Criteria

Display:

Results

Viewing 1 to 30 of 4063
2015-04-14
Technical Paper
2015-01-1399
Dee Kivett, Victor Gallas Cervo, Aparna Mantha, John Smith
A common result of aging is a decline in peripheral vision. This study provides a preliminary feasibility analysis of an improved method for alerting older drivers of oncoming traffic in blind-spots. Luminescence with an intuitive color-scheme is used as the primary stimulus to permeate a wider field of useful vision than that of existing technology in use today. This method was developed based on concepts of affordance-based design through its adaptation to address specific cognitive and visual acuity challenges of the elderly. The study involved evaluation of alert recognition times among drivers ranging in age from 16 to 82 and was performed in a driving simulator. The result is an improved, intuitive technique for hazard alert that shows significant improvement over existing technology for all age groups, not just the elderly. The results highlight the significance of optimization of alert placement within the useful field of view of elderly drivers.
2015-04-14
Technical Paper
2015-01-1390
Venk Kandadai, Helen Loeb, Guyrandy Jean-Gilles, Catherine McDonald, Andrew Winston, Thomas Seacrist, Flaura Winston
Driving simulators offer a safe alternative to on-road driving for the evaluation of performance. In addition, simulated drives allow for controlled manipulations of traffic situations producing a more consistent and objective assessment experience and outcome measure of crash risk. Our team at the Children’s Hospital of Philadelphia has developed a Simulated Driving Assessment (SDA) to reliably assess driving performance. In addition to work we previously presented on validation of the SDA (14B-0315) and data reduction routines, called DriveLab (14-B-0314), we developed a series of software routines, called “LiveMetrics,” to effectively convert reduced data generated from the DriveLab routines into a graphical report.
2015-04-14
Technical Paper
2015-01-1396
Xiangjie Meng, Xin Tao, Wenjun Wang, Chaofei Zhang, Bo Cheng, Bo Wang, Chengpeng Zhou, Xiaoping Jin, Chao Zeng, John Cavanaugh, Chaoyang Chen
: Low back pain has a higher prevalence among drivers who have long term history of vehicle operations. Vehicle vibration has been considered to be a causative factor associated with low back pain; however, the fundamental mechanism that relates vibration to low back pain is still not clear. It is hypothesized that vibration causes vibration in the muscles at resonant frequencies, leading to increased muscle activity and muscle fatigue during prolonged driving. The aim of this study was to determine the vibration frequency that causes the increase of muscle activity that can lead to muscle fatigue and low back pain. This study investigated the effects of various vibration frequencies on the lumbar and thoracic paraspinal muscle responses among 11 seated volunteers exposed to sinusoidal whole body vibration varying from 4Hz to 30Hz. The accelerations of the seat and the pelvis were recorded during various frequency of vibrations.
2015-04-14
Technical Paper
2015-01-1417
Jeffrey Muttart
An analysis was performed utilizing the results from seven emergency steering studies and four routine lane change studies. Closed course and naturalistic research were included. These studies showed that in a routine lane change, Drivers reached peak lateral acceleration approximately one-second after steering after which lateral acceleration decreases linearly. These results were consistent with those from forward and backing acceleration research published elsewhere. Though, when drivers steered in response to an emergency situation, again, peak lateral acceleration occurred near one-second after steering onset, but average lateral acceleration decreased non-linearly. This non-linear decrease between onset of steering and completion of the maneuver was indicative of counter-steering, or reduced subsequent steering (straightening). The results show that the average lateral acceleration could be modeled with a power function.
2015-04-14
Technical Paper
2015-01-1588
Ibrahim A. Badiru, Michael W. Neal
The goal of this paper is to discuss the steps for an engineering organization to understand and execute customer optimized handling characteristics for routine driving maneuvers. Vehicle handling character plays a critical role in the overall customer driving experience. The automotive industry has standardized a wide array of objective tests and metrics to quantify handling performance. At major OEM’s, a new vehicle program begins with the development of objective targets based on competitive benchmarking, market trends, and past experience. As the program progresses from the concept stage to final production calibrations, development progressively relies more heavily on the subjective judgment of trained experts to establish handling characteristics that may please the customer. This process is time-tested and has been successful in producing a broad range of vehicles from numerous manufacturers that are both safe and meet the expectations of the buying public.
2015-04-14
Technical Paper
2015-01-1469
Yan Wang, Taewung Kim, Yibing Li, Jeff Crandall
The characteristic of neck plays an important role on the kinematics and injury of pedestrian’s neck and head during the impact with vehicle, and the accuracy of the mathematical model affects the analysis results directly. A new mathematical pedestrian model has been developed in University of Virginia (UVA), which combines the advantages of both TNO facet occupant model and the lower extremity with more accuracy of biomechanical characteristics. So in this new pedestrian model, the occupant’s facet neck model developed by TNO is used to evaluate the pedestrian’s kinematics and dynamic response. Since the neck is special developed for occupants, the mechanical characteristics for lateral impact may not as good as that of frontal impact.
2015-04-14
Technical Paper
2015-01-1385
Li Hsieh, Sean Seaman, Richard Young
As advanced electronic technology continues to be integrated into in-vehicle and portable devices, it is important to understand how drivers handle multitasking in order to maintain safe driving while reducing driver distraction. NHTSA has made driver distraction mitigation a major initiative. Currently, several types of Detection Response Tasks (DRTs) for assessing selective attention by detecting and responding to visual or tactile events while driving have been under development by an ISO WG8 DRT group. Among these DRTs, the tactile version (TDRT) is considered as a sensitive surrogate measure for driver attention without visual-manual interference in driving, according to the ISO DRT Draft Standard. In our previous study of cognitive demand, our results showed that the TDRT is the only surrogate DRT task with an acute sensitivity to a cognitive demand increase in an auditory-vocal task (i.e., n-Back verbal working memory task).
2015-04-14
Technical Paper
2015-01-0329
Mark Hepokoski, Allen Curran, Richard Burke, John Rugh, Larry Chaney, Clay Maranville
Abstract Reliable assessment of occupant thermal comfort can be difficult to obtain within automotive environments, especially under transient and asymmetric heating and cooling scenarios. Evaluation of HVAC system performance in terms of comfort commonly requires human subject testing, which may involve multiple repetitions, as well as multiple test subjects. Instrumentation (typically comprised of an array of temperature sensors) is usually only sparsely applied across the human body, significantly reducing the spatial resolution of available test data. Further, since comfort is highly subjective in nature, a single test protocol can yield a wide variation in results which can only be overcome by increasing the number of test replications and subjects. In light of these difficulties, various types of manikins are finding use in automotive testing scenarios.
2015-04-14
Technical Paper
2015-01-0218
C Sreelakshmi, Krishnan Kutty
Abstract Facial expression, a significant way of nonverbal communication, effectively conveys humans' mental state, emotions and intentions. Understanding of emotions through these expressions is an easy task for human beings. However, when it comes to Human Computer Interface (HCI), it is a developing research field that enables humans' to interact with computers through touch, voice, and gestures. Communication through expression in HCI is still a challenge. In addition, there are a variety of fields such as automotive, biometric, surveillance, teleconferencing etc. in which expression recognition system can be applied. In recent years, several different approaches have been proposed fr facial expression recognition, but most of them work only under definite environmental conditions. The proposed framework aims to recognize expressions (by analyzing the facial features extracted) based on the Active Shape Model (ASM).
2015-04-14
Technical Paper
2015-01-0214
Ramya Deshpande, Krishnan Kutty, Shanmugaraj Mani
In modern cars, the Advanced Driver Assistance Systems (ADAS) is cardinal point for safety and regulation. The proposed method detects visual saliency region in a given image. Multiple ADAS systems require number of sensors and multicore processors for fast processing of data in real time, which leads to the increase in cost. In order to balance the cost and safety, the system should process only required information and ignore the rest. Human visual system perceives only important content in a scene while leaving rest of portions unprocessed. The proposed method aims to model this behavior of human visual system in computer vision/image processing applications for eliminating non salient objects from an image. A region is said to be salient, if its appearance is unique. In our method, the saliency in still images is computed by local color contrast difference between the regions in Lab space.
2015-04-14
Technical Paper
2015-01-0979
Chih Feng Lee, Per Öberg
Abstract This paper investigates classifications of road type and driving style based on on-board diagnostic data, which is commonly accessible in modern vehicles. The outcomes of these classifications can be utilized in, for example, supporting the advanced driver assistance systems (ADAS) for enhancing safety and drivability, and online adaptation of engine controller for improving performance and fuel consumption. Furthermore, the classifications offer valuable information for fleet operators to consider when making decision on procurement plans, maintenance schedules and assisting fleet drivers in choosing suitable vehicles. To this end, a velocity-based road type classification method is evaluated on measurements collected from real driving conditions and compared to an open-sourced map.
2015-04-14
Technical Paper
2015-01-1387
Richard Young
This study revises the odds ratios (ORs) of secondary tasks estimated by Virginia Tech Transportation Institute (VTTI), who conducted the 100-Car naturalistic driving study. An independent and objective re-counting and re-analysis of all secondary tasks observed in the 100-Car databases removed misclassification errors and epidemiological biases. The corrected estimates of secondary task crude OR and Population Attributable Risk Percent (PAR%) for crashes and near-crashes vs. a random baseline were substantially lower for almost every secondary task, compared to the VTTI estimates previously reported. These corrected estimates were then adjusted for confounding from demographics, time of day, weekday-weekend, and closeness to junction by employing secondary task counts from a matched baseline from a later VTTI 100-Car analysis. This matched baseline caused most OR estimates to decline even further.
2015-04-14
Technical Paper
2015-01-1384
Richard Young, Jing Zhang
In this age of the Internet of Things, people expect in-vehicle interfaces to work just like a smartphone. Our understanding of the reality of in-vehicle interfaces is quite contrary to that. We review the fundamental principles and metrics for automotive visual-manual driver distraction guidelines. We note the rise in portable device usage in vehicles, and debunk the myth of increased crash risk when conversing on a wireless device. We advocate that portable electronic device makers such as Apple and Google should adopt driver distraction guidelines for application developers (whether for tethered or untethered device use in the vehicle). We present two design implications relevant to safe driving. First, the Rule of Platform Appropriateness: design with basic principles of ergonomics, and with driver’s limited visual, manual and cognitive capacity, in mind. Second, the Rule of Simplicity: thoughtful reduction in the complexity of in-vehicle interfaces.
2015-04-14
Technical Paper
2015-01-0130
Julio Rodriguez, Ken Rogich, Philip Pidgeon, Kim Alexander, John R. Wagner
Abstract Driving skills and driving experience develop differently between a civilian and a military service member. Since 2000, the Department of Defense reports that two-thirds of non-related to war fatalities among active duty service members were due to transportation-related incidents. In addition, vehicle crashes are the leading non-related to war cause of both fatalities and serious injuries among active duty Marines. A pilot safe driving program for Marines was jointly developed by the Richard Petty Driving Experience and Clemson University Automotive Safety Research Institute. The pilot program includes four modules based on leading causes of vehicle crashes, and uses classroom and behind the wheel components to improve and reinforce safe driving skills and knowledge. The assessment results of this pilot program conducted with 192 Marines in September 2011 at Camp LeJeune, NC are presented and discussed.
2015-04-14
Technical Paper
2015-01-0147
Matthew J. Pitts, Elvir Hasedžić, Lee Skrypchuk, Alex Attridge, Mark Williams
Abstract The advent of 3D displays offers Human-Machine Interface (HMI) designers and engineers new opportunities to shape the user's experience of information within the vehicle. However, the application of 3D displays to the in-vehicle environment introduces a number of new parameters that must be carefully considered in order to optimise the user experience. In addition, there is potential for 3D displays to increase driver inattention, either through diverting the driver's attention away from the road or by increasing the time taken to assimilate information. Manufacturers must therefore take great care in establishing the ‘do’s and ‘don’t's of 3D interface design for the automotive context, providing a sound basis upon which HMI designers can innovate. This paper describes the approach and findings of a three-part investigation into the use of 3D displays in the instrument cluster of a road car, the overall aim of which was to define the boundaries of the 3D HMI design space.
2015-04-14
Journal Article
2015-01-1388
Tatsuya Iwasa, Toshihiro Hashimoto
We have developed a bench test method to assess the driver distraction caused by workloads of using infotainment systems. In a previous study, we found that the method can assess not only visual-manual tasks but also auditory-vocal tasks. The workloads are evaluated from performances of both pedal tracking (PT) and detection response task (DRT) during while performing secondary tasks. We can conduct the method with simple apparatuses such as a gaming pedal and a PC. The aim of this study is to verify the reproducibility of the PT-DRT. Experiments were conducted at three different regions and different experimenters in the US in the same procedure. We used two kinds of visual-manual tasks and two kinds of auditory-vocal tasks as secondary tasks and set two different levels of workload for each of all the kinds of tasks.
2015-04-14
Journal Article
2015-01-1478
Michelle Heller, Sarah Sharpe, William Newberry, Alan Dibb, John Zolock, Jeffrey Croteau, Michael Carhart, Jason Kerrigan, Mark Clauser
Occupant kinematics during rollover motor vehicle collisions have been investigated over the past thirty years utilizing Anthropomorphic Test Devices (ATDs) in various test methodologies such as dolly rollover tests, CRIS testing, spin-fixture testing, and ramp-induced rollovers. Recent testing has utilized steer-induced rollovers to gain a deeper understand into vehicle kinematics, including the vehicle’s pre-trip motion (Asay et al., 2009; Asay et al., 2010). The current test series utilized ATDs in steer-induced rollovers to investigate occupant kinematics throughout the entire rollover sequence, from pre-trip vehicle motion to the final rest position. Two test vehicles (a sedan and a pickup truck) were fully instrumented, and each contained two restrained 50th percentile male ATDs in the front outboard seating positions. The pickup truck was equipped with rollover-activated side-curtain airbags that deployed prior to the first ground contact.
2015-04-14
Technical Paper
2015-01-0257
Jianbo Lu, Dimitar Filev, Sanghyun Hong
Abstract This paper proposes an approach to determine driver's driving behavior, style or habit during vehicle handling maneuvers and heavy traction and braking events in real-time. It utilizes intelligence inferred from driver's control inputs, vehicle dynamics states, measured signals, and variables processed inside existing control modules such as those of anti-lock braking, traction control, and electronic stability control systems. The algorithm developed for the proposed approach has been experimentally validated and shows the effectiveness in characterizing driver's handling behavior. Such driver behavior can be used for personalizing vehicle electronic controls, driver assistant and active safety systems, and the other vehicle control features.
2015-04-14
Technical Paper
2015-01-0281
Yang Zheng, Amardeep Sathyanarayana, John Hansen
Abstract In-vehicle signal processing plays an increasingly important role in driving behavior and traffic modeling. Maneuvers, influenced by the driver's choice and traffic/road conditions, are useful in understanding variations in driving performance and to help rebuild the intended route. Since different maneuvers are executed in varied lengths of time, having a fixed time window for analysis could either miss part of maneuver or include consecutive maneuvers in it evaluation. This results in reduced accuracies in maneuver analysis. Therefore, with access to continuous real-time in-vehicles signals, a suitable framing strategy should be adopted for maneuver recognition. In this paper, a non-uniform time window analysis is presented.
2015-04-14
Technical Paper
2015-01-0169
Kazuyuki Nakata, Maya Seki, Ryoichi Nishikawa, Soju Matsumoto, Shinichiro Murakami, Yukio Yoshino
Abstract Instrument clusters that display all information on a TFT-LCD screen, also known as reconfigurable instrument clusters, have become the new trend in automotive interiors. DENSO mass-produced the world's first reconfigurable instrument cluster in 2008. To satisfy customer requirements, large quantities of resources were required. Coupled with an iterative process due to requirement changes, development costs became very high. Reducing development costs was vital in order to expand the reconfigurable instrument cluster product line. A new artist-centric HMI (human machine interface) software development workflow is proposed to reduce the development effort by introducing a data converter and real-time 3D rendering engine in our earlier paper. Our goal is to realize an environment with little programming during development by utilizing a tool chain to automate the majority of the programmer's tasks.
2015-04-14
Technical Paper
2015-01-1394
Alessandro Naddeo, Marco Apicella, Davide Galluzzi
General comfort may be defined as the “level of well-being” perceived by humans in a working environment. The state-of-the-art about evaluation of comfort/discomfort shows the need for an objective method to evaluate the “effect in the internal body” and “perceived effects” in main systems of comfort perception. Some medical studies show that each human joint has its own natural Rest Posture (RP); in this Rest Posture human muscles are completely relaxed or at minimum strain level: when it happens the geometrical configuration corresponds to the natural position of resting Arms/Legs/Neck etc.. From this starting point, authors developed and build, through a wide experimental campaign, the postural-comfort curves for each DOF of human upper limbs joints; the obtained comfort curves are regular and don’t show any kind of discontinuity. A software named Ca-Man has been developed in order to analyze a general posture and calculate a postural comfort index for the entire upper body.
2015-04-14
Technical Paper
2015-01-0418
Vijitashwa Pandey, Megan Conrad
Abstract This paper develops a design paradigm for universal products. Universal design is term used for designing products and systems that are equally accessible to and usable by people with and without disabilities. Two common challenges for research in this area are that (1) There is a continuum of disabilities making it hard to optimize product features, and (2) There is no effective benchmark for evaluating such products. To exacerbate these issues, data regarding customer disabilities and their preferences is hard to come by. We propose a copula-based approach for modeling market coverage of a portfolio of universal products. The multiattribute preference of customers to purchase a product is modeled as Frank's Archimedean Copula. The inputs from various disparate sources can be collected and incorporated into a decision system.
2015-04-14
Journal Article
2015-01-1403
Yi lu Murphey, Dev S. Kochhar, Paul Watta, Xipeng Wang, Tianyu Wang
A host of new technologies, features and functions are continuously being added to vehicles to make the driving task and journey safe, pleasant, relaxing, enjoyable, and even exciting for the driver. An encompassing framework for research has been to understand and push further the need for ‘driver wellness’, the definition for which is still elusive. Suffice to say that ‘wellness’ is reflected in feeling good before, during and after the drive. Objective measures, primarily driver physiology, reflect wellness, but in an as yet not fully understood way. Murphey and Kochhar [1, 2] developed a Transportable Instrument Package (TIP) for in-vehicle on-the road driving data recording, and used machine learning and neural networks to explore the underlying relationships. In this paper we report on research that shows how in-vehicle, on-the-road driver physiological measures can be used to predict the driver’s intention to change lanes, even before such a lane-change is initiated.
2015-04-14
Technical Paper
2015-01-1407
Toshiya Hirose, Dai Kitabayashi, Hidenobu Kubota
1. Purpose of this study The National Highway Traffic Safety Administration (NHTSA) of the United States and the Society of Automotive Engineers (SAE) have proposed roadmaps for the development of autonomous systems. These roadmaps define levels of autonomy in the development of a completely autonomous system of a vehicle. Although current autonomous systems control a vehicle in an ordinary situation, the driver needs to control the vehicle in the case of an emergency when the system reaches its functional limitation. Therefore, the driver must monitor the driving of the autonomous system. These systems are at level 3 in the NHTSA and SAE roadmaps. However, for such systems, if the driver is in a state of low alertness such as when drowsy, then he/she cannot control the vehicle with an appropriate action when the system changes from autonomous driving to manual driving.
2015-04-14
Technical Paper
2015-01-1414
Jitendra Shah, Mohamed Benmimoun
In the framework of large scale project interactIVe co-funded by the European Commission Ford has developed an active safety system for the supported and autonomous avoidance of rear end collisions by intervention of braking and steering systems. This paper focuses on the assessment of threat perceived by drivers in collision avoidance situation. The decision making related to the initiation of the interventions by driver is crucial to understand how much threat is the driver can hold. The study has helped to understand how driver feels a threat arising from environment. It is a step towards autonomous driving where the system interventions have to be initiated as early as possible in order to avoid the collision and avoid unstable vehicle dynamics situations. In parallel the reaction has to be delayed long enough until it is likely that the driver will no longer intervene or respectively he is no longer able to intervene. For this reason an experiment is conducted with 26 subjects.
2015-04-14
Technical Paper
2015-01-1411
Caroline Crump, David Cades, Robert Rauschenberger, Emily Hildebrand, Jeremy Schwark, Brandon Barakat, Douglas Young
Advanced Driver Assistive System technologies are currently available in many passenger vehicles that provide safety benefits and will ultimately lead to autonomous, “self-driving” vehicles. One technology that has the potential for having substantial safety benefits is the forward collision warning and mitigation (FCWM) system, which is designed to (1) warn drivers of imminent front-end collisions, (2) potentiate driver braking responses, and (3) have the ability to apply the vehicle’s brake autonomously to slow, or, in some cases, stop the vehicle prior to a forward collision. Although the proliferation of such technologies can, in many ways, mitigate the necessity of a timely braking response by a driver in an emergency situation, how this system affects a driver’s overall ability to safely, efficiently, and comfortably operate a motor vehicle remains unclear.
2015-04-14
Technical Paper
2015-01-0606
Jiaquan Chen, Min Qin, Lingge Jin, Liu Tao, Yongfeng Jiang, Wei Wang, Yin-Ping Chang
Abstract An automotive vehicle should be designed to satisfy the wants of customers. The key is how to convert voices of customers into engineering languages. In other words, transfer the wants of customers into the right technical characteristics of a vehicle. A questionnaire of customer wants for a CUV (Crossover Utility Vehicle) is created and processed. Using QFD (Quality Function Deployment) and modified KANO model, the relative important degree is obtained from the original relative important degree of customer wants surveyed. Since some information gained is uncertain and the questionnaire sample is limited, a gray correlation analysis method is introduced, which calculates the competitive important degree of customer wants, then the final important degree of customer wants is gained by integrating the relative important degree and the competitive important degree.
2015-04-14
Technical Paper
2015-01-1120
Siddhartha Singh, Sudha Ramaswamy
Abstract 1 The modern engine is capable of producing high torque and horsepower. Now the customer wants state of the art comfort and ergonomics.Thus the manufacturers are focusing on reducing the clutch pedal effort and providing a pleasurable driving experience. In heavy traffic conditions where the clutch is used frequently, the pedal effort required to disengage the clutch should be in comfortable range. Often drivers who drive HCV complain about knee pain which is caused due to high pedal effort, this occurs when ergonomics of ABC (accelerator, brake and clutch) pedals is not designed properly. Thus there is a need to reduce the driving fatigue by optimizing the clutch system. Latest technologies like turbo charging and pressure injection have increased the engine power and torque but have also led to increase the clamp load of clutch. Thus the release load required to disengage the clutch has also increased.
2015-04-14
Journal Article
2015-01-1489
Raed E. El-jawahri, Tony R. Laituri, Agnes S. Kim, Stephen W. Rouhana, Para V. Weerappuli
Abstract Transfer or response equations are important as they provide relationships between the responses of different surrogates under matched, or nearly identical loading conditions. In the present study, transfer equations for different body regions were developed via mathematical modeling. Specifically, validated finite element models of the age-dependent Ford human body models (FHBM) and the mid-sized male Hybrid III (HIII50) were used to generate a set of matched cases (i.e., 192 frontal sled impact cases involving different restraints, impact speeds, severities, and FHBM age). For each impact, two restraint systems were evaluated: a standard three-point belt with and without a single-stage inflator airbag. Regression analyses were subsequently performed on the resulting FHBM- and HIII50-based responses. This approach was used to develop transfer equations for seven body regions: the head, neck, chest, pelvis, femur, tibia, and foot.
2015-04-14
Technical Paper
2015-01-0256
Changbo Fu, Paul (Tim) Freeman, John R. Wagner
Abstract Driver modeling is essential to both vehicle design and control unit development. It can improve the understanding of human driving behavior and decrease the cost and risk of vehicle system verification and validation. In this paper, three driver models were implemented to simulate the behavior of drivers subject to a run-off-road recovery event. Target path planning, pursuit behavior, compensate behavior, physical limitations, and neuromuscular modeling were taken into consideration in the feedforward/feedback driver model. A transfer function driver model and a cost function based driver model from a popular vehicle simulation software were also simulated and a comparison of these three models was made. The feedforward/feedback driver model exhibited the best balance of performance with smallest overshoot (0.226m), medium settling time (1.20s) and recovery time (4.30s).
Viewing 1 to 30 of 4063