Display:

Results

Viewing 31 to 60 of 5867
2015-04-14
Technical Paper
2015-01-1706
Sreegururaj Jayachander, Krishna Raj Nair M K
Abstract Melatonin, otherwise popularly known as the “sleep hormone” is known to govern the human circadian rhythms. Current studies indicate that the generation of melatonin is impacted by the ambient light. The natural sleep inducing behavior during night and in darkness, is also due to the same phenomenon. Studies have shown that light of particular wavelengths in the visible spectrum have a higher effect on the amount of melatonin secreted by the human body. Blue light in the wavelengths of around 468 nm is known to inhibit the melatonin secretion, the most. This branch of science known as photobiology is in its nascent stage and is a matter of research pursued by neurologists, endocrinologists and other lighting researchers. Photobiology has several potential applications in the automotive industry, the principal one being driver drowsiness prevention.
2015-04-14
Technical Paper
2015-01-1707
Ravi Ranjan, Shivaswaroop Parameswaraiah
Abstract 1 Glare is subjective and can either cause disability or discomfort in eyes. Thus glare during driving especially at night is a serious concern and must be addressed. No commercial product exists to counter the glare, though there had been some academic progress in realizing a solution. The paper presents two promising technologies that help in reducing the oncoming vehicle glare. The system comprises of a vision based identification of glare source. A pixelated transparent film/glass with dynamically controllable transmittance is placed between the driver and source. By changing the transparency locally, glare is avoided without affecting the overall visibility. The paper details on lab results and feasibility of two proposed solution i.e. Use of a matrix of electro chromic films such that each element can be individually controlled and use of transparent LCD such that each pixel is controlled for its transparency.
2015-04-14
Technical Paper
2015-01-1357
James A. Crowley
Abstract In the area of Human Factors and Usability research a desired output of many studies is identification of what value a specific Design Parameter should be set at to minimize customer dissatisfaction. A Customer Loss Function is a simple way to graphically display the probability customers will be dissatisfied at different levels of a given design parameter, due to a given failure mode. Many design parameters however, have two distinct but related Failure Modes (customer disatisfiers), typically representing two ends of the parameter (i.e. too much/too little; too hot/too cold; too fast/too slow). Each of these Failure modes is represented by its own unique Customer Loss Function. This paper will introduce a technique to combine these two One-Sided Loss Functions into a comprehensive Two Sided Loss Function. The mathematics behind the creation of both one sided and two sided loss functions is based on Binary Logistic Regression [1,2,3] Analysis Techniques.
2015-04-14
Journal Article
2015-01-1403
Yi lu Murphey, Dev S. Kochhar, Paul Watta, Xipeng Wang, Tianyu Wang
A host of new technologies, features and functions are continuously being added to vehicles to make the driving task and journey safe, pleasant, relaxing, enjoyable, and even exciting for the driver. An encompassing framework for research has been to understand and push further the need for ‘driver wellness’, the definition for which is still elusive. Suffice to say that ‘wellness’ is reflected in feeling good before, during and after the drive. Objective measures, primarily driver physiology, reflect wellness, but in an as yet not fully understood way. Murphey and Kochhar [1, 2] developed a Transportable Instrument Package (TIP) for in-vehicle on-the road driving data recording, and used machine learning and neural networks to explore the underlying relationships. In this paper we report on research that shows how in-vehicle, on-the-road driver physiological measures can be used to predict the driver’s intention to change lanes, even before such a lane-change is initiated.
2015-04-14
Journal Article
2015-01-1388
Tatsuya Iwasa, Toshihiro Hashimoto
We have developed a bench test method to assess the driver distraction caused by workloads of using infotainment systems. In a previous study, we found that the method can assess not only visual-manual tasks but also auditory-vocal tasks. The workloads are evaluated from performances of both pedal tracking (PT) and detection response task (DRT) during while performing secondary tasks. We can conduct the method with simple apparatuses such as a gaming pedal and a PC. The aim of this study is to verify the reproducibility of the PT-DRT. Experiments were conducted at three different regions and different experimenters in the US in the same procedure. We used two kinds of visual-manual tasks and two kinds of auditory-vocal tasks as secondary tasks and set two different levels of workload for each of all the kinds of tasks.
2015-04-14
Journal Article
2015-01-1478
Michelle Heller, Sarah Sharpe, William Newberry, Alan Dibb, John Zolock, Jeffrey Croteau, Michael Carhart, Jason Kerrigan, Mark Clauser
Occupant kinematics during rollover motor vehicle collisions have been investigated over the past thirty years utilizing Anthropomorphic Test Devices (ATDs) in various test methodologies such as dolly rollover tests, CRIS testing, spin-fixture testing, and ramp-induced rollovers. Recent testing has utilized steer-induced rollovers to gain a deeper understand into vehicle kinematics, including the vehicle’s pre-trip motion (Asay et al., 2009; Asay et al., 2010). The current test series utilized ATDs in steer-induced rollovers to investigate occupant kinematics throughout the entire rollover sequence, from pre-trip vehicle motion to the final rest position. Two test vehicles (a sedan and a pickup truck) were fully instrumented, and each contained two restrained 50th percentile male ATDs in the front outboard seating positions. The pickup truck was equipped with rollover-activated side-curtain airbags that deployed prior to the first ground contact.
2015-04-14
Technical Paper
2015-01-1588
Ibrahim A. Badiru, Michael W. Neal
The goal of this paper is to discuss the steps for an engineering organization to understand and execute customer optimized handling characteristics for routine driving maneuvers. Vehicle handling character plays a critical role in the overall customer driving experience. The automotive industry has standardized a wide array of objective tests and metrics to quantify handling performance. At major OEM’s, a new vehicle program begins with the development of objective targets based on competitive benchmarking, market trends, and past experience. As the program progresses from the concept stage to final production calibrations, development progressively relies more heavily on the subjective judgment of trained experts to establish handling characteristics that may please the customer. This process is time-tested and has been successful in producing a broad range of vehicles from numerous manufacturers that are both safe and meet the expectations of the buying public.
2015-04-14
Journal Article
2015-01-1213
Zifan Liu, Andrej Ivanco, Zoran Filipi
Abstract This paper presents a new way to evaluate vehicle speed profile aggressiveness, quantify it from the perspective of the rapid speed fluctuations, and assess its impact on vehicle fuel economy. The speed fluctuation can be divided into two portions: the large-scale low frequency speed trace which follows the ongoing traffic and road characteristics, and the small-scale rapid speed fluctuations normally related to the driver's experience, style and ability to anticipate future events. The latter represent to some extent the driver aggressiveness and it is well known to affect the vehicle energy consumption and component duty cycles. Therefore, the rapid speed fluctuations are the focus of this paper. Driving data collected with the GPS devices are widely adopted for study of real-world fuel economy, or the impact on electrified vehicle range and component duty cycles.
2015-04-14
Technical Paper
2015-01-1394
Alessandro Naddeo, Marco Apicella, Davide Galluzzi
Abstract General comfort can be defined as the measure of the “level of wellbeing” perceived by humans when interacting with a working environment. The state of the art for comfort/discomfort evaluation shows the need for an objective method to evaluate both “effects on the internal body” and “perceived effects” when considering the perception of comfort. Medical studies show that each joint has its own natural resting posture. In this posture, our muscles are completely relaxed or at minimum levels of strain. The body's geometrical configuration corresponds to the natural resting position of arms/legs/neck etc. From this starting point, the authors experimented to develop and built postural-comfort curves for each degree of freedom (DOF) of upper-limb joints. These curves are regular, and do not show any kind of discontinuity. Software (CA-Man®) was developed to analyze different postures and calculate a postural comfort index for the entire upper body.
2015-04-14
Journal Article
2015-01-1489
Raed E. El-jawahri, Tony R. Laituri, Agnes S. Kim, Stephen W. Rouhana, Para V. Weerappuli
Abstract Transfer or response equations are important as they provide relationships between the responses of different surrogates under matched, or nearly identical loading conditions. In the present study, transfer equations for different body regions were developed via mathematical modeling. Specifically, validated finite element models of the age-dependent Ford human body models (FHBM) and the mid-sized male Hybrid III (HIII50) were used to generate a set of matched cases (i.e., 192 frontal sled impact cases involving different restraints, impact speeds, severities, and FHBM age). For each impact, two restraint systems were evaluated: a standard three-point belt with and without a single-stage inflator airbag. Regression analyses were subsequently performed on the resulting FHBM- and HIII50-based responses. This approach was used to develop transfer equations for seven body regions: the head, neck, chest, pelvis, femur, tibia, and foot.
2015-04-14
Technical Paper
2015-01-1465
Sho Nikaido, Shota Wada, Yasuhiro Matsui, Shoko Oikawa, Toshiya Hirose
Abstract Although traffic accidents in Japan involving bicycles have been decreasing yearly, more than 120,000 per year still occur. Few data exist regarding the mechanisms underlying bicycle accidents occurring at intersections. Such dangerous situations form the backdrop of the warning and automatic braking systems being developed for motor vehicles. By clarifying cyclist behavioral characteristics at crucial times, it may be possible to introduce a similar warning system for cyclists as a countermeasure to reduce accidents. The objective of this study is to clarify the mechanism of accidents involving bicycles and to obtain useful data for the development of a warning system for cyclists. A video camera and software investigated and analyzed cyclists' speed and trajectory at an intersection where many accidents occur. Cyclists entering the intersection from one direction were recorded.
2015-04-14
Journal Article
2015-01-1392
Se Jin Park, Seung Nam Min, Murali Subramaniyam, Heeran Lee, Yu Kyung Shin, Chang Hee Jang, Soon Hyun Hwang
Abstract Driving posture measurement is essential for the evaluation of a driver workspace and for improved seat comfort design. This study captures the comfortable driving postures for Koreans using a handheld portable Artec L™ 3D scanner. Subjects consisted of 20 healthy individuals (10 males and 10 females) ranging in age from 20 to 40 years and grouped as three weight groups (<59 kg, 60-79 kg and >80 kg). Eighteen land markers were attached (car seat: 9 markers; subject: 9 markers). From the 3D scanned data, the angles (neck, back, headrest, seat back, wrist, elbow, knee, and ankle) and distances (head to headrest, seat height, and seat back and forth) between the land markers were extracted in the Rapidform XOR software. The body pressure distribution was measured using two pressure mats from 17 body part regions. The measured pressure data were analyzed for average pressure, contact area, and body part pressure ratio.
2015-04-14
Journal Article
2015-01-1389
Yu Zhang, Linda Angell, Silviu Pala, Ifushi Shimonomoto
Abstract Objective tools that can assess the demands associated with in-vehicle human machine interfaces (HMIs) could assist automotive engineers designing safer interaction. This paper presents empirical evidence supporting one objective assessment approach, which compares the demand associated with in-vehicle tasks to the demand associated with “benchmarking” or “comparison tasks”. In the presented study, there were two types of benchmarking tasks-a modified surrogate reference task (SuRT) and a delayed digit recall task (n-back task) - representing different levels of visual demand and cognitive demand respectively. Twenty-four participants performed these two types of benchmarking tasks as well as two radio tasks while driving a vehicle on a closed-loop test track. Response measures included physiological (heart rate), glance metrics, driving performance (steering entropy) and subjective workload ratings.
2015-04-14
Journal Article
2015-01-1400
Umashankar Nagarajan, Ambarish Goswami
Abstract The number of seniors is rising worldwide. Exoskeleton devices can help seniors regain their lost power, balance, and agility, thus improving their quality of life. Exoskeleton devices and control strategies assist human gait. A common strategy is to use oscillator-based controllers, which “lock in” with the gait and help the subject walk faster using a phase lead characteristic. Such strategies are limited to gait assist only and are less effective in more general movements. These controllers can be detrimental in critical cases such as when the leg needs to execute a fast reactive stepping to stop a fall. We present a control strategy for a hip exoskeleton, which assists human leg motion by providing motion amplification at the hip joint. The controller is “neutral” because it assists any leg motion, not only a gait, and can help avoid falls by assisting reactive stepping.
2015-04-14
Journal Article
2015-01-0468
Mingxian Wang, Wei Chen, Yan Fu, Yong Yang
Abstract As the world's largest auto producer and consumer, China is both the most promising and complex market given the country's rapid economic growth, huge population, and many regional and segment preference differences. This research is aimed at developing data-driven demand models for customer preference analysis and prediction under a competitive market environment. Regional analysis is first used to understand the impact of geographical factors on customer preference. After a comprehensive data exploration, a customer-level mixed logit model is built to shed light on fast-growing vehicle segments in the Chinese auto market. By combining the data of vehicle purchase, consideration, and past choice, cross-shopping behaviors and brand influence are explicitly modeled in addition to the impact of customer demographics, usage behaviors, and attributes of vehicles.
2015-04-14
Journal Article
2015-01-0158
Jackeline Rios-Torres, Pablo Sauras-Perez, Ruben Alfaro, Joachim Taiber, Pierluigi Pisu
Abstract This paper presents the design of an Eco-Driving Assistant System (EDAS) in which the main goal is to minimize the energy use of battery electric vehicles, in particular, vehicles utilized for public transportation. The system optimizes the speed profile of a real route schedule while satisfying the constraints imposed on speed and time. It includes a driver feedback and a driver scoring GUI which allows the driver improving his/her driving skills and comparing him/herself to a “theoretical perfect driver”. The system also includes a backward simulator that generates information related to the vehicle operation under the particular route to be optimized. The output information from the simulator is used as an input to the optimization algorithm. The simulator was validated using real data from a battery electric vehicle. The EDAS system was tested for three different driving profiles and energy consumption reductions of up to 30.33% were achieved.
2015-04-14
Journal Article
2015-01-0297
Jianbo Lu, Dimitar Filev, Finn Tseng
Abstract This paper proposes an approach that characterizes a driver's driving behavior and style in real-time during car-following drives. It uses an online learning of the evolving Takagi-Sugeno fuzzy model combined with the Markov model. The inputs fed into the proposed algorithm are from the measured signals of on-board sensors equipped with current vehicles, including the relative distance sensors for Adaptive Cruise Control feature and the accelerometer for Electronic Stability Control feature. The approach is verified using data collected using a test vehicle from several car-following test trips. The effectiveness of the proposed approach has been shown in the paper.
2015-04-14
Journal Article
2015-01-0612
Weiguo Zhang, Zeyu Ma, Ankang Jin, James Yang, Yunqing Zhang
Abstract Nowadays, studying the human body response in a seated position has attracted a lot of attention as environmental vibrations are transferred to the human body through floor and seat. This research has constructed a multi-body biodynamic human model with 17 degrees of freedom (DOF), including the backrest support and the interaction between feet and ground. Three types of human biodynamic models are taken into consideration: the first model doesn't include the interaction between the feet and floor, the second considers the feet and floor interaction by using a high stiffness spring, the third one includes the interaction by using a soft spring. Based on the whole vehicle model, the excitation to human body through feet and back can be obtained by ride simulation. The simulation results indicate that the interaction between feet and ground exerts non-negligible effect upon the performance of the whole body vibration by comparing the three cases.
2015-04-14
Technical Paper
2015-01-1498
Yuyao Jiang, Weiwen Deng, Sumin Zhang, Shanshan Wang, Qingrong Zhao, Bakhtiar Litkouhi
Abstract Steering torque feedback, or steering feel, is widely regarded as an important aspect of driver interface to road feel. To generate a steering feel with the appropriate level of fidelity required by a driver-vehicle system or a driving simulator, it is essential to gain a good understanding of various important influencing factors of steering torque feedback. This paper presents a comprehensive study and analysis of internal and external factors that strongly affect steering torque feedback. A steering torque feedback model with sufficient fidelity is established and verified as the base for this study. The individual- and collective-level influences of these factors on steering torque feedback are analyzed in both time domain and frequency domain, with guidelines provided on how to properly use these influencing factors to control their negative effects in modeling steering torque feedback.
2015-04-14
Technical Paper
2015-01-1477
Robert Larson, Jeffrey Croteau, Cleve Bare, John Zolock, Daniel Peterson, Jason Skiera, Jason R. Kerrigan, Mark D. Clauser
Abstract Extensive testing has been conducted to evaluate both the dynamic response of vehicle structures and occupant protection systems in rollover collisions though the use of Anthropomorphic Test Devices (ATDs). Rollover test methods that utilize a fixture to initiate the rollover event include the SAE2114 dolly, inverted drop tests, accelerating vehicle body buck on a decelerating sled, ramp-induced rollovers, and Controlled Rollover Impact System (CRIS) Tests. More recently, programmable steering controllers have been used with sedans, vans, pickup trucks, and SUVs to induce a rollover, primarily for studying the vehicle kinematics for accident reconstruction applications. The goal of this study was to create a prototypical rollover crash test for the study of vehicle dynamics and occupant injury risk where the rollover is initiated by a steering input over realistic terrain without the constraints of previously used test methods.
2015-04-01
Magazine
Deep thinking about deep space NASA is mining the rich fields of knowledge and creativity in the minds of university students to improve living and working conditions in space. Rise of the underdogs Problem-plagued effort last year spurs Baja SAE team from VIT University of India to overhaul itself and its car. Materials, data-aq packages among choices touted in Collegiate Cup contest Central Michigan’s Baja team, which did some impressive materials analyses, takes home the SAE Mid-Michigan Section’s trophy as part of that professional group’s Engineers Week activities. Toyota looks for more from college students than high GPA "Those that participate in an SAE related-activity display passion for the automotive industry, and these candidates are ideal for our organization."
2015-03-25
Article
The move into active safety systems is increasing the need for high-reliability software. AdaCore, a tool supplier that’s used in many aerospace applications, is responding to this demand with tools that can be used by the automotive industry.
2015-03-16
Article
Rain, wind, and visibility can influence driving safety and impact the bottom line for on- and off-highway fleets.
2015-03-13
Standard
USCAR41
This document describes the assessment methods and physical requirements associated with the manual handling of carts and dollies, specific to material handling systems. All possible designs and applications could not be anticipated in creating these guidelines. Where there are questions of adherence to this document, such as use of an "off-the shelf" design, always consult the responsible Ergonomics Department. Force guidelines were primarily developed referencing the push/pull psychophysical Snook data contained in A Guide to Manual Materials Handling (second edition) by Mital, Nicholson and Ayoub (NY: Taylor & Francis, 1997). The force guidelines accommodate 75% of female capabilities and 99% of male capabilities. Factors that were included in the established guideline include: push / pull distances, vertical hand height, horizontal hand height, frequency and wheel / castor alignment and load rating. These factors were used to develop a conservative force guideline.
2015-03-10
Technical Paper
2015-01-0034
Mingyu Choi
Abstract The need for a voice recognition system in the automotive industry is growing day by day. In our current voice recognition system, Hyundai's ‘Blue-Link’ and KIA's ‘UVO’ are developed with Microsoft which is a global software company. The system launched domestic market recently. Since usage of voice recognition system are increasing, research and development of Voice Recognition system also increase very fast. Research is mostly focus on increase recognition rate of speech. However there is no research of interior layout considering voice recognition usability. So in this research, we discover interior design factors for maximizing voice recognition usability.
2015-03-10
Technical Paper
2015-01-0039
Ryuzo Hayashi, Hajime Tsuyuki, Masao Nagai
Abstract This study proposes a method for presenting maneuver request information of accelerator pedal to a driver via the accelerator pedal itself. By applying periodic force like vibration on an accelerator pedal, information is transferred to the driver without displacing the accelerator pedal. In this study, the authors focus on a saw-tooth wave as the periodic force. When the saw-tooth-waved force is applied on the accelerator pedal, a human driver feels as if the accelerator pedal is knocked by someone periodically. In addition, information about the quantity of requested maneuver can be transferred by the amplitude of the saw-tooth wave. Based on these facts, the saw-tooth wave is modified and optimized empirically with ten human drivers so that the information of direction is transferred most reliably. In addition, the relationship between the amplitude of the saw-tooth wave and requested quantity of the pedal maneuver that the drivers feel is formulated.
2015-03-10
Standard
USCAR42
This document describes the design, assessment methods and physical requirements associated with material handling systems. This would include, but not limited to manual dollies, small lot systems and kitting. All possible designs and applications could not be anticipated in creating these guidelines. Where there are questions of adherence to this document, such as use of an “off-the shelf” design, always consult the responsible Ergonomics Department.
2015-03-05
Article
Developed in partnership with IBM and location cloud company HERE, Continental’s latest evolution of its eHorizon software uses digital mapping and cloud-based data analytics to give drivers real-time information on dynamic events such as weather, accidents, and traffic jams.
2015-03-05
Article
Volvo’s 2015 XC90 features RACam, claimed to be the world’s first integrated radar and vision data-fusion system, designed to enable a broad array of active-safety capabilities.
2015-02-19
Article
Conventional CT scanners cannot accommodate long or bulky aircraft components.
Viewing 31 to 60 of 5867

Filter