Criteria

Text:
Content:
Display:

Results

Viewing 1 to 30 of 3997
Technical Paper
2014-09-30
Joshua L. Every, M. Kamel Salaani, Frank S. Barickman, Devin H. Elsasser, Dennis A. Guenther, Gary J. Heydinger, Sughosh J. Rao
Dynamic Brake Support (DBS) is a safety system that has been applied to various passenger cars and has been shown to be effective at assisting drivers in avoiding or mitigating rear-end collisions. The objective of a DBS system is to ensure that the brake system is applied quickly and at sufficient pressure when a driver responds to a collision imminent situation. DBS is capable of improving braking response due to a passenger car driver's tendency to utilize multi-stage braking. Interest is developing in using DBS on commercial vehicles. In order to evaluate the possible improvement in safety that could be realized through the use of DBS, driver braking behavior must first be analyzed to confirm that improvement is possible and necessary. To determine if this is the case, a study of the response of truck drivers' braking behavior in collision imminent situations is conducted. This paper presents the method of evaluation and results. Data was drawn from a prior NHTSA simulator study and showed that many drivers exhibited multi-stage braking during four different imminent crash scenarios.
Technical Paper
2014-09-30
Sanket Pawar
Abstract Off-road commercial vehicles many times have to work at remote areas in poor working conditions like reduced visibility due to fog, snow, inadequate ambient lighting, dust etc. They may not have any access to emergency facilities in such places. Challenging geographical terrains and adverse weather conditions makes the situation worse. The combination of both can further degrade working conditions. The operator may need to either work or guide his vehicle through tight places or in hilly areas having such conditions. That imposes many challenges to operator in terms of efficiency & safety of both operator & vehicle. In an effort to increase productivity and efficiency operator may miss to look at safety aspects consequently, leading to accidents that can incur heavy losses due to damages to vehicle further delaying the work. It can even lead to a life threatening emergency in some cases. On the other hand, decrease in efficiency results in increased cost of operation due to unnecessary wastage of fuel & delays in getting the work done.
Technical Paper
2014-09-30
Takahiko Yoshino, Hiromichi Nozaki
Abstract In recent years, the conversion of vehicles to electric power has been accelerating, and if a full conversion to electric power is achieved, further advancements in vehicle kinematic control technology are expected. Therefore, it is thought that kinematic performance in the critical cornering range could be further improved by significantly controlling not only the steering angle but also the camber angle of the tires through the use of electromagnetic actuators. This research focused on a method of ground negative camber angle control that is proportional to the steering angle as a technique to improve maneuverability and stability to support the new era of electric vehicles, and the effectiveness thereof was clarified. As a result, it was found that in the critical cornering range as well, camber angle control can control both the yaw moment and lateral acceleration at the turning limit. It was also confirmed that both stability and the steering effect in the critical cornering range are improved by implementing ground negative camber angle control that is proportional to the steering angle using actuators.
Technical Paper
2014-09-30
Jiaqi Xu, Bradley Thompson, Hwan-Sik Yoon
Abstract Hydraulic excavators perform numerous tasks in the construction and mining industry. Although ground grading is a common task, proper grading cannot easily be achieved. Grading requires an experienced operator to control the boom, arm, and bucket cylinders in a rapid and coordinated manner. Due to this reason, automated grade control is being considered as an effective alternative to conventional human-operated ground grading. In this paper, a path-planning method based on a 2D kinematic model and inverse kinematics is used to determine the desired trajectory of an excavator's boom, arm, and bucket cylinders. Then, the developed path planning method and PI control algorithms for the three cylinders are verified by a simple excavator model developed in Simulink®. The simulation results show that the automated grade control algorithm can grade level or with reduced operation time and error.
Technical Paper
2014-09-30
Vignesh T. Shekar, Sreedhar Reddy
Abstract Bus and coach drivers spend considerably more time in the vehicle, compared to an average personal car user. However, when it comes to comfort levels, the personal cars, even the inexpensive hatchbacks score much higher than a standard bus. This is because the amount of ergonomic design considerations that go into designing a car's DWS (driver workspace) is much more than that of buses. To understand this lacuna, the existing standards and recommendations pertaining directly or remotely to bus driver workspace were studied. It was understood, beyond certain elementary recommendations, there were very few standards available exclusively for buses. This paper ventures to establish a set of guidelines, exclusively for designing bus and coach driver workspace. The various systems in the driver's work space and their relevance to driver's ergonomics are discussed. References are drawn from different case studies and standards to come up with recommendations and guidelines. For those aspects that were not covered in existing literature, physical evaluations were done on select Ashok Leyland buses.
Technical Paper
2014-09-16
Helen Lockett, Sarah Fletcher, Nicolas Luquet
Abstract The installation of essential systems into aircraft wings involves numerous labour-intensive processes. Many human operators are required to perform complex manual tasks over long periods of time in very challenging physical positions due to the limited access and confined space. This level of human activity in poor ergonomic conditions directly impacts on speed and quality of production but also, in the longer term, can cause costly human resource problems from operators' cumulative development of musculoskeletal injuries. These problems are exacerbated in areas of the wing which house multiple systems components because the volume of manual work and number of operators is higher but the available space is reduced. To improve the efficiency of manual work processes which cannot yet be automated we therefore need to consider how we might redesign systems installations in the enclosed wing environment to better enable operator access and reduce production time. This paper describes a recent study that applied design for assembly and maintainability principles and CATIA v5 computer aided design software to identify small design changes for wing systems installation tasks.
Technical Paper
2014-05-09
Kazumoto Morita, Michiaki Sekine
The number of elderly drivers is increasing in Japan and ensuring the safety of elderly drivers is becoming an important issue. The authors previously conducted an analysis of the characteristics of accidents and traffic violations by elderly drivers based on the number of accidents in which they were rear-ended. This method was used in order to exclude the influence of driving frequency. As a result of that analysis, it was found that the likelihood of violations committed by elderly drivers was not particularly higher than in other age groups, while the likelihood of accidents caused by them was higher. The risk of causing an accident was judged to be about two times higher in elderly drivers than in the 35-44 year age group. However, the methodology presupposed that collisions in which a driver is rear-ended are accidents that occur randomly, and that they occur with the same probability in each age group. To verify the results of that study, we attempted a new analytical method that uses the number of stop sign violations, which are considered to occur with the same probability among age groups, as an indicator of driving frequency in place of accidents in which a driver is hit from behind (rear-end collisions).
Technical Paper
2014-05-09
Nikolina Samardzic
Values of the speech intelligibility index (SII) were found to be different for the same speech intelligibility performance measured in an acoustic perception jury test with 35 human subjects and different background noise spectra. Using a novel method for in-vehicle speech intelligibility evaluation, the human subjects were tested using the hearing-in-noise-test (HINT) in a simulated driving environment. A variety of driving and listening conditions were used to obtain 50% speech intelligibility score at the sentence Speech Reception Threshold (sSRT). In previous studies, the band importance function for ‘average speech’ was used for SII calculations since the band importance function for the HINT is unavailable in the SII ANSI S3.5-1997 standard. In this study, the HINT jury test measurements from a variety of background noise spectra and listening configurations of talker and listener are used in an effort to obtain a band importance function for the HINT, to potentially correlate the calculated SII scores with the measured speech intelligibility scores.
Technical Paper
2014-04-01
Thomas Juergen Boehme, Tobias Sehnke, Matthias Schultalbers, Torsten Jeinsch
Abstract In this paper an energy management is proposed which is optimal to certain driving scenarios which can be clustered into freeway, rural and urban situations. This strategy is non-predictive but uses information about the current driving situation provided by modern navigation systems to identify the current road type. Based on this information a set of simplified optimal control problems are solved offline via an indirect shooting algorithm. By relaxation of the problem formulation, the solutions of these optimal control problems can be stored into easily implementable maps. The energy management control is then determined from these maps during vehicle operation using the current road type, the vehicle speed and the required wheel-torque. The strategy is implemented in a dSPACE MicroAutoBox and validated on a near mass-production vehicle. The proposed methodology has shown fuel savings on a real world drive cycle. Additionally, robustness aspects have been considered in a MATLAB/Simulink based simulation environment.
Technical Paper
2014-04-01
Rama Subbu, Baskar Anthony Samy, Piyush mani Sharma
Abstract Fierce competition in India's motorcycle industry has led to constant product innovation among manufacturers. This has resulted in the reduction of the lifecycle of the vehicle and has driven the manufacturers to alter the product design philosophies and design tools. One of the performance factors that have continued to challenge motorcycle designers is ride comfort in vertical and longitudinal direction. An essential tool in the motorcycle development process is the ability to quantify and grade the ride comfort behavior. This is performed either through subjective or objective tests. Subjective tests have the disadvantage that numerous factors influence test drivers' opinion while objective measures have the advantage of repeatability. However, objective methods provide only an approximate grading of vehicles and it is difficult to get consistent results that we can rely upon It is proposed that consistent result could be achieved if the motorcycle is run over the pave track in similar repeated cycles.
Technical Paper
2014-04-01
Lee Carr, Dan Barnes, Jennifer Crimeni
Abstract Prior to the widespread implementation of ABS brake technology in light vehicles, driver training often included instruction to “pump the brakes” to avoid locking the wheels. Many driver education programs now recommend maintaining high brake pedal force and relying on ABS. It is sometimes asserted that drivers desiring to stop a vehicle quickly still “pump the brakes”. Investigators sought to understand whether drivers desiring to decelerate quickly pump the brakes, especially in a way that may deplete the vacuum stored in a vehicle's brake booster if so equipped, or whether they apply the brakes in a manner corresponding to their desired deceleration. The National Highway Traffic Safety Administration (NHTSA) conducted a testing program to examine driver braking behavior in crash avoidance maneuvers. The data for those 245 test runs were reanalyzed, assessing patterns of brake pedal force application to determine whether pedal force variation was sufficient in magnitude and duration to reflect driver intent.
Technical Paper
2014-04-01
Maki Kawakoshi, Takanobu Kaneko, Toru Nameki
Abstract Controllability (C) is the parameter that determines the Automotive Safety Integrity Level (ASIL) of each hazardous event based on an international standard of electrical and/or electronic systems within road vehicles (ISO 26262). C is classified qualitatively in ISO 26262. However, no specific method for classifying C is described. It is useful for C classification to define a specific classification based on objective data. This study assumed that C was classified using the percentage of drivers who could reduce Severity (S) in one or more classes compared with the S class in which the driver did not react to a hazardous event. An experiment simulated a situation with increased risk of collision with a leading vehicle due to insufficient brake force because of brake-assist failure when the experiment vehicle decelerated from 50 km/h on a straight road. First, the relationship between the S class and the difference of speed at the moment of collision obtained in the experiment was classified according to ISO/DIS 26262 Part 3 Annex B.
Technical Paper
2014-04-01
Raunak Santosh, Vijayakumar Chekuri
Abstract Rapid growth in the Indian economy has led to new market trends for commercial vehicles. Customers now expect high levels of comfort from all tactile points in a truck cabin; the gear lever knob is frequently used and its reactions greatly influence how a driver perceives Gear Shift Quality (GSQ) and thereby vehicle quality. The subjectivity of human perception is difficult to measure objectively; therefore this paper represents an objective methodology to correlate customer feedback of gearshift reactions. For the attribute evaluation of a set of intermediate commercial vehicles; detailed subjective appraisals were conducted by expert level assessors for GSQ sub-attributes, and a consecutive objective measurement was performed to investigate and substantiate these vehicle assessments. Dynamic and Static testing techniques were used to measure GSQ parameters like efforts during gear shift/select, feel of different phases of gear engagement /selection, gate definitions and lever travels; this helped in formulating objective metrics that can be used to create a definition of GSQ in a vehicle segment and an objective methodology to assess the same.
Technical Paper
2014-04-01
Sooncheol Park, Wonwook Jung, Chunwoo Shin, Jaewung Jung
Abstract Customer vehicle usage monitoring is one of the most fundamental elements to consider in the process of developing a durable vehicle. The extant method to research customer vehicle usage takes considerable time and effort because it requires attaching a series of sensors to the vehicle-gyroscope, accelerometer, microphone, and GPS-to gather information through data logs and then to analyze data in a computer where designated analyzing software has been installed. To solve the problem, this paper introduces a new concept of integrated system developed to examine customer vehicle usage that can analyze data by collecting it from a variety of sensors installed on a smartphone.
Technical Paper
2014-04-01
Takahiro Adachi, Takashi Yonekawa, Yoshitaka Fuwamoto, Shoji Ito, Katsuhiko Iwazaki, Sueharu Nagiri
Abstract The driving simulator (DS) developed by Toyota Motor Corporation simulates acceleration using translational (XY direction) and tilting motions. However, the driver of the DS may perceive a feeling of rotation generated by the tilting motion, which is not generated in an actual vehicle. If the driver perceives rotation, a vestibulo-ocular reflex (VOR) is generated that results in an unnecessary correction in the driver's gaze. This generates a conflict between the vestibular and visual sensations of the driver and causes motion sickness. Although such motion sickness can be alleviated by reducing the tilting motion of the DS, this has the effect of increasing the amount of XY motion, which has a limited range. Therefore, it is desirable to limit the reduction in the tilting motion of the DS to the specific timing and amount required to alleviate motion sickness. However, the timing and extent of the VOR has yet to be accurately identified. This paper describes how the eye movement of the driver was used to measure the positional deviation between the gaze of the driver and images caused by unnecessary VOR.
Technical Paper
2014-04-01
Xingyu Liang, Kang Sun, Yuesen Wang, Gequn Shu, Lin Tang, Lei Ling, Xu Wang
Abstract Like outside scenery, the car interior noise and road condition will affect the driver's mental state when driving. In order to explore the influence of external visual and auditory factors on the driver's mood in the driving process based on research of traffic soundscape, this paper has selected four backbone roads of Tianjin city (China) to test and drive a gasoline passenger vehicle at different speeds. Near Acoustic Holographic was used to scan interior acoustic field distribution, while the tracking shot of the driver's location was recorded by a Sony camera. People with different characteristics were invited to watch the video and completed a self-designed survey questionnaire. The external factors affecting the driver's mood were explored by analyzing all these data. After the investigation, we found that the sound field distribution inside the car could be affected directly and significantly by the opening and closing the car window when driving; in the case of keeping the window closed, the acoustic characteristics of the car cabin was relatively stable; and the visual impact factor of the driver's mood is mainly related to the traffic congestion degree and the construction quality of road surface, whereas the road appearance and aesthetics, which people usually concern about have very little influence.
Technical Paper
2014-04-01
James K. Sprague, Peggy Shibata, Jack L. Auflick
Abstract A complete analysis of any vehicular collision needs to consider certain aspects of human factors. However, this is especially true of nighttime collisions, in which a more specialized approach is required. Classical collision investigation (frequently referred to as accident reconstruction) is comprised of kinetic and kinematic considerations including skid analysis, momentum techniques and other methods. While analysis based on these concepts is typically unaffected by low visibility conditions, the opposite is true of the perceptual and cognitive aspects of a “humans-in-the-loop” analysis, which can be enormously impacted by low visibility. Only by applying appropriate human factors techniques can the analyst make a defensible determination of how and why a nighttime collision occurred. Topics of special importance for nighttime analysis include perception-reaction time (PRT), sensation, attention, distraction, and expectation, all of which are strongly influenced by limited levels of lighting.
Technical Paper
2014-04-01
Michael Tschirhart, Kathleen Ku
Abstract The vehicle environment is known to be a demanding context for efficiently displaying information to the driver. Research in typography reveals some factors that influence reading performance measures, but there is limited research on the influence of typographic design elements in a driver-vehicle interface on user performance with a simulated driver task. Participants in these studies completed a set of vehicle infotainment tasks that involved a text-based item search in a custom-designed interface that employed a family of Helvetica Neue fonts, in a static environment and a driving simulator environment. Analysis of the data from the two studies reveals a modest but statistically significant effect of font on certain driving-related task performance measures. In both studies, fonts with intermediate values of character width and line thickness were associated with the best performance on a simulated driving task. The results of this study suggest that using typefaces with intermediate values of certain intrinsic design factors may serve as a simple and effective means of improving vehicle user interfaces.
Technical Paper
2014-04-01
Rudolf Mortimer, Errol Hoffmann, Aaron Kiefer
Abstract Relative velocity detection thresholds of drivers are one factor that determines their ability to avoid rear-end crashes. Laboratory, simulator and driving studies show that drivers could scale relative velocity when it exceeded the threshold of about 0.003 rad/sec. Studies using accident reconstruction have suggested that the threshold may be about ten times larger. This paper discusses this divergence and suggests reasons for it and concludes that the lower value should be used as a true measure of the psychological threshold for detection of relative velocity.
Technical Paper
2014-04-01
John D. Bullough
Abstract Present standards for vehicle forward lighting specify two headlamp beam patterns: a low beam when driving in the presence of other nearby vehicles, and a high beam when there is not a concern for producing glare to other drivers. Adaptive lighting technologies such as curve lighting systems with steerable headlamps may be related to increments in safety according to the Insurance Institute for Highway Safety, but isolating the effects of lighting is difficult. Recent analyses suggest that visibility improvements from adaptive curve lighting systems might reduce nighttime crashes along curves by 2%-3%. More advanced systems such as adaptive high-beam systems that reduce high-beam headlamp intensity toward oncoming drivers are not presently allowed in the U.S. The purpose of the present study is to analyze visual performance benefits and quantify potential safety benefits from adaptive high-beam headlamp systems. Before adaptive high-beam systems could be permitted on U.S. roadways, it is necessary to have data describing their potential for crash reductions.
Technical Paper
2014-04-01
Nicholas P. Skinner, John D. Bullough
Abstract Rear automotive lighting systems employing dynamic features such as sweeping or flashing are not commonly used on vehicles in North America, in part because they are not clearly addressed in vehicle lighting regulations. Nor is there abundant evidence suggesting they have a substantial role to play in driver safety. The results of a human factors investigation of the potential impacts of dynamic rear lighting systems on driver responses are summarized and discussed in the context of safety, visual effectiveness and the present regulatory context.
Technical Paper
2014-04-01
Devin Furse, SeKil Park, Lee Foster, Simon Kim
Abstract An innovative system has been developed to remotely monitor and record customer usage patterns of the Hyundai Genesis HVAC system in real time by smartphone. The data monitored includes dozens of HVAC-related parameters, including driver and passenger set temperature, blower setting, mode and intake position, internal software parameters, etc. This information and understanding of real-world usage of American customers enables design and test engineers to better satisfy customer demands for automatic temperature control performance. This study identifies areas in need of improvement Preliminary findings of this study suggest that auto mode usage is highest in mild temperatures and lowest in hot soaking conditions. In hot soak conditions (above 35C cabin temperature), the majority of American customers manually control the temperature and blower speed.
Technical Paper
2014-04-01
Mitsuru Enomoto, Michiko Kakinuma, Nobuhito Kato, Haruo Ishikawa, Yuichiro Hirose
Abstract Design work for truck suspension systems requires multi-objective optimization using a large number of parameters that cannot be solved in a simple way. This paper proposes a process-based systematization concept for ride comfort design using a set-based design method. A truck was modeled with a minimum of 13 degrees of freedom, and suspension performance under various vehicle speeds, road surface conditions, and load amounts was calculated. The range of design parameters for the suspension, the range of performance requirements, and the optimal values within these ranges were defined based on the knowledge and know-how of experienced design engineers. The final design of the suspension was installed in a prototype truck and evaluated. The performance of the truck satisfied all the objectives and the effectiveness of the set-based design approach was confirmed.
Technical Paper
2014-04-01
Mark William Arndt
Abstract The current certification requirements under CFR 49, Part 567 state that GVWR of a motor vehicle shall not be less than the sum of the unloaded vehicle weight, rated cargo weight and 150 pounds times the number of designated seating positions. Actual occupant weight distributions versus certified weight per occupant seat causes a potential conflict between a vehicle's in-use weights versus its certified GVWR. Population weight distributions were developed based upon The Center for Disease Control's (CDC) publication of 2007 - 2010 anthropometric reference data and publically available weights of a special population from high school football teams. For five buses from small (18-seat) to large (55-seat), key parameters were measured. The weight distributions and bus parametric data were combined in a probabilistic analysis to explore the probability that passengers and rated cargo would result in weight distributions that exceeded tire load capability, Gross Axle Weight Rating (GAWR), or Gross vehicle Weight Rating (GVWR).
Technical Paper
2014-04-01
Jan-Mou Li, David Smith
Abstract Driver is a key component in vehicle simulation. An ideal driver model simulates driving patterns a human driver may perform to negotiate road profiles. There are simulation packages having the capability to simulate driver behavior. However, it is rarely documented how they work with road profiles. This paper proposes a new truck driver model for vehicle simulation to imitate actual driving behavior in negotiating road grade and curvature. The proposed model is developed based upon Gipps' car-following model. Road grade and curvature were not considered in the original Gipps' model although it is based directly on driver behavior and expectancy for vehicles in a stream of traffic. New parameters are introduced to capture drivers' choice of desired speeds that they intend to use in order to negotiating road grade and curvature simultaneously. With the new parameters, the proposed model can emulate behaviors like uphill preparation for different truck drivers. Speed variation while cruising can be explained by the empirical model and therefore facilitating a better estimation of performance in vehicle simulation.
Technical Paper
2014-04-01
Prasad Kumbhar, Ning Li, Peijun Xu, James Yang
In vehicle driving environment, the driver is subjected to the vibrations in horizontal, vertical, and fore-aft directions. The human body is very much sensitive to whole body vibration and this vibration transmission to the body depends upon various factors including road irregularities, vehicle suspension, vehicle dynamics, tires, seat design and the human body's properties. The seat design plays a vital role in the vibration isolation as it is directly in contact with human body. Vibration isolation properties of a seat depend upon its dynamic parameters which include spring stiffness and damping of seat suspension and cushion. In this paper, an optimization-based method is used to determine the optimal seat dynamic parameters for seat suspension, and cushion based on minimizing occupant's body fatigue (occupant body absorbed power). A 14-degree of freedom (DOF) multibody biodynamic human model in 2D is selected from literature to assess three types of seat arrangements. The human model has total mass of 71.32 kg with 5 body segments.
Technical Paper
2014-04-01
Eric Frank, Peter Jacobsen
Abstract As the demand for Sound Quality improvements in vehicles continues to grow, robust analysis methods must be established to clearly represent end-user perception. For vehicle sounds which are tonal by nature, such as transmission or axle whine, the common practice of many vehicle manufacturers and suppliers is to subjectively rate the performance of a given part for acceptance on a scale of one to ten. The polar opposite of this is to measure data and use the peak of the fundamental or harmonic orders as an objective assessment. Both of these quantifications are problematic in that the former is purely subjective and the latter does not account for the presence of masking noise which has a profound impact on a driver's assessment of such noises. This paper presents the methodology and results of a study in which tonal noises in the presence of various level of masking noise were presented to a group of jurors in a controlled environment. Their subjective ratings were collected and correlated to noise and vibration metrics.
Technical Paper
2014-04-01
Hongjie Ma, Hui Xie, Shuangxi Chen, Ying Yan, DengGao Huang
Abstract Approximately 50% energy is consumed during the acceleration of a city bus. Fuel consumption during acceleration is significantly affected by driving behavior. In this study, 13 characteristic parameters were selected to describe driving style based on analysis of how driving influences fuel consumption during acceleration. The 100,000 km real-world vehicle running data of six drivers on three city buses in a particular bus line in Tianjin, China were sampled using a vehicle-on-line data logger. Based on the selected characteristic parameters and collected driving data, an evaluation model of the fuel consumption level of a driver was established by adopting the method of decision tree C4.5. For two-level classification, the model has over 85% prediction accuracy. The model also has the advantages of having a few training samples and strong generalization. As an example of the model application, the fuel-saving potential of a driver under optimal operations was analyzed. Thus, the model can be used to train and evaluate drivers employed by bus companies.
Technical Paper
2014-04-01
Chinmoy Pal, Tomosaburo Okabe, Kulothungan Vimalathithan, Jeyabharath Manoharan, Muthukumar Muthanandam, Satheesh Narayanan
Abstract A logistic regression analysis of accident cases in the NASS-PCDS (National Automotive Sampling System-Pedestrian Crash Data Study) database clearly shows that pedestrian pelvis injuries tend to be complex and depend on various factors such as the impact speed, the ratio of the pedestrian height to that of the bonnet leading edge (BLE) of the striking vehicle, and the gender and age of the pedestrian. Adult female models (50th %ile female AF50: 161 cm and 61 kg; 5th %ile female AF05: 154 cm and 50 kg) were developed by morphing the JAMA 50th %ile male AM50 and substituting the pelvis of the GHBMC AM50 model. The fine-meshed pelvis model thus obtained is capable of predicting pelvis fractures. Simulations conducted with these models indicate that the characteristics of pelvis injury patterns in male and female pedestrians are influenced by the hip/BLE height ratio and to some extent by the pelvis bone shape. A previously developed six-year-old (6YO) child pedestrian model and the newly developed models were used to estimate the head impact time (HIT) for a typical SUV fitted with an active pop-up hood system.
Technical Paper
2014-04-01
William N. Newberry, Stacy Imler, Michael Carhart, Alan Dibb, Karen Balavich, Jeffrey Croteau, Eddie Cooper
Abstract It is well known from field accident studies and crash testing that seatbelts provide considerable benefit to occupants in rollover crashes; however, a small fraction of belted occupants still sustain serious and severe neck injuries. The mechanism of these neck injuries is generated by torso augmentation (diving), where the head becomes constrained while the torso continues to move toward the constrained head causing injurious compressive neck loading. This type of neck loading can occur in belted occupants when the head is in contact with, or in close proximity to, the roof interior when the inverted vehicle impacts the ground. Consequently, understanding the nature and extent of head excursion has long been an objective of researchers studying the behavior of occupants in rollovers. In evaluating rollover occupant protection system performance, various studies have recognized and demonstrated the upward and outward excursion of belted occupants that occurs during the airborne phase of a rollover, as well as excursion from vehicle-to-ground impacts.
Viewing 1 to 30 of 3997