Display:

Results

Viewing 31 to 60 of 6144
2016-04-05
Technical Paper
2016-01-0140
Yang Zheng, Navid Shokouhi, Nicolai Thomsen, Amardeep Sathyanarayana, John Hansen
Abstract The use of smart portable devices in vehicles creates the possibility to record useful data and helps develop a better understanding of driving behavior. In the past few years the UTDrive mobile App (a.k.a MobileUTDrive) has been developed with the goal of improving driver/passenger safety, while simultaneously maintaining the ability to establish monitoring techniques that can be used on mobile devices on various vehicles. In this study, we extend the ability of MobileUTDrive to understand the impact on driver performance on public roads in the presence of distraction from speech/voice based tasks versus tactile/hands-on tasks. Drivers are asked to interact with the device in both voice-based and hands-on modalities and their reaction time and comfort level are logged. To evaluate the driving patterns while handling the device by speech/hand, the signals from device inertial sensors are retrieved and used to construct Gaussian Mixture Models (GMM).
2016-04-05
Technical Paper
2016-01-0141
Prasanna Vasudevan, Sreegururaj Jayachander
Abstract Several studies in the field of hedonics using subjective responses to gauge the nature and influence of odors have attempted to explain the complex psychological and chemical processes. Work on the effect of odors in alleviating driver fatigue is limited. The potential to improve road safety through non-pharmacological means such as stimulating odors is the impetus behind this paper. This is especially relevant in developing countries today with burgeoning economies such as India. Longer road trips by commercial transport vehicles with increasingly fatigued drivers and risk of accidents are being fuelled by distant producer - consumer connections. This work describes a two stage comparative study on the effects of different odors typically obtainable in India. The stages involve administration of odorants orthonsally and retronasally after the onset of circadian fatigue in test subjects. This is followed by a small cognitive exercise to evaluate hand-eye coordination.
2016-04-05
Journal Article
2016-01-0260
Yoshiichi Ozeki, Hideaki Nagano, Itsuhei Kohri
Abstract In order to develop various parts and components of electric vehicles, understanding the effects of their structures and thermal performance on the energy consumption and cruising distance is important. However, such essential and detailed information is generally not always available to suppliers of vehicle parts and components. This paper presents the development of a simple model of the energy consumption by an electric vehicle in order to roughly calculate the cruising performance based only on the published information to give to suppliers, who otherwise cannot obtain the necessary information. The method can calculate the cruising distance within an error of 4% compared to the published information. The effects of the glass and body heat transfer characteristics on the cruising performance in winter were considered as an example application of the proposed model.
2016-04-05
Technical Paper
2016-01-0246
Rupesh Sonu Kakade, Prashant Mer
Abstract Vehicle occupants, unlike building occupants, are exposed to continuously varying, non-uniform solar heat load. Automotive manufacturers use photovoltaic cells based solar sensor to measure intensity and direction of the direct-beam solar radiation. Use of the time of the day and the position - latitude and longitude - of a vehicle is also common to calculate direction of the direct-beam solar radiation. Two angles - azimuth and elevation - are used to completely define the direction of solar radiation with respect to the vehicle coordinate system. Although the use of solar sensor is common in today’s vehicles, the solar heat load on the occupants, because of their exposure to the direct-beam solar radiation remains the area of in-car subjective evaluation and tuning. Since the solar rays travel in parallel paths, application of the ray tracing method to determine solar insolation of the vehicle occupants is possible.
2016-04-05
Technical Paper
2016-01-0334
Lucas e Silva, Tennakoon Mudiyanselage Tennakoon, Mairon Marques, Ana M. Djuric
Abstract A collaborative robot or cobot is a robot that can safely and effectively interact with human workers while performing industrial tasks. The ability to work alongside humans has increased the importance of collaborative robots in the automation industry, as this unique feature is a much needed property among robots nowadays. Rethink Robotics has pioneered this unique discipline by building many robots including the Baxter Robot which is exclusive not only because it has collaborative properties, but because it has two arms working together, each with 7 Degrees Of Freedom. The main goal of this research is to validate the kinematic equations for the Baxter collaborative robot and develop a unified reconfigurable kinematic model for the Left and Right arms so that the calculations can be simplified.
2016-04-05
Technical Paper
2016-01-0147
Toshiya Hirose, Tomohiro Makino, Masanobu Taniguchi, Hidenobu Kubota
Abstract Vehicle to vehicle communication system (V2V) can send and receive the vehicle information by wireless communication, and can use as a safety driving assist for driver. Currently, it is investigated to clarify an appropriate activation timing for collision information, caution and warning in Japan. This study focused on the activation timing of collision information (Provide objective information for safe driving to the driver) on V2V, and investigated an effective activation timing of collision information, and the relationship between the activation timing and the accuracy of the vehicle position. This experiment used Driving Simulator. The experimental scenario is four situations of (1) “Assistance for braking”, (2) “Assistance for accelerating”, (3) “Assistance for right turn” and (4) “Assistance for left turn” in blind intersection. The activation timing of collision information based on TTI (Time To Intersection) and TTC (Time To Collision).
2016-04-05
Technical Paper
2016-01-0158
Toshio Ito, Arata Takata, Kenta Oosawa
Abstract Automation of vehicles can be expected to improve safety, comfort and efficiency, and is being developed in various countries. Introduction of automated driving can be ranked from 0 to 5 (0: no automation, 1: driver assistance, 2: partial automation, 3: conditional automation, 4: high automation, 5: full automation). Currently, feasible automation levels are considered to be levels 2 or 3, and human manual take-over from the automated system is needed when the automated system exceeds these levels. In this situation, time required for take-over is an important issue. This study focuses on describing driving simulator experimental results of time required for take-over. The experimental scenario is that the automated system finds an object ahead during automated driving on the highway, and issues a take-over request to the driver. The subject driver can be in the following driver situations: hands-on or hands-off the steering, and strong or weak distractions.
2016-04-05
Technical Paper
2016-01-0509
Salah H. R. Ali, Sarwat Z. A. Zahwi, Mai S. Mabrok, Badr S. N. Azzam
Abstract Due to the accidents of the motor vehicles and the osteoporosis, many people enface a lot of troubles and sometimes necessities for replacement of their knee joints. Practically, mechanical properties and surface characteristics of Total Knee Replacement (TKR) are very important parameters for improving the performance response in human. The meniscus is a small element and an essential part of the TKR. The knee meniscus has special feature allows the easy dynamic loading and motion of leg and foot with high accuracy and good balance. Therefore design and analysis of the geometrical shape for the meniscus replacement is worthy to be studied. In this paper, a proposed design using a computer software package has been presented. 3D simulation analyses of a variety of meniscus thickness and different materials under different loads are investigated. The compression stresses and surfaces deformations are determined numerically through the Finite Element Analysis (FEA) technique.
2016-04-05
Journal Article
2016-01-0523
Lauren Abro
Abstract North American customer perception of Quality has changed over time and has shifted from Quality, Dependability, and Reliability (QDR) to Interior Sensory Quality (ISQ). ISQ is defined as the harmony of characteristics that combine to make an emotional connection to the vehicles’ interior. Vehicles need to correctly appeal to customers emotional side through providing class-leading ISQ. Hypotheses for specific interior areas were developed in order to identify key ISQ strengths, weaknesses, and preferences. These hypotheses were then tested at customer clinics held across the country. The key goals were to understand customer judgment of ISQ execution, understand customer ISQ priority, and understand customer preference of detailed component areas.
2016-04-05
Journal Article
2016-01-1456
Rini Sherony, Renran Tian, Stanley Chien, Li Fu, Yaobin Chen, Hiroyuki Takahashi
Abstract Many vehicles are currently equipped with active safety systems that can detect vulnerable road users like pedestrians and bicyclists, to mitigate associated conflicts with vehicles. With the advancements in technologies and algorithms, detailed motions of these targets, especially the limb motions, are being considered for improving the efficiency and reliability of object detection. Thus, it becomes important to understand these limb motions to support the design and evaluation of many vehicular safety systems. However in current literature, there is no agreement being reached on whether or not and how often these limbs move, especially at the most critical moments for potential crashes. In this study, a total of 832 pedestrian walking or cyclist biking cases were randomly selected from one large-scale naturalistic driving database containing 480,000 video segments with a total size of 94TB, and then the 832 video clips were analyzed focusing on their limb motions.
2016-04-05
Technical Paper
2016-01-1451
Mingyang Chen, Xichan Zhu, Zhixiong Ma, Lin Li
Abstract In China there are many mixed driving roads which cause a lot of safety problems between vehicles and pedalcyclists. Research on driver behavior under risk scenarios with pedalcyclist is relatively few. In this paper driver brake parameters under naturalistic driving are studied and pedalcyclists include bicyclist, tricyclist, electric bicyclist and motorcyclist. Brake reaction time and maximum brake jerk are used to evaluate driver brake reaction speed. Average deceleration is used to evaluate the effect of driver brake operation. Maximum deceleration is used to evaluate driver braking ability. Driver behaviors collected in China are classified and risk scenarios with pedalcyclist are obtained. Driver brake parameters are extracted and statistical characteristics of driver brake parameters are obtained. Influence factors are analyzed with univariate ANOVA and regression analysis.
2016-04-05
Technical Paper
2016-01-1448
Rong Chen, Rini Sherony, Hampton C. Gabler
Abstract The effectiveness of Forward Collision Warning (FCW) or similar crash warning/mitigation systems is highly dependent on driver acceptance. If a FCW system delivers the warning too early, it may distract or annoy the driver and cause them to deactivate the system. In order to design a system activation threshold that more closely matches driver expectations, system designers must understand when drivers would normally apply the brake. One of the most widely used metrics to establish FCW threshold is Time to Collision (TTC). One limitation of TTC is that it assumes constant vehicle velocity. Enhanced Time to Collision (ETTC) is potentially a more accurate metric of perceived collision risk due to its consideration of vehicle acceleration. This paper compares and contrasts the distribution of ETTC and TTC at brake onset in normal car-following situations, and presents probability models of TTC and ETTC values at braking across a range of vehicle speeds.
2016-04-05
Technical Paper
2016-01-1445
Jonathan Dobres, Bryan Reimer, Bruce Mehler, James Foley, Kazutoshi Ebe, Bobbie Seppelt, Linda Angell
Abstract Driving behaviors change over the lifespan, and some of these changes influence how a driver allocates visual attention. The present study examined the allocation of glances during single-task (just driving) and dual-task highway driving (concurrently tuning the radio using either visual-manual or auditory-vocal controls). Results indicate that older drivers maintained significantly longer single glance durations across tasks compared to younger drivers. Compared to just driving, visual-manual radio tuning was associated with longer single glance durations for both age groups. Off-road glances were subcategorized as glances to the instrument cluster and mirrors (“situationally-relevant”), “center stack”, and “other”. During baseline driving, older drivers spent more time glancing to situationally-relevant targets. During both radio tuning task periods, in both age groups, the majority of glances were made to the center stack (the radio display).
2016-04-05
Technical Paper
2016-01-1443
Nazan Aksan, Lauren Sager, Sarah Hacker, Benjamin Lester, Jeffrey Dawson, Matthew Rizzo
Abstract We examined relative effectiveness of heads-up visual displays for lane departure warning (LDW) 39 younger to middle aged drivers (25-50, mean = 35 years) and 37 older drivers (66-87, mean = 77 years). The LDW included yellow “advisory” visuals in the center screen when the driver started drifting toward the adjacent lane. The visuals turned into red “imminent” when the tires overlapped with the lane markers. The LDW was turned off if the driver activated the turn signal. The visuals could be easily segregated from the background scene, making them salient but not disruptive to the driver’s forward field of view. The visuals were placed adjacent to the left and right lane markers in the lower half of the center screen.
2016-04-05
Technical Paper
2016-01-1444
Shayne McConomy, Johnell Brooks, Paul Venhovens, Yubin Xi, Patrick Rosopa, John DesJardins, Kevin Kopera, Kathy Lococo
Abstract The research objective was to measure and understand the preferred seat position of older drivers and younger drivers within their personal vehicles to influence recommended practices and meet the increased safety needs of all drivers. Improper selection of driver’s seat position may impact safety during a crash event and affect one’s capacity to see the roadway and reach the vehicle’s controls, such as steering wheel, accelerator, brake, clutch, and gear selector lever. Because of the stature changes associated with ageing and the fact that stature is normally distributed for both males and females, it was hypothesized that the SAE J4004 linear regression would be improved with the inclusion of gender and age terms that would provide a more accurate model to predict the seat track position of older drivers. Participants included 97 older drivers over the age of 60 and 20 younger drivers between the ages of 30 to 39.
2016-04-05
Technical Paper
2016-01-1441
Jonathan Frank Antin, Justin Owens, James Foley, Kazutoshi Ebe, Brian Wotring
Abstract This study presents a long-term examination of the effects of two types of perceptual-cognitive brain training programs on senior driver behavior and on-road driving performance. Seniors (70+) engaged in either a Toyota-designed in-vehicle training program based on implicit learning principles or a commercially available computer-based training program developed by Posit Science. Another group served as a no-contact control group; total enrollment was 55 participants. Participants completed a series of four experimental sessions: (1) baseline pre-training, (2) immediate post-training, (3) 6-9 months post-training, and (4) 12-16 months post-training. Experimental metrics taken at each session included measures of vehicle control and driver glance behavior on public roads.
2016-04-05
Technical Paper
2016-01-1442
David Miller, Mishel Johns, Hillary Page Ive, Nikhil Gowda, David Sirkin, Srinath Sibi, Brian Mok, Sudipto Aich, Wendy Ju
Abstract Age and experience influence driver ability to cope with transitions between automated and manual driving, especially when drivers are engaged in media use. This study evaluated three age cohorts (young/new drivers, adults, and seniors) on their performance in transitions from automated driving to manual vehicle control in a laboratory driving simulator. Drivers were given three tasks to perform during the automated driving segments: to watch a movie on a tablet, to read a story on a tablet, or to supervise the car's driving. We did not find significant differences in people's driving performance following the different tasks. We also did not find significant differences in driving performance between the people in each age group who successfully completed the study; however, the rejection rate of the senior age group was over 30% because many of the people in this age group had difficulty hearing instructions, understanding tasks, or remembering what to do.
2016-04-05
Journal Article
2016-01-1439
Nazan Aksan, Lauren Sager, Sarah Hacker, Robert Marini, Jeffrey Dawson, Steven Anderson, Matthew Rizzo
Abstract We examined the effectiveness of a heads-up Forward Collision Warning (FCW) system in 39 younger to middle aged drivers (25-50, mean = 35 years) and 37 older drivers (66-87, mean = 77 years). The warnings were implemented in a fixed based, immersive, 180 degree forward field of view simulator. The FCW included a visual advisory component consisting of a red horizontal bar which flashed in the center screen of the simulator that was triggered at time-to-collision (TTC) 4 seconds. The bar roughly overlapped the rear bumper of the lead vehicle, just below the driver’s line-of-sight. A sustained auditory tone (∼80 dB) was activated at TTC=2 to alert the driver to an imminent collision. Hence, the warning system differed from the industry standard in significant ways. 95% Confidence intervals for the safety gains ranged from -.03 to .19 seconds in terms of average correction time across several activations. Older and younger adults did not differ in terms of safety gains.
2016-04-05
Technical Paper
2016-01-1440
Julia Seeanner, Johnell Brooks, Mary Mossey, Casey Jenkins, Paul Venhovens, Constance Truesdail
Abstract While motorcycle safety frequently focuses on topics like helmet use and engineering aspects such as anti-lock braking systems, little research has investigated aging riders’ use of technologies (i.e., phones, navigation systems, etc.) or the characteristics of older riders (defined as above the age of 40) who use them. This study surveyed a convenience sample of typical motorcycle riders in the United States in order to provide an overview of the types of technologies that riders of different age groups use while riding, problems or concerns about those technologies, as well as rider demographics and riding habits. The sample included 97 riders (84 males and 13 females) between the ages of 20 and 71 years (M= 50.9, SD= 10.6) who were divided into three age groups (under 40 years, between 40 and 50 years, 50 years and older).
2016-04-05
Technical Paper
2016-01-1437
Giorgio Previati, Massimiliano Gobbi, Giampiero Mastinu
Abstract The paper is focused on both the subjective and the objective ride comfort evaluation of farm tractors. The experimental measurement of the relevant accelerations occurring at the tractor body, at the cabin and at the seat was performed on a number of different farm tractors. A subjective rating of the ride comfort level was performed by considering five different drivers. The comfort index was computed according with ISO 2631 and other standards. The acceleration of the seated subject was computed by means of a proper mechanical model of a farm tractor and derived at different positions on the subject body. It turned out that the acceleration of the lower torso was particularly relevant for establishing a matching between the subjective perception and the objective measurement and computation. A number of indices have been derived from the measured data which are able to correlate the subjective driver feeling with the measured accelerations.
2016-04-05
Technical Paper
2016-01-1436
K. Han Kim, Sheila Ebert-Hamilton, Matthew Reed
Abstract Automotive seats are commonly described by one-dimensional measurements, including those documented in SAE J2732. However, 1-D measurements provide minimal information on seat shape. The goal of this work was to develop a statistical framework to analyze and model the surface shapes of seats by using techniques similar to those that have been used for modeling human body shapes. The 3-D contour of twelve driver seats of a pickup truck and sedans were scanned and aligned, and 408 landmarks were identified using a semi-automatic process. A template mesh of 18,306 vertices was morphed to match the scan at the landmark positions, and the remaining nodes were automatically adjusted to match the scanned surface. A principal component (PC) analysis was performed on the resulting homologous meshes. Each seat was uniquely represented by a set of PC scores; 10 PC scores explained 95% of the total variance. This new shape description has many applications.
2016-04-05
Technical Paper
2016-01-1433
Gregory Schaupp, Julia Seeanner, Casey Jenkins, Joseph Manganelli, Sarah Hennessy, Constance Truesdail, Lindsay Swift, Paul Venhovens, Johnell Brooks
Abstract The ability to independently transfer into and out of a vehicle is essential for many wheelchair users to achieve driving independence. This paper presents the results of an exploratory study that investigated the transfer strategies of wheelchair users who drive from their driver’s seat and not from their wheelchair. The goal of this study was to identify typical ingress and egress motions as well as “touch points” of wheelchair users transferring into and out of the driver’s seat. While motion databases exist for the ingress and egress of able-bodied drivers, this study provides insight on drivers with physical disabilities. Twenty-five YouTube videos of wheelchair users who transferred into and out of their own sedans were analyzed.
2016-04-05
Technical Paper
2016-01-1434
Salvatore Trapanese, Alessandro Naddeo, Nicola Cappetti
Abstract The evaluation of perceived comfort inside a car during the early stages of the design process is still an open issue. Modern technologies like CAE (Computer Aided Engineering) and DHM (Digital Human Modeling) already offer several tools for a preventive evaluation of ergonomic parameters for car drivers using detailed CAD (Computer Aided Design) models of car interiors and by a MBS (multi-body-system) solver for evaluating movements and interactions. Such evaluations are, nonetheless, not sufficient because the subjectivity of comfort perception is due to factors that are very difficult to evaluate in the early stage of design. Physical prototypes are needed and these are often too expensive to be realized.
2016-04-05
Technical Paper
2016-01-1432
Alexander Siefert
Abstract Predicting the vibration comfort is a difficult challenge in seat design. There is a broad range of requirements as the load cases strongly vary, representing different excitation levels, e.g. cobblestones or California roads. Another demand is the driver expectation, which is different for a pickup and a sports car. There are several approaches for assessing the vibrations of occupants while driving. One approach is the evaluation of comfort by integral quantities like the SEAT value, taking into account a weighting based on the human body sensitivity. Another approach is the dimension of perception developed by BMW, which is similar to psychoacoustics as the frequency range is separated with respect to occurring vibration phenomena. The seat transmissibility is in the focus of all activities. In the frequency range it defines the relation between the input at the seat slides and the output at the interface of human body and trim.
2016-04-05
Technical Paper
2016-01-1487
Zhenhai Gao, Chuzhao Li, Hongyu Hu, Chaoyang Chen, Hui Zhao, Helen Yu
Abstract At the collision moment, a driver’s lower extremity will be in different foot position, which leads to the different posture of the lower extremity with various muscle activations. These will affect the driver’s injury during collision, so it is necessary to investigate further. A simulated collision scene was constructed, and 20 participants (10 male and 10 female) were recruited for the test in a driving simulator. The braking posture and muscle activation of eight major muscles of driver’s lower extremity (both legs) were measured. The muscle activations in different postures were then analyzed. At the collision moment, the right leg was possible to be on the brake (male, 40%; female, 45%), in the air (male, 27.5%; female, 37.5%) or even on the accelerator (male, 25%; female, 12.5%). The left leg was on the floor all along.
2016-04-05
Journal Article
2016-01-1423
Richard Young, Sean Seaman, Li Hsieh
Abstract Many metrics have been used in an attempt to predict the effects of secondary tasks on driving behavior. Such metrics often give rise to seemingly paradoxical results, with one metric suggesting increased demand and another metric suggesting decreased demand for the same task. For example, for some tasks, drivers maintain their lane well yet detect events relatively poorly. For other tasks, drivers maintain their lane relatively poorly yet detect events relatively well. These seeming paradoxes are not time-accuracy trade-offs or experimental artifacts, because for other tasks, drivers do both well. The paradoxes are resolved if driver demand is modeled in two orthogonal dimensions rather than a single “driver workload” dimension. Principal components analysis (PCA) was applied to the published data from four simulator, track, and open road studies of visual-manual secondary task effects on driving.
2016-04-05
Technical Paper
2016-01-1426
Lex Fridman, Joonbum Lee, Bryan Reimer, Bruce Mehler
Abstract The challenge of developing a robust, real-time driver gaze classification system is that it has to handle difficult edge cases that arise in real-world driving conditions: extreme lighting variations, eyeglass reflections, sunglasses and other occlusions. We propose a single-camera end-toend framework for classifying driver gaze into a discrete set of regions. This framework includes data collection, semi-automated annotation, offline classifier training, and an online real-time image processing pipeline that classifies the gaze region of the driver. We evaluate an implementation of each component on various subsets of a large onroad dataset. The key insight of our work is that robust driver gaze classification in real-world conditions is best approached by leveraging the power of supervised learning to generalize over the edge cases present in large annotated on-road datasets.
2016-04-05
Technical Paper
2016-01-1425
Thomas McWilliams, Daniel Brown, Bryan Reimer, Bruce Mehler, Jonathan Dobres
Abstract Advanced driver assistance systems (ADAS) are an increasingly common feature of modern vehicles. The influence of such systems on driver behavior, particularly in regards to the effects of intermittent warning systems, is sparsely studied to date. This paper examines dynamic changes in physiological and operational behavior during lane departure warnings (LDW) in two commercial automotive systems utilizing on-road data. Alerts from the systems, one using auditory and the other haptic LDWs, were monitored during highway driving conditions. LDW events were monitored during periods of single-task driving and dual-task driving. Dual-task periods consisted of the driver interacting with the vehicle’s factory infotainment system or a smartphone to perform secondary visual-manual (e.g., radio tuning, contact dialing, etc.) or auditory-vocal (e.g. destination address entry, contact dialing, etc.) tasks.
2016-04-05
Technical Paper
2016-01-1428
Bruce Mehler, Bryan Reimer, Jonathan Dobres, James Foley, Kazutoshi Ebe
Abstract This paper presents the results of a study of how people interacted with a production voice-command based interface while driving on public roadways. Tasks included phone contact calling, full address destination entry, and point-of-interest (POI) selection. Baseline driving and driving while engaging in multiple-levels of an auditory-vocal cognitive reference task and manual radio tuning were used as comparison points. Measures included self-reported workload, task performance, physiological arousal, glance behavior, and vehicle control for an analysis sample of 48 participants (gender balanced across ages 21-68). Task analysis and glance measures confirm earlier findings that voice-command interfaces do not always allow the driver to keep their hands on the wheel and eyes on the road, as some assume.
2016-04-05
Journal Article
2016-01-1427
Richard Young, Li Hsieh, Sean Seaman
Abstract The Dimensional Model of Driver Demand is extended to include Auditory-Vocal (i.e., pure “voice” tasks), and Mixed-Mode tasks (i.e., a combination of Auditory-Vocal mode with visual-only, or with Visual-Manual modes). The extended model was validated with data from 24 participants using the 2014 Toyota Corolla infotainment system in a video-based surrogate driving venue. Twenty-two driver performance metrics were collected, including total eyes-off-road time (TEORT), mean single glance duration (MSGD), and proportion of long single glances (LGP). Other key metrics included response time (RT) and miss rate to a Tactile Detection Response Task (TDRT). The 22 metrics were simplified using Principal Component Analysis to two dimensions. The major dimension, explaining 60% of total variance, we interpret as the attentional effects of cognitive demand. The minor dimension, explaining 20% of total variance, we interpret as physical demand.
Viewing 31 to 60 of 6144

Filter