Display:

Results

Viewing 1 to 30 of 5759
Technical Paper
2014-10-13
Harald Stoffels, Kay Hohenboeken
Abstract The impact of the number of cylinders on two downsized gasoline engines on driving habits in the same passenger-vehicle type was investigated. This was carried out with two similar vehicles, equipped with an in-line three cylinder (i3) and an in-line four cylinder (i4) engine, both having same power, torque and transient-response behaviour. Both engine types were mated to six-speed manual transmissions with same gear-ratios and dual-mass flywheel characteristics. The study was performed by letting a statistically significant number of subjects driving the same route and both vehicles consecutively. The relevant data during driving were recorded simultaneously from either vehicle integrated sensors (CAN), and secondary transducers. We found that the in-line three cylinder was operated at higher engine speeds even though it was operated at similar acceleration- and load levels like the in-line four cylinder power-train, whereat the off-set of the engine speed shows no correlation with the difference in firing frequency between both engine types.
Technical Paper
2014-10-13
Krzysztof Jan Siczek
Abstract Conditions of the bacterial battery have been presented in the article. The models of different design configurations of bacterial battery and its assembly with electric circuit has been elaborated. The obtained values of voltage and currents obtained in such models has been compared with the case of similar circuit using lithium-ion battery and presented in the paper.
Technical Paper
2014-09-30
Quon Kwan, Leverson Boodlal
In this particular field study, the authors have demonstrated that telematics can be used to monitor and improve safe and fuel-efficient driving behavior. Telematics was used to monitor various driver performance parameters: unsafe events (sudden accelerations and hard braking expressed as Yellow and Red events, depending on severity), speeding, engine revolutions per minute (RPM), and fuel economy (miles per gallon). The drivers consisted of two groups: drivers of day cabs and drivers of sleeper cabs. The drivers of both groups were monitored during a baseline period during which no feedback, coaching, or rewards were provided. Then, the drivers of both groups were monitored during an intervention period, during which drivers were provided with feedback, coaching, and rewards. As the result of monitoring unsafe events and of driver intervention, drivers of sleeper cabs showed a 55 percent reduction from the baseline in less severe (Yellow) unsafe events and a 60 percent reduction from the baseline in more severe (Red) unsafe events.
Technical Paper
2014-09-30
Joshua L. Every, M. Kamel Salaani, Frank S. Barickman, Devin H. Elsasser, Dennis A. Guenther, Gary J. Heydinger, Sughosh J. Rao
Dynamic Brake Support (DBS) is a safety system that has been applied to various passenger cars and has been shown to be effective at assisting drivers in avoiding or mitigating rear-end collisions. The objective of a DBS system is to ensure that the brake system is applied quickly and at sufficient pressure when a driver responds to a collision imminent situation. DBS is capable of improving braking response due to a passenger car driver's tendency to utilize multi-stage braking. Interest is developing in using DBS on commercial vehicles. In order to evaluate the possible improvement in safety that could be realized through the use of DBS, driver braking behavior must first be analyzed to confirm that improvement is possible and necessary. To determine if this is the case, a study of the response of truck drivers' braking behavior in collision imminent situations is conducted. This paper presents the method of evaluation and results. Data was drawn from a prior NHTSA simulator study and showed that many drivers exhibited multi-stage braking during four different imminent crash scenarios.
Technical Paper
2014-09-30
Takahiko Yoshino, Hiromichi Nozaki
Abstract In recent years, the conversion of vehicles to electric power has been accelerating, and if a full conversion to electric power is achieved, further advancements in vehicle kinematic control technology are expected. Therefore, it is thought that kinematic performance in the critical cornering range could be further improved by significantly controlling not only the steering angle but also the camber angle of the tires through the use of electromagnetic actuators. This research focused on a method of ground negative camber angle control that is proportional to the steering angle as a technique to improve maneuverability and stability to support the new era of electric vehicles, and the effectiveness thereof was clarified. As a result, it was found that in the critical cornering range as well, camber angle control can control both the yaw moment and lateral acceleration at the turning limit. It was also confirmed that both stability and the steering effect in the critical cornering range are improved by implementing ground negative camber angle control that is proportional to the steering angle using actuators.
Technical Paper
2014-09-30
Sanket Pawar
Abstract Off-road commercial vehicles many times have to work at remote areas in poor working conditions like reduced visibility due to fog, snow, inadequate ambient lighting, dust etc. They may not have any access to emergency facilities in such places. Challenging geographical terrains and adverse weather conditions makes the situation worse. The combination of both can further degrade working conditions. The operator may need to either work or guide his vehicle through tight places or in hilly areas having such conditions. That imposes many challenges to operator in terms of efficiency & safety of both operator & vehicle. In an effort to increase productivity and efficiency operator may miss to look at safety aspects consequently, leading to accidents that can incur heavy losses due to damages to vehicle further delaying the work. It can even lead to a life threatening emergency in some cases. On the other hand, decrease in efficiency results in increased cost of operation due to unnecessary wastage of fuel & delays in getting the work done.
Technical Paper
2014-09-30
Jiaqi Xu, Bradley Thompson, Hwan-Sik Yoon
Abstract Hydraulic excavators perform numerous tasks in the construction and mining industry. Although ground grading is a common task, proper grading cannot easily be achieved. Grading requires an experienced operator to control the boom, arm, and bucket cylinders in a rapid and coordinated manner. Due to this reason, automated grade control is being considered as an effective alternative to conventional human-operated ground grading. In this paper, a path-planning method based on a 2D kinematic model and inverse kinematics is used to determine the desired trajectory of an excavator's boom, arm, and bucket cylinders. Then, the developed path planning method and PI control algorithms for the three cylinders are verified by a simple excavator model developed in Simulink®. The simulation results show that the automated grade control algorithm can grade level or with reduced operation time and error.
Technical Paper
2014-09-30
Vignesh T. Shekar, Sreedhar Reddy
Abstract Bus and coach drivers spend considerably more time in the vehicle, compared to an average personal car user. However, when it comes to comfort levels, the personal cars, even the inexpensive hatchbacks score much higher than a standard bus. This is because the amount of ergonomic design considerations that go into designing a car's DWS (driver workspace) is much more than that of buses. To understand this lacuna, the existing standards and recommendations pertaining directly or remotely to bus driver workspace were studied. It was understood, beyond certain elementary recommendations, there were very few standards available exclusively for buses. This paper ventures to establish a set of guidelines, exclusively for designing bus and coach driver workspace. The various systems in the driver's work space and their relevance to driver's ergonomics are discussed. References are drawn from different case studies and standards to come up with recommendations and guidelines. For those aspects that were not covered in existing literature, physical evaluations were done on select Ashok Leyland buses.
Technical Paper
2014-09-28
Lijun Zhang, Cheng Ruan, Dejian Meng
Abstract Brake pedal feel characteristic is determined by the structural and kinetic parameters of the components of the brake system. As the servo power component of the brake system, vacuum booster has a significant influence on the brake pedal feel. In this paper, a brake system model for brake pedal feel which has a detail vacuum booster mathematical description is established in the software MATLAB/Simulink. The structure gaps, spring preload, friction force and reaction disc characteristics of vacuum booster are considered in this model. A brake pedal feel bench test under different input velocity and vacuum pressure is completed in order to validate the prediction of the model. Finally, based on the assessment index in pedal travel, pedal force and master cylinder pressure three-quadrant diagram, the influence of vacuum booster design parameters such as structure gaps, spring preloads, press plate and press ring areas, diaphragm effective area and reaction disc stiffness on the brake pedal feel characteristics is analyzed and discussed.
Article
2014-09-26
With its Connected eHorizon, Continental presented at IAA Commercial Vehicles in Hannover what it believes is one of the key elements on the way to fully automated vehicles. This “networked electronic horizon” uses navigation data more effectively by deploying crowdsourcing technology to extend the underlying topographic maps with information from the sensors of other road users.
Standard
2014-09-25
Adaptive cruise control (ACC) is an enhancement of conventional cruise control systems that allows the ACC-equipped vehicle to follow a forward vehicle at a pre-selected time gap, up to a driver selected speed, by controlling the engine, power train, and/or service brakes. This SAE Standard focuses on specifying the minimum requirements for ACC system operating characteristics and elements of the user interface. This document applies to original equipment and aftermarket ACC systems for passenger vehicles (including motorcycles). This document does not apply to heavy vehicles (GVWR > 10,000 lbs. or 4,536 kg). Furthermore, this document does not address other variations on ACC, such as "stop & go" ACC, that can bring the equipped vehicle to a stop and reaccelerate. Future revisions of this document should consider enhanced versions of ACC, as well as the integration of ACC with Forward Vehicle Collision Warning Systems (FVCWS).
WIP Standard
2014-09-23
Solid chemical oxygen supplies of interest to aircraft operations are 'chlorate candles' and potassium superoxide (KO(sub)2). Chlorate candles are used in passenger oxygen supply units and other emergency oxygen systems, such as submarines and escape devices. Potassium superoxide is not used in aircraft operations but is used in closed-cycle breathing apparatus. Characteristics and applications of both are discussed, with emphasis on chlorate candles.
Standard
2014-09-18
This SAE Standard sets forth the procedures to be used in measuring sounds levels and determining the time weighted sound level at the operator's station(s) of specified off-road self-propelled work machines. This document applies to the following work machines which have operator stations as specified in SAE J1116: • Crawler Loader • Grader • Log Skidder • Wheel Loader • Crawler Tractor with Dozer • Pipelayer • Dumper • Wheel Tractor with Dozer • Trencher • Tractor Scraper • Backhoe • Sweeper • Roller/Compactor • Hydraulic Excavator • Pad Foot Wheel Compactor with Dozer • Excavator and Wheel Feller-Buncher The instrumentation requirements and specific work cycles for these machines are described. The method used to calculate the time weighted average sound level at the operator station(s) is specified for Leq(5), or optional exchange rates, during continuous operation in a work cycle representing continuous medium to heavy work. The work cycles provide a repeatable reproduceable means to uniformly measure working machines against a “yard stick.
WIP Standard
2014-09-16
J3078 provides test methods and criteria for the evaluation of the operator enclosure environment in Off-Road Self-Propelled Work Machines as defined in J1116 and Agricultural Tractors as defined in ANSI/ASAE S390 and consists of the following parts: Part 1: Terms and definitions Part 2: Air filter element test method Part 3: Pressurization test method Part 4: Heating, ventilating and air conditioning (HVAC) test method and performance Part 5: Windscreen defrosting system test method Part 6: Determination of effect of solar heating J3078/1 consists of the terms and definitions which are used in the other parts of J3708.
WIP Standard
2014-09-16
J3078/6 specifies a test method for simulating solar heating in the laboratory and measuring the radiant heat energy from a natural or simulated source. It is applicable to Off-Road Self-Propelled Work Machines as defined in J1116 and Agricultural Tractors as defined in ANSI/ASAE S390.
WIP Standard
2014-09-16
J3078/3 specifies a test method which will provide for uniform measurement of the maximum pressurization inside an operator enclosure of an earth-moving machine when equipped with a pressurization system.
WIP Standard
2014-09-16
J3078/2 specifies a uniform test method to determine performance levels of operator enclosure panel-type air filters used to filter the air entering an earth-moving machine operator enclosure with a powered fresh air system.
WIP Standard
2014-09-16
J3078/5 specifies a test method to determine the performance of windscreen defrosting systems of earth-moving machinery, fitted with an operator enclosure and a device for defrosting the windscreen. It includes tests that can be conducted with test equipment in commercially available laboratory facilities, as well as in an appropriate outdoor environment.
WIP Standard
2014-09-16
J3078/4 specifies a uniform test method for measuring the contribution to operator environmental temperature provided by a heating, ventilating and air conditioning system operating in a specific ambient environment. The method might not determine the complete climatic environment of the operator since this is also affected by heat load from sources other than those on the machine, for example solar heating. J3708/6 is to be used in conjunction with J3078/4 to determine more accurately the complete heat loading on the operator enclosure. Minimum performance levels for the machine’s operator enclosure heating, ventilating and air conditioning systems are established in J3708/4.
Technical Paper
2014-09-16
Helen Lockett, Sarah Fletcher, Nicolas Luquet
Abstract The installation of essential systems into aircraft wings involves numerous labour-intensive processes. Many human operators are required to perform complex manual tasks over long periods of time in very challenging physical positions due to the limited access and confined space. This level of human activity in poor ergonomic conditions directly impacts on speed and quality of production but also, in the longer term, can cause costly human resource problems from operators' cumulative development of musculoskeletal injuries. These problems are exacerbated in areas of the wing which house multiple systems components because the volume of manual work and number of operators is higher but the available space is reduced. To improve the efficiency of manual work processes which cannot yet be automated we therefore need to consider how we might redesign systems installations in the enclosed wing environment to better enable operator access and reduce production time. This paper describes a recent study that applied design for assembly and maintainability principles and CATIA v5 computer aided design software to identify small design changes for wing systems installation tasks.
Article
2014-09-15
Germany's ZF has entered into a definitive agreement to acquire U.S.-based TRW Automotive Holdings Corp. for $13.5 billion, according to a Sept. 15 TRW press release. ZF has stated that TRW will be operated as a separate business division within ZF.
Article
2014-09-15
Sunex NoGhost 120dB lenses are the first and only lenses designed, optimized, and tested for use in cameras using high dynamic range image sensors, claims the company.
Standard
2014-09-12
This SAE Aerospace Standard (AS) covers the requirements and technical guidance for evaluation of life-cycle cost, productivity, and safety/health factors related to power hand tool selection. It applies approaches to selection of quieter and lower vibration hand-held powered tools, with optimal ergonomic features, for the prevention of Hand-Arm Vibration Syndrome (HAVS), hearing loss and repetitive motion injuries. It suggests use of noise and vibration data provided by vendors to be verified and supplemented by information available through the National Institute for Occupational Safety and Health (NIOSH) and European Union databases. Inclusion/exclusion of data in this document is not intended to imply that all of the products described herein are the only production models that meet this standard. Consumers are requested to consult with manufacturers concerning lists of stock production models that meet this standard. Guidance for selection, procurement and maintenance of power hand tools should be one component of management processes supporting productivity, reliability and product quality while safe guarding the safety and health of employees.
Article
2014-09-09
The marriage of vehicle electronics with mechanical systems is growing ever closer in intimacy, as the organizers of the first Convergence conference 40 years ago expected. Counseling on that relationship—and the crucial conflicts (e.g., simplicity vs. complexity) that must be resolved for a happy and resilient union—will be offered at SAE 2014 Convergence in the form of a seven-session panel program.
Article
2014-09-08
Additional $35 million will fund the company’s unique research center an additional five years, concentrating on a ‘safe transition’ to future of automated and connected vehicle technologies.
Magazine
2014-09-03
Putting lightweighting to the test Material laws and orientation information are coupled in a single finite element analysis to predict the performance of the hybrid composite beam under a dynamic three point bending load. Screens, cameras provide new look in cabs Video inputs are another option showing up on displays that increasingly offer touch control. Big performance in small packages By regulating light-duty engine variable speed fans based on heat rejection demands and ambient temperature, consistent power savings over the entire operating spectrum can be achieved.
Article
2014-08-29
NIRA Dynamics AB has developed friction algorithms for where the rubber meets the road, and is seeking partners to put them into action for improved safety. Existing driver-assistance systems are “steps in the right direction, but with the new algorithms by NIRA cars can take a large step further and get even smarter,” the company says in an Aug. 28 press release.
Article
2014-08-27
With the recent publishing of four technical reports, SAE International now offers a series of recommended practices designed to enhance overall ambulance safety in several areas, including patient compartments and occupant restraint.
WIP Standard
2014-08-26
This SAE Aerospace Information Report (AIR) describes two classes of lubricants which, when properly applied, can be used in oxygen systems and components.
Viewing 1 to 30 of 5759

Filter

  • Article
    490
  • Book
    21
  • Collection
    9
  • Magazine
    135
  • Technical Paper
    4001
  • Standard
    1103