used to determine the optimal seat dynamic parameters for seat suspension, and cushion based on minimizing occupant's body fatigue (occupant body absorbed power). A 14-degree of freedom (DOF) multibody biodynamic human model in 2D is selected from literature to assess three types of seat arrangements. The human model has total mass of 71.32 kg with 5 body segments.
Technical Paper
2014-04-01
Eric Frank, Peter Jacobsen
Abstract As the demand for Sound Quality improvements in vehicles continues to grow, robust analysis methods must be established to clearly represent end-user perception. For vehicle sounds which are tonal by nature, such as transmission or axle whine, the common practice of many vehicle manufacturers and suppliers is to subjectively rate the performance of a given part for acceptance on a scale of one to ten. The polar opposite of this is to measure data and use the peak of the fundamental or harmonic orders as an objective assessment. Both of these quantifications are problematic in that the former is purely subjective and the latter does not account for the presence of masking noise which has a profound impact on a driver's assessment of such noises. This paper presents the methodology and results of a study in which tonal noises in the presence of various level of masking noise were presented to a group of jurors in a controlled environment. Their subjective ratings were collected and correlated to noise and vibration metrics.
Technical Paper
2014-04-01
Hongjie Ma, Hui Xie, Shuangxi Chen, Ying Yan, DengGao Huang
Abstract Approximately 50% energy is consumed during the acceleration of a city bus. Fuel consumption during acceleration is significantly affected by driving behavior. In this study, 13 characteristic parameters were selected to describe driving style based on analysis of how driving influences fuel consumption during acceleration. The 100,000 km real-world vehicle running data of six drivers on three city buses in a particular bus line in Tianjin, China were sampled using a vehicle-on-line data logger. Based on the selected characteristic parameters and collected driving data, an evaluation model of the fuel consumption level of a driver was established by adopting the method of decision tree C4.5. For two-level classification, the model has over 85% prediction accuracy. The model also has the advantages of having a few training samples and strong generalization. As an example of the model application, the fuel-saving potential of a driver under optimal operations was analyzed. Thus, the model can be used to train and evaluate drivers employed by bus companies.
Technical Paper
2014-04-01
Chinmoy Pal, Tomosaburo Okabe, Kulothungan Vimalathithan, Jeyabharath Manoharan, Muthukumar Muthanandam, Satheesh Narayanan
Abstract A logistic regression analysis of accident cases in the NASS-PCDS (National Automotive Sampling System-Pedestrian Crash Data Study) database clearly shows that pedestrian pelvis injuries tend to be complex and depend on various factors such as the impact speed, the ratio of the pedestrian height to that of the bonnet leading edge (BLE) of the striking vehicle, and the gender and age of the pedestrian. Adult female models (50th %ile female AF50: 161 cm and 61 kg; 5th %ile female AF05: 154 cm and 50 kg) were developed by morphing the JAMA 50th %ile male AM50 and substituting the pelvis of the GHBMC AM50 model. The fine-meshed pelvis model thus obtained is capable of predicting pelvis fractures. Simulations conducted with these models indicate that the characteristics of pelvis injury patterns in male and female pedestrians are influenced by the hip/BLE height ratio and to some extent by the pelvis bone shape. A previously developed six-year-old (6YO) child pedestrian model and the newly developed models were used to estimate the head impact time (HIT) for a typical SUV fitted with an active pop-up hood system.
Technical Paper
2014-04-01
William N. Newberry, Stacy Imler, Michael Carhart, Alan Dibb, Karen Balavich, Jeffrey Croteau, Eddie Cooper
Abstract It is well known from field accident studies and crash testing that seatbelts provide considerable benefit to occupants in rollover crashes; however, a small fraction of belted occupants still sustain serious and severe neck injuries. The mechanism of these neck injuries is generated by torso augmentation (diving), where the head becomes constrained while the torso continues to move toward the constrained head causing injurious compressive neck loading. This type of neck loading can occur in belted occupants when the head is in contact with, or in close proximity to, the roof interior when the inverted vehicle impacts the ground. Consequently, understanding the nature and extent of head excursion has long been an objective of researchers studying the behavior of occupants in rollovers. In evaluating rollover occupant protection system performance, various studies have recognized and demonstrated the upward and outward excursion of belted occupants that occurs during the airborne phase of a rollover, as well as excursion from vehicle-to-ground impacts.
Technical Paper
2014-04-01
Hiroyuki Asanuma, Yukou Takahashi, Miwako Ikeda, Toshiyuki Yanaoka
Abstract Japanese accident statistics show that despite the decreasing trend of the overall traffic fatalities, more than 1,000 pedestrians are still killed annually in Japan. One way to develop further understanding of real-world pedestrian accidents is to reconstruct a variety of accident scenarios dynamically using computational models. Some of the past studies done by the authors' group have used a simplified vehicle model to investigate pedestrian lower limb injuries. However, loadings to the upper body also need to be reproduced to predict damage to the full body of a pedestrian. As a step toward this goal, this study aimed to develop a simplified vehicle model capable of reproducing pedestrian full-body kinematics and pelvis and lower limb injury measures. The simplified vehicle model was comprised of four parts: windshield, hood, bumper and lower part of the bumper. Several different models were developed using different combinations of geometric and stiffness representation. A unique model called a multi-layer model developed in this study represented each of the hood and the windshield with a stack of the panel representing the entire area of these components, while applying localized stiffness characteristics and contact definition with a particular pedestrian body region that contacts with the layer represented by the stiffness characteristics.
Technical Paper
2014-04-01
Chinmoy Pal, Tomosaburo Okabe, Kulothungan Vimalathithan, Muthukumar Muthanandam, Jeyabharath Manoharan, Satheesh Narayanan
Abstract A comprehensive analysis was performed to evaluate the effect of BMI on different body region injuries for side impact. The accident data for this study was taken from the National Automotive Sampling System-Crashworthiness Data System (NASS-CDS). It was found that the mean BMI values for driver and front passengers increases over the years in the US. To study the effect of BMI, the range was divided into three groups: Thin (BMI<21), Normal (BMI 24-27) and Obese (BMI>30). Other important variables considered for this study were model year (MY1995-99 for old vehicles & MY2000-08 for newer vehicles), impact location (side-front F, side-center P & side-distributed Y) and direction of force (8-10 o'clock for nearside & 2-4 o'clock for far-side). Accident cases involving older occupants above 60 years was omitted in order to minimize the bone strength depreciation effect. Results of the present study indicated that the Model Year has influence on lower extremity injuries. Occurrence of pelvis injury was found to be influenced by BMI and was validated with logistic regression analysis.
Technical Paper
2014-04-01
Peter Kempf
Abstract Discuss the basics of posturing and positioning of the full range of occupants necessary to cover the required anthropometric demographics in combat vehicles, both ground and air, since there are similarities to both and that they are both very different than the traditional automotive packaging scenarios. It is based on the Eye Reference Point and the Design Eye Point. Discuss the three Reach Zones: Primary, Secondary and Tertiary. Discuss Vision Zones and potentially ground intercepts. Discuss body clearances, both static and dynamic. Discuss the basic effects of packaging occupants with body armor with respect to SRP's and MSRP's.
Technical Paper
2014-04-01
William R. Bussone, Michael Prange
Abstract Few studies have investigated pediatric head injury mechanics with subjects below the age of 8 years. This paper presents non-injurious head accelerations during various activities for young children (2 to 7 years old). Eight males and five females aged 2-7 years old were equipped with a head sensor package and head kinematics were measured while performing a series of playground-type activities. The maximum peak resultant accelerations were 29.5 G and 2745 rad/s2. The range of peak accelerations was 2.7 G to 29.5 G. The range of peak angular velocities was 4.2 rad/s to 22.4 rad/s. The range of peak angular accelerations was 174 rad/s2 to 2745 rad/s2. Mean peak resultant values across all participants and activities were 13.8 G (range 2.4 G to 13.8 G), 12.8 rad/s (range 4.0 rad/s to 12.8 rad/s), and 1375 rad/s2 (range 105 rad/s2 to 1375 rad/s2) for linear acceleration, angular velocity, and angular acceleration, respectively. The peak accelerations measured in this study were similar to older children performing similar tasks.
Technical Paper
2014-04-01
Lisa P. Gwin, Herbert Guzman, Enrique Bonugli, William Scott, Mark Freund
Abstract There is a paucity of recent data quantifying the injury risk of forces and accelerations that act on the whole body in a back-to-front direction. The purpose of this study was to quantify the level of back-to-front accelerations that volunteers felt were tolerable and non-injurious. Instrumented volunteers were dropped supine onto a mattress, and their accelerations during the impact with the mattress were measured. Accelerometers were located on the head, upper thoracic and lower lumbar regions. Drop heights started at 0.6 m (2 ft) and progressed upward as high as 1.8 m (6 ft) based on the test subjects' consent. The test panel was comprised of male and female subjects whose ages ranged from 25 to 63 years of age and whose masses ranged from 62 to 130 kg (136 to 286 lb). Peak head, upper thoracic and lower lumbar accelerations of 25.9 g, 29.4 g and 39.6 g were measured. There was considerable restitution in the impacts with the mattress and the test subjects experienced changes in velocity (ΔVs) of 5.2-11.4 m/s (11.6-25.5 mph).
Technical Paper
2014-04-01
Bryan Randles, Daniel Voss, Isaac Ikram, Christopher Furbish, Judson Welcher, Thomas Szabo
Determination of vehicle speed at the time of impact is frequently an important factor in accident reconstruction. In many cases some evidence may indicate that the brake pedal of a striking vehicle was disengaged, and the vehicle was permitted to idle forward prior to impacting the target vehicle. This study was undertaken to analyze the kinematic response of various vehicles equipped with automatic transmissions while idling, with the transmissions in drive and the brake pedals disengaged. An array of sedans, SUV's and pickup trucks were tested under 3 roadway conditions (flat, medium slope and high slope). The vehicle responses are reported and mathematical relationships were developed to model the idle velocity profiles for flat and sloped roadway surfaces.
Technical Paper
2014-04-01
Chuqi Su, Zhengzhong Chu
Driving comfort is one of the most important indexes for automobile comfort. Driving posture comfort is closely related to the drivers' joint angles and joint torques. In present research, a new method is proposed to identify the most comfortable driving posture based on studying the relation between drivers' joint angles and joint torques. In order to truly reflect a driving situation, the accurate human driving model of 50 percent of the size of Chinese male is established according to the human body database of RAMSIS firstly. Biomechanical model based on accurate human driving model is also developed to analyze and obtain dynamic equations of human driving model by employing Kane method. The joint torque-angle curves of drivers' upper and lower limbs during holding wheel or pedal operation can be obtained through dynamic simulation in the MATLAB. Through curve-fitting analysis, the minimum joint torque of a driver' limb and the optimal joint angel can be found. As an important reference, these parameters can be used to optimize driving seat structure and offer an important support for the optimization of cab package.
Technical Paper
2014-04-01
Se Jin Park, Seung Nam Min, Murali Subramaniyam, Dong-Hoon Lee, Heeran Lee, Dong Gyun Kim
Abstract Seating comfort is one of the most important indicators of the performance of automotive seats. The objective and subjective evaluation of seating comfort plays an important role in the development of seating systems. Objective methods are primarily based on evaluating the influence of vibrations on the driver's seat and assessing the seat pressure ratio. The primary goal of this study was to evaluate the comfort of two car seats (sedan and compact) by comparing a subjective technique with an objective technique like body pressure ratio for a sample of 12 subjects. The results show that the pressure ratio for IT (ischial tuberosity) and L4/L5 were significantly greater for the seat of a compact car than the seat of a sedan car. The subjective comfort was significantly greater for the seat of the sedan car and females than the seat of the compact car and males, respectively. The combination of valid objective measures with subjective ratings of comfort and discomfort may give information of use to seat designers.
Technical Paper
2014-04-01
Alessandro Naddeo, Nicola Cappetti, Orlando Ippolito
Abstract General comfort may be defined as the “level of well-being” perceived by humans in a working environment. The state-of-the-art about evaluation of comfort/discomfort shows the need for an objective method to evaluate the “effect in the internal body” and “perceived effects” in main systems of comfort perception. In the early phases of automotive design, the seating and dashboard command can be virtually prototyped, and, using Digital Human Modeling (DHM) software, several kinds of interactions can me modeled to evaluate the ergonomics and comfort of designed solutions. Several studies demonstrated that DHM approaches are favorable in virtual reachability and usability tests as well as in macro-ergonomics evaluations, but they appear insufficient in terms of evaluating comfort. Comfort level is extremely difficult to detect and measure; in fact, it is affected by individual perceptions and always depends on the biomechanical, physiological, and psychological state of the tester during task execution.
Technical Paper
2014-04-01
Brian Pinkelman
Abstract Experience tells us that one can develop a technically comfortable seat where the seat fits and supports the occupant. The pressure distribution is optimized and the seat and packaging are such that a good posture is attainable by many. The dynamic characteristics of the seat and the vehicle are technically good. Despite all this the customer is not satisfied. Despite it being a technically comfortable seat, it does meet the customers' expectations and/or priorities and thus the comfort provided is lacking. This paper seeks to explore that gap between the seat and the user by modeling comfort using techniques similar to those found in the social sciences where models often focus on user or individual behavior. The model is built upon but diverges from the Cobb Douglas consumer utility model found in economics. It is presented as theory and presents a very different perspective on comfort. The model should be used not as a replacement but a complement to the more traditional technical models of comfort that model the seat.
Technical Paper
2014-04-01
Clive D'Souza
The purpose of this paper is to demonstrate the impact of low- floor bus seating configuration, passenger load factor (PLF) and passenger characteristics on individual boarding and disembarking (B-D) times -a key component of vehicle dwell time and overall transit system performance. A laboratory study was conducted using a static full-scale mock-up of a low-floor bus. Users of wheeled mobility devices (n=48) and walking aids (n=22), and visually impaired (n=17) and able-bodied (n=17) users evaluated three bus layout configurations at two PLF levels yielding information on B-D performance. Statistical regression models of B-D times helped quantify relative contributions of layout, PLF, and user characteristics viz., impairment type, power grip strength, and speed of ambulation or wheelchair propulsion. Wheeled mobility device users, and individuals with lower grip strength and slower speed were impacted greater by vehicle design resulting in increased dwell time. To ensure safe, efficient and equitable access to the diverse spectrum of transit riders, transit system design needs approaches that transcend existing minimum federal accessibility design standards.
Technical Paper
2014-04-01
Scott Allen Ziolek
Abstract Seat comfort is an important factor in the development of a vehicle; however, comfort can be measured in many ways. Many aspects of the experimental design such as the duration of the drive test, the questions asked, and the make-up of the test subjects are known to influence comfort results. This paper provides the background methodology and results of a Seat comfort study aimed at assessing long-term driving seat comfort.
Technical Paper
2014-04-01
Renaud Deborne, Skárlet Khouri Silva, Andras Kemeny
Abstract By the action on the steering wheel, the driver has the capability to control the trajectory of its vehicle. Nevertheless, the steering wheel has also the role of information provider to the driver. In particular, the torque level at the steering wheel informs the driver about the interaction between the vehicle and the road. This information flow is natural due to the mechanical chain between the road and the steering wheel. Many studies have shown that steering wheel torque feedback is crucial to ensure the control of the vehicle. In the context of uncoupled steering (steer-by-wire vehicle or driving simulators), the torque rendering on the steering wheel is a major challenge. In addition, of the trajectory control, the quality of this torque is a key for the immersion of drivers in virtual environment such as in driving simulators. The torque-rendering loop is composed of different steps. At first, a vehicle dynamics model computes the torque level at the steering wheel regarding the vehicle state (steering wheel position, vehicle speed, etc.).
Technical Paper
2014-04-01
Richard Young
A key aim of research into cell phone tasks is to obtain an unbiased estimate of their relative risk (RR) for crashes. This paper re-examines five RR estimates of cell phone conversation in automobiles. The Toronto and Australian studies estimated an RR near 4, but used subjective estimates of driving and crash times. The OnStar, 100-Car, and a recent naturalistic study used objective measures of driving and crash times and estimated an RR near 1, not 4 - a major discrepancy. Analysis of data from GPS trip studies shows that people were in the car only 20% of the time on any given prior day at the same clock time they were in the car on a later day. Hence, the Toronto estimate of driving time during control windows must be reduced from 10 to 2 min. Given a cell phone call rate about 7 times higher when in-car than out-of-car, and correcting for misclassification of some post-crash calls as pre-crash, the final required downward adjustment of the Toronto and Australian RR estimates is about 7 times.
Technical Paper
2014-04-01
Flaura Winston, Catherine McDonald, Venk Kandadai, Zachary Winston, Thomas Seacrist
Abstract Driving simulators offer a safe alternative to on-road driving for the evaluation of performance. In addition, simulated drives allow for controlled manipulations of traffic situations producing a more consistent and objective assessment experience and outcome measure of crash risk. Yet, few simulator protocols have been validated for their ability to assess driving performance under conditions that result in actual collisions. This paper presents results from a new Simulated Driving Assessment (SDA), a 35- to-40-minute simulated assessment delivered on a Real-Time® simulator. The SDA was developed to represent typical scenarios in which teens crash, based on analyses from the National Motor Vehicle Crash Causation Survey (NMVCCS). A new metric, failure to brake, was calculated for the 7 potential rear-end scenarios included in the SDA and examined according two constructs: experience and skill. The study included an inexperienced group (n=21): 16-17 year olds with 90 days or fewer of provisional licensure, and an experienced group (n=17): 25-50 year olds with at least 5 years of PA licensure, at least 100 miles driven per week and no self-reported collisions in the previous 3 years.
Technical Paper
2014-04-01
Yinghao Huang, Wenduo Wang, Chen Fang, Yi Murphey, Dev S. Kochhar
A transportable instrumentation package to collect driver, vehicle and environmental data is described. This system is an improvement on an earlier system and is called TIP-II [13]. Two new modules were designed and added to the original system: a new and improved physiological signal module (PH-M) replaced the original physiological signals module in TIP, and a new hand pressure on steering wheel module (HP-M) was added. This paper reports on exploratory tests with TIP-II. Driving data were collected from ten driver participants. Correlations between On-Board-Diagnostics (OBD), video data, physiological data and specific driver behavior such as lane departure and car following were investigated. Initial analysis suggested that hand pressure, skin conductance level, and respiration rate were key indicators of lane departure lateral displacement and velocity, immediately preceding lane departure; heart rate and inter-beat interval were affected during lane changes. Correlation analyses of car-following data are ongoing.
Technical Paper
2014-04-01
Helen S. Loeb, Thomas Seacrist, Catherine McDonald, Flaura Winston
Abstract Driving simulators provide a safe, highly reproducible environment in which to assess driver behavior. Nevertheless, data reduction to standardized metrics can be time-consuming and cumbersome. Further, the validity of the results is challenged by inconsistent definitions of metrics, precluding comparison across studies and integration of data. No established tool has yet been made available and kept current for the systematic reduction of literature-derived safety metrics. The long term goal of this work is to develop DriveLab, a set of widely applicable routines for reducing simulator data to expert-approved metrics. Since Matlab™ is so widely used in the research community, it was chosen as a suitable environment. This paper aims to serve as a case study of data reduction techniques and programming choices that were made for simulator analysis of a specific research project, the Simulated Driving Assessment. The initial set of Matlab™ routines was successfully tested by analyzing recognized metrics, such as Distance Headway, Time Headway, Time-To-Collision, and Reaction Time.
Technical Paper
2014-04-01
Tobias Karlsson, Magdalena Lindman, Jordanka Kovaceva, Bo Svanberg, Henrik Wiberg, Lotta Jakobsson
Abstract Different types of driver workload are suggested to impact driving performance. Operating a vehicle in a situation where the driver feel uneasy is one example of driver workload. In this study, passenger car driving data collected with Naturalistic Driving Study (NDS) data acquisition equipment was analyzed, aiming to identify situations corresponding to a high driver's subjective rating of ‘unease’. Data from an experimental study with subjects driving a passenger car in normal traffic was used. Situations were rated by the subjects according to experienced ‘unease’, and the Controller Area Network (CAN) data from the vehicle was used to describe the driving conditions and identify driving patterns corresponding to the situations rated as ‘uneasy’. These driving patterns were matched with the data in a NDS database and the method was validated using video data. Two data mining approaches were applied. The first was based on an ensemble classifier on general variables derived from the CAN-data to predict the subjective rating of segments of the data.
Technical Paper
2014-04-01
Richard Young
This study reanalyzes the data from a recent experimental report from the University of Utah investigating the effect on driving performance of auditory-vocal secondary tasks (such as cell phone and passenger conversations, speech-to-text, and a complex artificial cognitive task). The current objective is to estimate the relative risk of crashes associated with such auditory-vocal tasks. Contrary to the Utah study's assumption of an increase in crash risk from the attentional effects of cognitive load, a deeper analysis of the Utah data shows that driver self-regulation provides an effective countermeasure that offsets possible increases in crash risk. For example, drivers self-regulated their following distances to compensate for the slight increases in brake response time while performing auditory-vocal tasks. This new finding is supported by naturalistic driving data showing that cell phone conversation does not increase crash risk above that of normal baseline driving. The Utah data are next compared to those from a larger study that included visual-manual as well as auditory-vocal tasks.
Technical Paper
2014-04-01
Amardeep Sathyanarayana, Nitish Krishnamurthy, John H. L. Hansen
Abstract Growing congestion in terms of competing technology within, and traffic outside the vehicle has motivated the evolution of advanced safety systems to be context and situation aware by processing multi-sensor information effectively providing timely decisions to assist the driver in driving safely. Towards vehicular and occupant safety, it is important to understand how drivers drive and to identify any variations in their driving performance. One approach to accomplish this is to analyze driving maneuvers. These maneuvers are influenced by the driver's choice and traffic/road conditions, so analyzing these gives an indication of the driving performance. Various framing strategies have been adopted to analyze these continuous temporal information in manageable lengths of data to obtain analysis results as quickly and accurately as possible. Either fixed time window frames or event based frames are amongst the most widely used. However a moving vehicle varies in both time and space with various micro and macro changes in driving patterns based on vehicle speed.
Technical Paper
2014-04-01
Adeel Yusuf, John Avery
Abstract The framework for the connected HMI with respect to the configuration and computation of personalization data is presented. The connectivity medium of the future car would be based on either an embedded internet connection through the mobile data services, Bluetooth based data connection based on the user smartphone, Wi-Fi based connection using a wireless network connection or an optimized hybrid approach based on the availability of the connectivity medium or the preference of the user. It is assumed that the car cannot remain directly-connected at all times and the computational requirements of the advanced personalization application cannot be optimized using the inbuilt HMI hardware in the vehicle alone. Our algorithm is based on the concept of Constant Data Availability (CODA) distributed file system and the Distributed Application Processing framework (DAPF). The CODA distributed network filesystem is used for caching of data to perform disconnected operations during the non-availability of a suitable connectivity medium.
Technical Paper
2014-04-01
Dennis A. Attwood
Abstract In its simplest form, an interlock is a device, installed in a vehicle, that monitors the safety of the vehicle and its occupants, decides whether the vehicle or its occupants are in danger and warns the occupants, or influences the operation of the vehicle. The first interlocks were designed to detect alcohol intoxicated drivers. Three categories of performance interlocks can be identified: Type I interlocks sense physiological parameters of the driver (e.g. alcohol content of alveolar air) determine the driver's level of intoxication and, after comparing this level with a criterion level (e.g. the legal limit for driving), decide whether or not the vehicle should be operated. Type II interlocks measure the behaviour of the driver with cockpit-mounted equipment (e.g. eye movement monitors) or on driving-related tasks and compare this behaviour with established norms. Types III interlocks measure driving performance directly and compare the measured values with performance norms.
Technical Paper
2014-04-01
Vasantharaj G
Abstract Human Machine Interface technologies in automotive systems are taking a giant leap forward with integrated multi-modal, multi-touch and multi-zone systems. This evolution enables the HMI system to provide state-of-the-art graphics effects, speech assistance, touch and gesture enabled interfaces, augmented reality, web and mobile integration alongside other advanced concepts, providing excellent user experience, least driver distraction and ease of use. Modern premium car manufacturers are introducing such user experience in their in-vehicle infotainment (IVI) systems to make their IVI on par with the trend setting mobile smart phone user experience. Apart from the technologies involved in multimodal behaviour, the HMI system includes frameworks, standards and sub systems that enable appreciable amount of autonomy while interfacing with the underlying IVI sub system layers. This paper discusses the technologies, practices and implementations in the current and upcoming industry trends.
Technical Paper
2014-04-01
Tawhid Khan, Mark Williams
This paper describes a comparative study aimed at identifying cultural differences in automotive-HMI usability. This was part of a larger research to investigate in depth the problems users experience with vehicle-HMI in emerging-regions and help in the development of HMI design guidelines to include cultural consideration. Culture is recognised as a significant influence on user behaviour, as it correlates with certain preferences and abilities. A system may be fully usable for one group of users and environmental conditions but totally unsuitable for another. Even if a conscientious engineer designs a proper human-machine-interface for use in a given environment, the designer is often unable to foresee effects of a different culture on vehicle's HMI usability. Culture has different patterns of social behaviour and interaction which have led many researchers to develop cultural-models to describe these differences. With these in mind, current focus of this study seeks to address three interrelated questions, 1) Are there elements within automotive-HMI that can be identified as culturally specific?
Viewing 91 to 120 of 5734

Filter

  • Article
    485
  • Book
    19
  • Collection
    9
  • Magazine
    134
  • Technical Paper
    3994
  • Standard
    1093
  • Article
    1093