Display:

Results

Viewing 1 to 30 of 5926
2015-09-29
Technical Paper
2015-01-2870
Sanket Pawar
Displacement joystick controls are considered as most suitable for manual controls wherever proportional outputs are required with dynamic applications such as variable speed, sensitivity or position are required. These joysticks are being used widely in both open loop as well as in close loop controls. Operator applies force to either joystick itself or to its proportional linear displacement thumb wheel switches. This movement is then detected by either resistive or Hall Effect sensors placed right inside joystick which is then converted into electrical signal. These joysticks along with proportional linear displacement thumb wheel switches find wide range of applications in off-road vehicles such construction and forestry vehicles, harvester machines etc. for applications like attachment speed controls, boom position control, rotation speed control etc.
2015-09-29
Technical Paper
2015-01-2843
Xu Kuang, Jianqiang Wang, Keqiang Li
Transport vehicles consume a large amount of fuel with low efficiency, which is significantly affected by driver behavior. An assessment system of eco-driving pattern for buses could identify the deficiencies of driver operation as well as assist transportation enterprises in driver management. This paper proposes an assessment method regarding drivers’ economic efficiency, considering driving conditions obtained from the GPS data and an online map database. To this end, assessment indexes are extracted from driving economy theories and ranked according to their effect on fuel consumption, derived from a database of 135 buses using multiple regression. The 12 selected characteristic indexes represent four aspects of driving behavior including speed, acceleration, engine and accessories control. A layered structure of assessment indexes is developed with application of AHP, and the weight of each index is estimated.
2015-09-29
Technical Paper
2015-01-2838
Dharmar Ganesh, Riyaz Mohammed, Hareesh Krishnan, R RAMBABU
In-vehicle displays such as an instrument cluster in a vehicle provide vital information to the user. The information in terms of displays and tell-tales needs to be perceived by the user with minimal glance during driving. Drivers must recognize the condition of the vehicle and the state of its surroundings through primarily visual means. Drivers then process this in the brain, draw on their memory to identify problem situations, decide on a plan of action and execute it in order to avoid an accident. There are visual hindrances seen in real world scenario such as obscuration, reflection and glare on the instrument cluster which prevents the vital information flow from vehicle to the driver. In order to ensure safety while driving, the instrument cluster or driver displays should be placed in an optimized location. This paper deals with how to achieve a visual hindrance free cluster position in a vehicle to protect the important information flow from the vehicle to the driver.
2015-09-29
Technical Paper
2015-01-2834
James Roger Lackore, Kevin Voss
Access method design for entry and egress of medium and heavy duty truck cabs and bodies is a critical aspect of vehicle design. Occupational injuries due to entering or exiting the truck cab, or climbing onto and off of the truck body, can be a significant percentage of a fleet’s lost-time incident rate. Many vocational trucks operate in both off-road and on-road conditions, and the slip resistance of the stepping surface is an importance design aspect. Examples of vocational vehicles that involve off-road operation include dump, refuse, utility, tree-trimming, and concrete trucks. Stepping surfaces in these applications must provide a balance between traction and the ability to shed water, snow, and mud. While there are a few methods and devices for measuring walking surface slip resistance, they are either complicated, or not well suited to measuring aggressive surfaces.
2015-09-29
Technical Paper
2015-01-2767
Sanjay L, Arthanareeswaran Palaniappan, Vijayakumar Chekuri
The emerging trends in commercial vehicle technology have increased the necessity for critical attribute engineering refinements. Drivability is emerging as one of the critical attributes in the automotive sector. The degree of smoothness in a vehicle’s response to the driver’s input is termed as drivability. This attribute has to be rigorously refined in order to achieve a brand specific vehicle character which will ensure a thorough product differentiation. In order to calibrate for a positive drivability feel, a methodology for evaluation of drivability is a prerequisite. The scope of this paper is aimed at detailing the methodology for evaluation of drivability attributes in commercial vehicles. Drivability is highly subjectively perceived attribute, therefore a subjective assessment technique to assess drivability attributes and sub-attributes are explained. Further, to quantify these attributes an objective measurement methodology is necessary.
2015-09-29
Technical Paper
2015-01-2766
Sai Venkatesh Muravaneni, Egalaivan Srinivasan, Jagankumar Mari
Steering wheel being the most used tactile point in a vehicle, its feel and response is an important factor based on which the vehicle quality is judged. Engineering the right feel and response into the system requires knowledge of the objective parameters that relate to the driver perception. Extensive correlation work has been done in the past pertaining to passenger cars, but the driver requirements for commercial vehicles vary significantly. Often it becomes difficult to match the right parameters to the steering feel experienced by the drivers since most of the standard units used to describe them are of zero or first order parameters. Analyzing the second order parameters gave a better method to reason driver related feel. Also, each subjective attribute was fragmented into sub-attributes to identify the reason for such a rating resulting in the identification of the major subjective parameters affecting driver ratings.
2015-09-27
Technical Paper
2015-01-2674
Dragan Aleksendric, Velimir Cirovic, Dusan Smiljanic
Customer perception of brake pedal feel quality, depends on both the customer's subjective judgment of quality and the actual build quality of the brake system. The brake performance stability represents an important aspect of a vehicle performance and its quality of use. This stability is needed especially in brake by wire system and braking system with regenerative braking. In order to provide stable braked pedal feel i.e. consistent the brake performance against the brake pedal travel, the model of the brake performance versus the brake pedal travel needs to be established. In this paper new hybrid neuro-genetic optimization model was developed for dynamic control and optimization of the disc brake performance during a braking cycle versus the brake pedal travel. Based on such model, the brake performance optimization of the passenger car has been provided against the brake pedal travel.
2015-09-27
Technical Paper
2015-01-2696
Shuichi Okada
We had developed Electric Servo Brake System, which can control brake pressure accurately with a DC motor according to brake pedal force. Therefore, the system attains quality brake feeling while reflecting intentions of a driver. By the way, "Build-up" is characteristics that brake effectiveness increases in accordance with the deceleration of the vehicle, which is recognized as brake feeling with a sense of security as not to elongate an expected braking distance at a downhill road due to large-capacity brake pad such as sports car and large vehicles. Then, we have applied the optical characteristic control to Hybrid vehicles with Electric Servo Brake System by means of brake pressure control and regeneration brake. Hereby, we confirmed that the control gives a driver the sense of security and the reduction of pedal load on the further stepping-on of the pedal.
2015-09-15
Technical Paper
2015-01-2474
Christopher W. Lum, Alexander Summers, Brian Carpenter, Angel Rodriguez, Matthew Dunbabin
In many parts of the world, uncontrolled fires in sparsely populated areas are a major concern. These small fires can quickly grow to large and destructive conflagrations in short time spans. The damage caused by these wildfires are often a function of the time elapsed between detection of the fire and deployment of firefighting resources. Fires detected relatively quickly can be more easily contained than fires that have been allowed to grow before taking corrective action. Detecting these fires has traditionally been a job for trained humans on the ground or in the air. In many cases, these manned solutions are simply not able to survey the amount of area necessary to maintain sufficient vigilance and coverage. This paper investigates the use of unmanned aerial systems (UAS) for automated wildfire detection. The proposed system uses low-cost, consumer-grade electronics and sensors combined with various airframes to create a system suitable for automatic detection of wildfires.
2015-09-15
Technical Paper
2015-01-2401
Michael Schmidt, Philipp Nguyen, Mirko Hornung
The projected uptick in world passenger traffic challenges the involved stakeholder to optimise the current aviation system and to find new solutions being able to cope with this trend, since especially large hub airports are congested and operate at their capacity limit. Delays due to late arrival of aircraft or unreliable and inefficient ground operation processes would disrupt the airport operations tremendously. Various concepts improving the current turnaround processes have been presented thus far, whereby radical aircraft design changes have little chances for realization. Based on a clustering of aircraft interfaces, such as doors and services panels, for state-of-the-art passenger aircraft, concepts targeting to reduce the required resources and time are presented. By maintaining the established overall aircraft configuration, the concepts promote higher probability to become commercially available for aircraft manufactures and operators.
2015-09-15
Technical Paper
2015-01-2472
Tom Owen
SUAV is a 4 year investigation with the aim of designing, manufacturing and integrating a 3kg Solid Oxide Fuel Cell (SOFC) into an existing 10kg fixed wing UAV which is already in commercial service. The project comprises of a collaboration of 1o partners, each having a commercial or scientific interest in the design. Each partner provides specialist knowledge at system component level. This paper will present an overview of the problem space and present the methods used to generate the system level requirements. A top level overview will then be given of the resultant system design. This paper will also discuss some of the platform performance benefits and drawbacks of fuel cell operation.
2015-09-15
Technical Paper
2015-01-2536
Rinky Babul Prasad, Vinukonda Siddartha
Recent years have seen a rise in the number of air crashes and on board fatalities. Statistics reveal that human error constitutes upto 56% of these incidents. This can be attributed to the ever growing air traffic and technological advancements in the field of aviation, leading to an increase in the electronic and mechanical controls in the cockpit. Accidents occur when pilots misinterpret gauges, weather conditions, fail to spot mechanical faults or carry out inappropriate actions. Currently, pilots rely on flight manuals (hard copies or an electronic tablet) to respond to an emergency. This is prone to human error or misinterpretation. Also, a considerable amount of time is spent in seeking, reading, interpreting and implementing the corrective action. The proposed head mount assist for the pilot eliminates flight manuals, by virtually guiding the pilot in responding to in-flight necessities.
2015-09-15
Technical Paper
2015-01-2601
Zhejun Yao, Wiltrud Weidner, Robert Weidner, Jens Wulfsberg
Despite the increasing application of automated systems, manual tasks still plays an important role in industrial production. The intelligence and flexibility of human enable quick response and adaptive production for the individual requirements and the changes in market. Moreover, some manufacturing tasks with sensible and high-value components (e.g., in electronic and aircraft production) requires attentive manual handling. Regarding the requirement of increasing productivity as well as ergonomic improvement and the aging of the employees, there is a significant need for technologies which support the staff individually by performing tasks. Human Hybrid Robot, a hybrid system with direct coupling (serial and/or parallel) of human and mechatronic elements, is a new trend in application of robotic technologies for supporting manual tasks. It realizes a synchronous and bidirectional interaction between human and mechatronic and/or mechanic elements in the same workspace.
2015-09-15
Technical Paper
2015-01-2429
Rickard Olsen, Kerstin Johansen, Magnus Engstrom
The diffusion of human and robotics in manufacturing system is one of the next steps in robotics. Since the computer power gets more and more powerful there is more and more possible to achieve safer working environment. This could lead to a possibility to work closer and more direct with a robot. In an EU FW7 funded project called LOCOMACHs (Low Cost Manufacturing and Assembly of Composite and Hybrid Structures) there are studies and tests to support a future higher TRL-leveled HMI-cell (Human Machine Interaction). The main object in this paper is to present how different safety system could help the HMI-cell to work properly in an industrial context, this when the operator enters the robot working area and working with a task that needs two hand. Safety defines as when its risk is judged to be acceptable.
2015-09-15
Technical Paper
2015-01-2537
Sylvain Hourlier
The efficiency of the glass cockpit paradigm has faded away with the evolution of the aeronautical environment (traffic increase & permanence of service). Today's problem lies with "non-defective aircraft" monitored by "perfectly trained crews" still involved in fatal accidents. One explanation is, at the crew level, that we have reached a system complexity that, while acceptable in normal conditions, is hardly compatible with human cognitive abilities in degraded conditions. The current mitigation of such risk still relies on the enforcement through intensive training of an ability to manage extremely rare (off-normal) situations. These are explained by the potential combination of failures of highly complex systems with variable environment & with variable humans.
2015-09-15
Technical Paper
2015-01-2475
Francesco Cappello, Roberto Sabatini, Subramanian Ramasamy
Accurate and robust tracking of objects is of growing interest among the computer vision scientific communities. The ability of a vision system to detect and track the objects, and accurately predict their future trajectory is critical in the context of mission- and safety-critical applications. Remotely Piloted Aircraft Systems (RPAS) are not currently equipped to routinely access all classes of airspace and thus providing the pathway to coexist seamlessly with manned aircraft. Such capabilities can be achieved by incorporating both cooperative and non-cooperative Detect-And-Avoid (DAA) functions, as well an providing enhanced communications, navigation and surveillance (CNS) services. DAA is highly dependent on the performance of CNS systems, specifically for Tracking, Deciding and Avoidance (TDA) tasks.
2015-09-15
Technical Paper
2015-01-2485
Mark Benjamin Geiger, John Michael Ster
Powered hand tools have become essential to a range of industrial operations since their introduction in the late 1800s. However, progress often comes with risk. A range of potential hazards associated with power tool use include noise, a range of ergonomic stresses and physical safety hazards. One of the less publicized risks is hand-arm vibration, previously called Raynaud’s Syndrome of occupational origin, a neurovascular disease associated with intense and prolonged exposures to vibration – most commonly from powered hand tools. Despite initial US reports in the early 1900s, the disease has remained under-recognized in the US. European Union regulations have created an increased awareness of hand-arm vibration disease and demand for low-vibration powered hand tools, while the US has lagged in this regard. (See additional resources)* The wide range of vibration (and noise) created by alternative products performing the same function makes initial product selection critical.
2015-09-15
Technical Paper
2015-01-2440
Robert Moehle, Jason Clauss
From the dawn of commercial air travel until 2001, labor costs loomed as the greatest expense in commercial aviation. Though fuel costs have since taken the top spot, labor costs remain a pressing area of concern in the airline industry. Airlines have long sought to reduce the burden of labor to improve the businesses’ bottom line. One of their most frequent appeals has been to allow a single flight crew member to operate the aircraft. Safety concerns represent the dominant barrier to single-pilot Part 121 operations. The FAA and Congress consistently demonstrate a bias toward conservatism in their regulation of airlines and commercial aircraft. Under-educated on the true failure rates, bureaucrats and the general public fall prey to isolated news stories about pilots becoming ill or falling asleep in the flight deck. Yet, in an alarming spate of recent airline accidents, the presence of multiple crewmembers did nothing to prevent, and actually may have contributed to, the crash.
2015-09-15
Technical Paper
2015-01-2532
Sylvain Hourlier, Sandra Guérard, Jean Luc BAROU, Xavier Servantie
As touch screens are everywhere in the consumer market Thales has launched in depth evaluations on their introduction in the cockpit. One of the challenges is to verify its compatibility with in flight use under turbulence conditions, including light, moderate and severe. In flight accelerometer collections were performed to provide us with a baseline for choosing between possible simulation solutions. Thales recognized early on the need for such a tool as it would enable us to define recommendations for our HMI designs. The objectives were first to validate specific complex touch/gestures using all the potential of touch interactions for novel cockpit Human Machine Interfaces and second to look into the various physical anchoring solutions capable of facilitating touch screens interactions in aeronautical turbulent environments. Given the 6 axis accelerometer profiles that were collected, a number of potential candidate simulation platforms were selected.
2015-07-23
Article
The company is looking at adjacent markets for its large video screens and sees the truck industry as a potential opportunity. The Safety Truck prototype was developed with the aim of improving road safety.
2015-07-13
Article
Mark Brooks of Southwest Research Institute’s Automation and Data Systems Division discusses the latest issues and technologies related to cybersecurity for commercial vehicles.
2015-07-09
WIP Standard
AIR6341
The purpose of this AIR is to compile in one definitive source, commonly accepted calibration, acceptance criteria and procedures for simulation of Supercooled Large Droplet (SLD) conditions within icing wind tunnels. Facilities that meet the criteria for either some or all of the recognized conditions will have known SLD icing simulation capability.
2015-07-08
WIP Standard
ARP6253A
This document presents minimum criteria for the design and installation of LED assemblies in aircraft. The use of “shall” in this specification expresses provisions that are binding. Non-mandatory provisions use the term “should.”
2015-07-08
Standard
J2286_201507
This interface document SAE J2286 revises the requirements for file formats as were originally described in SAE J1924. This document describes Interface 1 (I/F 1) in SAE J2461. This document does not imply the use of a specific hardware interface, but may be used with other hardware interfaces such as SAE J1939, ISO 15765 or ISO 14229. The requirements of SAE J2286 supersede the requirements defined by SAE J1924. SAE J2461 establishes the requirements for Interface 1 (I/F 1), as a replacement of the file-based interface described by SAE J1924, as shown by Figure 1. Interface 1 (I/F) is a bi-directional link between the OEM Shop Floor Program (CSCI 1) and the Vendor Component Program (CSCI 2). Using I/F 1, the OEM Shop Floor Program communicates the desired parameters and programming limits for an assembly job to the Vendor Component Program (VCP). In response, the VCP returns programming results to the OEM Shop Floor Program (CSCI 1).
2015-07-07
Article
The sealing specialist is currently developing two new materials that reportedly will help aircraft manufacturers save weight and production costs while exceeding fire resistance and fireproof requirements for the engine application.
2015-07-01
Article
The system, to be offered on nearly all Ford SUVs globally by 2020, uses real-time video from 1-megapixel wide-angle-lens cameras mounted in the vehicle’s grill and lift gate to help drivers see around corners.
2015-07-01
Article
Its programs include driver brain wave analysis, heart and respiration monitoring, safer autonomous driving, and added driver support.
2015-06-30
Standard
J2944_201506
This Recommended Practice, Operational Definitions of Driving Performance Measures and Statistics, provides functional definitions of and guidance for performance measures and statistics concerned with driving on roadways. As a consequence, measurements and statistics will be calculated and reported in a consistent manner in SAE and ISO standards, journal articles proceedings papers, technical reports, and presentations so that the procedures and results can be more readily compared. Only measures and statistics pertaining to driver/vehicle responses that affect the lateral and longitudinal positioning of a road vehicle are currently provided in this document. Measures and statistics covering other aspects of driving performance may be included in future editions. For eye glance-related measures and statistics, see SAE J2396 (Society of Automotive Engineers, 2007) and ISO 15007-1 (International Standards Organization, 2002).
2015-06-23
WIP Standard
J2889/1
This SAE Standard is derived from SAE J2805 and specifies an engineering method for measuring the sound emitted by M and N category road vehicles at standstill and low speed operating conditions.. The specifications reproduce the level of sound which is generated by the principal vehicle sound sources consistent with stationary and low speed vehicle operating conditions relevant for pedestrian safety. The method is designed to meet the requirements of simplicity as far as they are consistent with reproducibility of results under the operating conditions of the vehicle. The test method requires an acoustic environment which is only obtained in an extensive open space or in special designed indoor facilities replicating the conditions of an extensive open space. Such conditions usually exist during: Measurements of vehicles for regulatory certification. Measurements at the manufacturing stage. Measurements at official testing stations.
2015-06-19
Article
SAE International has published the new book, Ice Accretion and Icing Technology by Robert J. Flemming. The collection consists of 10 SAE International technical papers, chosen by Flemming, a known expert in the field.
Viewing 1 to 30 of 5926

Filter