Display:

Results

Viewing 1 to 30 of 3908
2017-03-28
Technical Paper
2017-01-1462
Haiyan Li, Xin Jin, Hongfei Zhao, Shihai Cui, Binghui Jiang, King H. Yang
Computational human body models, especially detailed finite element models are suitable for investigation of human body kinetic responds and injury mechanisim. A real-world lateral vehicle-tree impact accident was reconstructed by using finite element method according to the accident description in the CIREN database. At first, a baseline vehicle FE model was modified and validated according to the NCAP lateral impact test. The interaction between the car and the tree in the accident was simulated using LS-Dyna software. Patameters that affect the simulation results, such as the initial pre-crash speed, impact direction, and the initial impact location on the vehicle, was analyzed. The parameters were determined by matching the simulated vehicle body deformations and kinematics to the accident reports.
2017-03-28
Technical Paper
2017-01-0650
Xinyu Li, Xinyu Ge, Ying Wang
Abstract The automotive industry is dramatically changing. Many automotive Original Equipment Manufacturers (OEMs) proposed new prototype models or concept vehicles to promote a green vehicle image. Non-traditional players bring many latest technologies in the Information Technology (IT) industry to the automotive industry. Typical vehicle’s characteristics became wider compared to those of vehicles a decade ago, and they include not only a driving range, mileage per gallon and acceleration rating, but also many features adopted in the IT industry, such as usability, connectivity, vehicle software upgrade capability and backward compatibility. Consumers expect the latest technology features in vehicles as they enjoy in using digital applications in laptops and mobile phones. These features create a huge challenge for a design of a new vehicle, especially for a human-machine-interface (HMI) system.
2017-03-28
Technical Paper
2017-01-0432
Bing Zhu, Zhipeng Liu, Jian Zhao, Weiwen Deng
Abstract Adaptive cruise control system with lane change assistance (LCACC) is a novel advanced driver assistance system (ADAS), which enables dual-target tracking, safe lane change, and longitudinal ride comfort. To design the personalized LCACC system, one of the most important prerequisites is to identify the driver’s individualities. This paper presents a real-time driver behavior characteristics identification strategy for LCACC system. Firstly, a driver behavior data acquisition system was established based on the driver-in-the-loop simulator, and the behavior data of different types of drivers were collected under the typical test condition. Then, the driver behavior characteristics factor Ks we proposed, which combined the longitudinal and lateral control behaviors, was used to identify the driver behavior characteristics. And an individual safe inter-vehicle distances field (ISIDF) was established according to the identification results.
2017-03-28
Technical Paper
2017-01-0433
Yang Xing, Chen Lv, Wang Huaji, Hong Wang, Dongpu Cao
Abstract Recently, the development of braking assistance system has largely benefit the safety of both driver and pedestrians. A robust prediction and detection of driver braking intention will enable driving assistance system response to traffic situation correctly and improve the driving experience of intelligent vehicles. In this paper, two types unsupervised clustering methods are used to build a driver braking intention predictor. Unsupervised machine learning algorithms has been widely used in clustering and pattern mining in previous researches. The proposed unsupervised learning algorithms can accurately recognize the braking maneuver based on vehicle data captured with CAN bus. The braking maneuver along with other driving maneuvers such as normal driving will be clustered and the results from different algorithms which are K-means and Gaussian mixture model (GMM) will be compared.
2017-03-28
Technical Paper
2017-01-0155
Yongbing Xu, Gangfeng Tan, Xuexun Guo, Xianyao Ping
Abstract The closed cabin temperature is anticipated to be cooled down when it is a bit hot inside the driving car. The traditional air-condition lowers the cabin temperature by frequently switching the status of the compressor, which increases the engine’s parasitic power and shortens the compressor’s service-life. The semiconductor auxiliary cooling system with the properties of no moving parts, high control precision and quick response has the potential to assist the on-board air-condition in modulating the cabin temperature with relative small ranges. Little temperature differences between the cabin and the outside environment means that the system energy consumption to ensure the occupant comfort is relatively low and the inefficiency could be made up by the renewable energy source.
2017-03-28
Journal Article
2017-01-0178
Mark Hepokoski, Allen Curran, Sam Gullman, David Jacobsson
Abstract Passive sensor (HVAC) manikins have been developed to obtain high-resolution measurements of environmental conditions across a representative human body form. These manikins incorporate numerous sensors that measure air velocity, air temperature, radiant heat flux, and relative humidity. The effect of a vehicle’s climate control system on occupant comfort can be characterized from the data collected by an HVAC manikin. Equivalent homogeneous temperature (EHT) is often used as a first step in a cabin comfort analysis, particularly since it reduces a large data set to a single intuitive number. However, the applicability of the EHT for thermal comfort assessment is limited since it does not account for human homeostasis, i.e., that the human body actively counter-balances heat flow with the environment to maintain a constant core temperature.
2017-03-28
Technical Paper
2017-01-0168
B. Vasanth, Muthukumar Arunachalam, Sathya Narayana, S. Sathish Kumar, Murali govindarajalu
In current scenario, there is an increasing need to have faster product development and achieve the optimum design quickly. In an automobile air conditioning system, the main function of HVAC third row floor duct is to get the sufficient airflow from the rear heating ventilating and air-conditioning (HVAC) system and to provide the sufficient airflow within the leg locations of passenger. Apart from airflow and temperature, fatigue strength of the duct is one of the important factors that need to be considered while designing and optimizing the duct. The challenging task is to package the duct below the carpet within the constrained space and the duct should withstand the load applied by the passenger leg and the luggage. Finite element analysis (FEA) has been used extensively to validate the stress and deformation of the duct under different loading conditions applied over the duct system.
2017-03-28
Technical Paper
2017-01-0184
Miyoko Oiwake, Ozeki Yoshiichi, Sogo Obata, Hideaki Nagano, Itsuhei Kohri
Abstract In order to develop various parts and components for hybrid electric vehicles, understanding the effect of their structure and thermal performance on their fuel consumption and cruising distance is essential. However, this essential information is generally not available to suppliers of vehicle parts and components. In this report, following a previous study of electric vehicles, a simple method is proposed as the first step to estimate the algorithm of the energy transmission and then the cruising performance for hybrid electric vehicles. The proposed method estimates the cruising performance using only the published information given to suppliers, who, in general, are not supplied with more detailed information. Further, an actual case study demonstrating application of the proposed method is also discussed.
2017-03-28
Technical Paper
2017-01-0326
Samuel J. Tomlinson, Martin J D Fisher, Thomas Smith, Kevin Pascal
Abstract When sealing an application with a radial O-ring system design there is a balance that must be struck between O-ring function and the ease of assembly. If design parameters are not properly controlled or considered it is possible to design an O-ring seal that would require assembly insertion forces that exceed acceptable ergonomic practices from a manufacturing standpoint. If designs are released into production with these high insertion forces manufacturing operators will struggle to assemble parts, creating opportunity for potential operator injury due to repetitive strain or CTD. In this study several variables impacting O-ring system insertion forces were tested to quantify the effects. Results were analyzed to identify design controls that could be implemented from an early design phase to optimize both functionality and ease of assembly.
2017-03-28
Technical Paper
2017-01-0409
Divyanshu Joshi, Anindya Deb, Clifford Chou
Abstract It is recognized that there is a dearth of studies that provide a comprehensive understanding of vehicle-occupant system dynamics for various road conditions, sitting occupancies and vehicle velocities. In the current work, an in-house-developed 50 degree-of-freedom (DOF) multi-occupant vehicle model is employed to obtain the vehicle and occupant biodynamic responses for various cases of vehicle velocities and road roughness. The model is solved using MATLAB scripts and library functions. Random road profiles of Classes A, B, C and D are generated based on PSDs (Power Spectral Densities) of spatial and angular frequencies given in the manual ISO 8608. A study is then performed on vehicle and occupant dynamic responses for various combinations of sitting occupancies, velocities and road profiles. The results obtained underscore the need for considering sitting occupancies in addition to velocity and road profile for assessment of ride comfort for a vehicle.
2017-03-28
Technical Paper
2017-01-0407
Fei Huo, Huyao Wu
Abstract Biomechanics and biodynamics are increasingly focused on the automotive industry to provide comfortable driving environment, reduce driver fatigue, and improve passenger safety. Man-centered conception is a growing emphasis on the open design of automobile. During the long-term driving, occupational drivers are easily exposed to the neck pain, so it is important to reduce the muscle force load and its fatigue, which are not usually considered quantitatively during traditional ergonomics design, so standards related are not well developed to guide the vehicle design; On the other hand, the head-neck models are always built based on the statics theory, these are not sufficient to predict the instantaneous variation of the muscle force. In this paper, a head-neck model with multi DOFs is created based on multibody dynamics. Firstly, a driver-vehicle-road model considering driver multi-rigid body model, vehicle subsystems, and different ranks of pavement is built.
2017-03-28
Technical Paper
2017-01-0406
Jindong Ren, Xiaoming Du, Tao Liu, Honghao Liu, Meng Hua, Qun Liu
Abstract This paper presents an integrated method for rapid modeling, simulation and virtual evaluation of the interface pressure between driver human body and seat. For simulation of the body-seat interaction and for calculation of the interface pressure, besides body dimensions and material characteristics an important aspect is the posture and position of the driver body with respect to seat. In addition, to ensure accommodation of the results to the target population usually several individuals are simulated, whose body anthropometries cover the scope of the whole population. The multivariate distribution of the body anthropometry and the sampling techniques are usually adopted to generate the individuals and to predict the detailed body dimensions. In biomechanical modeling of human body and seat, the correct element type, the rational settings of the contacts between different parts, the correct exertion of the loads to the calculation field, etc., are also crucial.
2017-03-28
Journal Article
2017-01-0426
Chen Lv, Hong Wang, Bolin Zhao, Dongpu Cao, Wang Huaji, Junzhi Zhang, Yutong Li, Ye Yuan
Abstract The interactions between automatic controls, physics, and driver is an important step towards highly automated driving. This study investigates the dynamical interactions between human-selected driving modes, vehicle controller and physical plant parameters, to determine how to optimally adapt powertrain control to different human-like driving requirements. A cyber-physical system (CPS) based framework is proposed for co-design optimization of the physical plant parameters and controller variables for an electric powertrain, in view of vehicle’s dynamic performance, ride comfort, and energy efficiency under different driving modes. System structure, performance requirements and constraints, optimization goals and methodology are investigated. Intelligent powertrain control algorithms are synthesized for three driving modes, namely sport, eco, and normal modes, with appropriate protocol selections. The performance exploration methodology is presented.
2017-03-28
Technical Paper
2017-01-0059
Barbaros Serter, Christian Beul, Manuela Lang, Wiebke Schmidt
Abstract Today, highly automated driving is paving the road for full autonomy. Highly automated vehicles can monitor the environment and make decisions more accurately and faster than humans to create safer driving conditions while ultimately achieving full automation to relieve the driver completely from participating in driving. As much as this transition from advanced driving assistance systems to fully automated driving will create frontiers for re-designing the in-vehicle experience for customers, it will continue to pose significant challenges for the industry as it did in the past and does so today. As we transfer more responsibility, functionality and control from human to machine, technologies become more complex, less transparent and making constant safe-guarding a challenge. With automation, potential misuse and insufficient system safety design are important factors that can cause fatal accidents, such as in TESLA autopilot incident.
2017-03-28
Technical Paper
2017-01-0061
Sultan A.M Alkhteeb, Shigeru Oho, Yuki Nagashima, Seisuke Nishimura, Hiroyuki Shimizu
Abstract Lightning strikes on automobiles are usually rare, though they can be fatal to occupants and hazardous to electronic control systems. Vehicles’ metal bodies are normally considered to be an effective shield against lightning. Modern body designs, however, often have wide window openings, and plastic body parts have become popular. Lightning can enter the cabin of vehicles through their radio antennas. In the near future, automobiles may be integrated into the electric power grid, which will cause issues related to the smart grid and the vehicle-to-grid concept. Even today, electric vehicles (EVs) and plug-in hybrid vehicles (PHEVs) are charged at home or in parking lots. Such automobiles are no longer isolated from the power grid and thus are subject to electric surges caused by lightning strikes on the power grid.
2017-03-28
Technical Paper
2017-01-0143
Neelakandan Kandasamy, Steve Whelan
Abstract During cabin warm-up, effective air distribution by vehicle climate control systems plays a vital role. For adequate visibility to the driver, major portion of the air is required to be delivered through the defrost center ducts to clear the windshield. HVAC unit deliver hot air with help of cabin heater and PTC heater. When hot air interacts with cold windshield it causes thermal losses, and windshield act as sink. This process may causes in delay of cabin warming during consecutive cabin warming process. Thus it becomes essential to predict the effect of different windscreen defrost characteristics. In this paper, sensitivity analysis is carried for different windscreen defrosts characteristics like ambient conditions, modes of operation; change in material properties along with occupant thermal comfort is predicted. An integrated 1D/3D CFD approach is proposed to evaluate these conditions.
2017-03-28
Technical Paper
2017-01-0163
Gursaran D. Mathur
The author has developed a model that can be used to predict build-up of cabin carbon dioxide levels for automobiles based on many variables. There are a number of parameters including number of occupants that dictates generation of CO2 within the control volume, cabin leakage (infiltration or exfiltration) characteristics, cabin volume, blower position or airflow rate; vehicle age, etc. Details of the analysis is presented in the paper. Finally, the developed model has been validated with experimental data. The simulated data follows the same trend and matches fairly well with the experimental data.
2017-03-28
Technical Paper
2017-01-0013
Gaurav Gupta, Ujjwal Modi
Abstract Flickering problems in automotive vehicles have been observed from long time. After assessing numerous vehicles it was observed that whenever the hazard lights in a vehicle are activated, it leads to flickering problems in lights/small electrical components. This paper is to provide the solution for flickering snags in electrical components in a vehicle. The lights that are analyzed to be flickering/wavering are generally small loads such as LEDs in the bus roof area, small parking lamps, LEDs used in instrument clusters, cabin lamps, etc. The flickering in lights can turn out to be very unappealing at certain times. This absurd behavior can lead to extreme discomfort to the passengers and can also be a source of major distraction to the driver. This study presents the design & development for a vehicle platform & implementation that assesses the problem. Because of abrupt behavior of flasher circuits, voltage surges are observed, leading to flickering problems.
2017-03-28
Technical Paper
2017-01-1562
Junyu Zhou, Chao Liu, Jan Kubenz, Günther Prokop
Abstract This paper describes a new hybrid algorithm for multibody dynamics in vehicle system dynamics which combines the advantages of both embedding technique algorithm and augmented formulation algorithm. An approach to vehicle dynamics modeling based on the hybrid algorithm is presented. Embedding technique algorithm has relatively small number of equations of motion. With help of this technique, an enhanced parametric vehicle dynamics model can be built, representing characteristic curves of suspension comprised in kinematic and compliance. Small number of equations enables the vehicle dynamics model to be simulated very efficiently. In comparison to embedding technique algorithm, the main benefit of augmented formulation algorithm is relatively simple for computer programming. With help of augmented formulation algorithm, the structure of the vehicle dynamic model can be easily extended.
2017-03-28
Journal Article
2017-01-1564
Minh-Tri Nguyen, Jürgen Pitz, Werner Krantz, Jens Neubeck, Jochen Wiedemann
Abstract In addition to the analysis of human driving behavior or the development of new advanced driver assistance systems, the high simulation quality of today’s driving simulators enables investigations of selected topics pertaining to driving dynamics. With high reproducibility and fast generation of vehicle variants the subjective evaluation process leads to a better system understanding in the early development stages. The transfer of the original on-road test run to the virtual reality of the driving simulator includes the full flexibility of the vehicle model, the maneuver and the test track, which allows new possibilities of investigation. With the opportunity of a realistic whole-vehicle simulation provided by the Stuttgart Driving Simulator new analysis of the human’s thresholds of perception are carried out.
2017-03-28
Journal Article
2017-01-1649
Jeffrey Yeung, Omar Makke, Perry MacNeille, Oleg Gusikhin
Abstract SmartDeviceLink (SDL) is open-source software that connects the vehicle’s infotainment system to mobile applications. SDL includes an open-source software development kit (SDK) that enables a smart-device to connect to the vehicle’s human-machine interface (HMI), read vehicle data, and control vehicle sub-systems such as the audio and climate systems. It is extensible, so other convenience subsystems or brought-in aftermarket modules can be added. Consequently, it provides a platform for cyber-physical systems that can integrate wearables, consumer sensors and cloud data into an intelligent vehicle control system. As an Open Innovation Platform, new features can be rapidly developed and deployed to the market, bypassing the longer vehicle development cycles. This facilitates a channel for rapid prototyping and innovation that is not constrained by the traditional process of automotive parts development, but is rather on the timeline of software development.
2017-03-28
Technical Paper
2017-01-1647
Se Jin Park, Murali Subramaniyam, Seunghee Hong, Damee Kim, Jaehak Yu
Abstract Driving is a complex activity with the continuously changing environment. Safe driving can be challenged by changes in drivers’ physical, emotional, and mental condition. Population in the developed world is aging, so the number of older drivers is increasing. Older drivers have relatively higher incidences of crashes precipitated by drivers’ medical emergencies when compared to another age group. On the elderly population, automakers are paying more attention to developing cars that can measure and monitor the drivers’ health status to protect them. In recent years, the automotive industry has been integrating health, wellness, and wellbeing technologies into cars with Internet of Things (IoT). A broad range of applications is possible for the IoT-based elderly smart healthcare monitoring systems.
2017-03-28
Technical Paper
2017-01-1694
Victor Silva, Renato Veiga
Abstract Demand for enhanced infotainment systems with features like navigation, real-time traffic, music streaming service, mirroring and others is increasing, forcing automakers to develop solutions that fulfill customer needs. However, many of those systems are too expensive to be fitted to an entry-level vehicle leaving a gap in the market that fails customer’s expectation. This gap is usually filled by a smartphone which may have all the features the customer wants but in many cases it cannot be properly fitted in the vehicle due to lack of specific storage space. This paper describes how the engineering team developed an innovative, flexible and effective solution that holds a smartphone in an ergonomic location.
2017-03-28
Technical Paper
2017-01-0494
Michael Christian Haverkamp, Anja Moos
Abstract Material authenticity is an important factor for appearance and perceived quality of the vehicle interior. The term authenticity implies ambivalence: For the product designer, it means identification and trueness of the origin of the material. The customers, however, can only access information on the nature of the materials via their own perception of surface features. Thus, the intended authenticity of a material always needs to be conveyed by its surface. Specific cases illustrate the context: 1. The customer touches a part of known matter, but various layers prevent from directly touching the natural material: e.g. leather at the steering wheel, applications of wood. 2. Perception of a thin surface layer indicates authentic material, which is not fulfilled by the whole part: e.g. plastic parts plated with metal. 3.
2017-03-28
Journal Article
2017-01-1302
Hyung In Yun, Jae Kyu Lee, Jae Hong Choi, MyoungKwon Je, Junhyuk Kim
Abstract A sliding door is one of the car door systems, which is generally applied to the vans. Compared with swing doors, a sliding door gives comfort to the passengers when they get in or out the car. With an increasing number of the family-scale activities, there followed a huge demand on the vans, which caused growing interests in the convenience technology of the sliding door system. A typical sliding door system has negative effects on the vehicle interior package and the operating effort. Since the door should move backward without touching the car body, the trajectory of the center rail should be a curve. The curve-shaped center rail infiltrates not only the passenger shoulder room, but also the opening flange curve, which results in the interior package loss. Moreover, as the passenger pulls the door outside handle along the normal direction of the door outer skin, the curved rail causes the opening effort loss.
2017-03-28
Journal Article
2017-01-1554
Ajith Jogi, Sujatha Chandramohan
Abstract Over the years, commercial vehicles, especially tractor-semitrailer combinations have become larger and longer. With the increasing demand for their accessibility in remote locations, these vehicles face the problem of off-tracking, which is the ensuing difference in path radii between the front and rear axles of a vehicle as it maneuvers a turn. Apart from steering the rear axle of the semitrailer, one of the feasible ways of mitigating off-tracking is to shift the fifth wheel coupling rearwards. However, this is limited by the distribution of the semitrailer’s load between the two axles of the tractor; any rearward shift of the fifth wheel coupling results in the reduction of the total static load on the tractor’s front axle and hence available traction. This may in turn lead to directional instability of the vehicle. In the present work, a new model of the fifth wheel coupling is proposed which the authors call Split fifth wheel coupling (SFWC).
2017-03-28
Technical Paper
2017-01-1434
Dongran Liu, Marcos Paul Gerardo-Castro, Bruno Costa, Yi Zhang
Abstract Heart rate is one of the most important biological features for health information. Most of the state-of-the-art heart rate monitoring systems rely on contact technologies that require physical contact with the user. In this paper, we discuss a proof-of-concept of a non-contact technology based on a single camera to measure the user’s heart rate in real time. The algorithm estimates the heart rate based on facial color changes. The input is a series of video frames with the automatically detected face of the user. A Gaussian pyramid spatial filter is applied to the inputs to obtain a down-sampled high signal-to-noise ratio images. A temporal Fourier transform is applied to the video to get the signal spectrum. Next, a temporal band-pass filter is applied to the transformed signal in the frequency domain to extract the frequency band of heart beats. We then used the dominant frequency in the Fourier domain to find the heart rate.
2017-03-28
Journal Article
2017-01-1432
Tadasuke Katsuhara, Yoshiki Takahira, Shigeki Hayashi, Yuichi Kitagawa, Tsuyoshi Yasuki
Abstract This study used finite element (FE) simulations to analyze the injury mechanisms of driver spine fracture during frontal crashes in the World Endurance Championship (WEC) series and possible countermeasures are suggested to help reduce spine fracture risk. This FE model incorporated the Total Human Model for Safety (THUMS) scaled to a driver, a model of the detailed racecar cockpit and a model of the seat/restraint systems. A frontal impact deceleration pulse was applied to the cockpit model. In the simulation, the driver chest moved forward under the shoulder belt and the pelvis was restrained by the crotch belt and the leg hump. The simulation predicted spine fracture at T11 and T12. It was found that a combination of axial compression force and bending moment at the spine caused the fractures. The axial compression force and bending moment were generated by the shoulder belt down force as the driver’s chest moved forward.
2017-03-28
Technical Paper
2017-01-1411
Gary A. Davis
Abstract For at least 15 years it has been recognized that pre-crash data captured by event data recorders might help illuminate the actions of drivers prior to crashes. In left-turning crashes where pre-crash data are available from both vehicles it should be possible to estimate features such as the location and speed of the opposing vehicle at the time of turn initiation and the reaction time of the opposing driver. Difficulties arise however from measurement errors in pre-crash data and because the EDR data from the two vehicles are not synchronized so the resulting uncertainties should be accounted for. This paper describes a method for accomplishing this using Markov Chain Monte Carlo computation. First, planar impact methods are used to estimate the speeds at impact of the involved vehicles. Next, the impact speeds and pre-crash EDR data are used to reconstruct the vehicles’ trajectories during approximately 5 seconds preceding the crash.
2017-03-28
Technical Paper
2017-01-1440
Shixing Chen, Ming Dong, Jerry Le, Mike Rao
Abstract Vehicle safety systems may use occupant physiological information, e.g., occupant heights and weights to further enhance occupant safety. Determining occupant physiological information in a vehicle, however, is a challenging problem due to variations in pose, lighting conditions and background complexity. In this paper, a novel occupant height estimation approach is presented. Depth information from a depth camera, e.g., Microsoft Kinect is used. In this 3D approach, first, human body and frontal face views (restricted by the Pitch and Roll values in the pose estimation) based on RGB and depth information are detected. Next, the eye location (2D coordinates) is detected from frontal facial views by Haar-cascade detectors. The eye-location co-ordinates are then transferred into vehicle co-ordinates, and seated occupant eye height is estimated according to similar triangles and fields of view of Kinect.
Viewing 1 to 30 of 3908