Criteria

Display:

Results

Viewing 211 to 240 of 5950
2016-04-05
Technical Paper
2016-01-1112
Byeong Wook Jeon, Sang-Hwan Kim, Donghoon Jeong, Joseph Young-il Chang
Abstract In general, driving performance is developed to meet preference of average customers. But there is no single standardized guideline which can satisfy various driving tastes of all drivers whose gender, cultural background, and age are different. To resolve this issue, automotive companies have introduced drive mode buttons which drivers can manually select from Normal, Eco, and Sport driving modes. Although this multi-mode manual systems is more efficient than single-mode system, it is in a transient state where drivers need to go through troubles of frequently selecting their preferred drive mode in volatile driving situations It is also doubtful whether the three-categorized driving mode can meet complex needs of drivers.. In order to settle these matters, it is necessary to analyze individual driving style automatically and to provide customized driving performance service in real time.
2016-04-05
Technical Paper
2016-01-1147
Xiaofeng Yin, Han Lu, Xiaojuan Zhao, Xiaohua Wu, Yongtong Zhang
Abstract To improve the comprehensive performance of vehicles equipped with stepped automatic transmission (SAT), the optimization of gearshift schedule should take into account various performance such as power performance, fuel economy, etc. In addition, the SATs would become more acceptable if the optimized gearshift schedule could also be individualized to reflect the driver’s expectation on vehicle performance to a reasonable extent. For the purpose of ensuring the comprehensive performance and improving the individual-ability (i.e., the ability to adapt to different driver’s performance expectation) of vehicles equipped with SAT, a linear weighted method has been proposed to construct a performance evaluation function, which applies different weights to represent driver’s expectation on performance by using these weights to multiply the normalized value of each sub-performance index.
2016-04-05
Technical Paper
2016-01-1251
Thomas Bradley, Clinton Knackstedt, Eric jambor
Abstract As the rigor of vehicle pollution regulations increase there is an increasing need to come up with unique and innovative ways of reducing the effective emissions of all vehicles. In this paper, we will describe our development of a carbon capture and sequestration system that can be used in-tandem with existing exhaust treatment used in convention vehicles or be used as a full replacement. This system is based on work done by researchers from NASA who were developing a next generation life support system and has been adapted here for use in a convention vehicle with minimal changes to the existing architecture. A prototype of this system was constructed and data will be presented showing the changes observed in the effective vehicle emissions to the atmosphere. This system has the potential to extract a significant portion of tailpipe emissions and convert them into a form that allows for safe, clean disposal without causing any harm to the environment.
2016-04-05
Technical Paper
2016-01-1248
Brian Magnuson, Michael Ryan Mallory, Brian Fabien, Ajay Gowda
Abstract This study investigates using driver prediction to anticipate energy usage over a 160-meter look-ahead distance for a series, plug-in, hybrid-electric vehicle to improve conventional thermostatic powertrain control. Driver prediction algorithms utilize a hidden Markov model to predict route and a regression tree to predict speed over the route. Anticipated energy consumption is calculated by integrating force vectors over the look-ahead distance using the predicted incline slope and vehicle speed. Thermostatic powertrain control is improved by supplementing energy produced by the series generator with regenerative braking during events where anticipated energy consumption is negative, typically associated with declines or decelerations.
2016-04-05
Journal Article
2016-01-1304
Tadayoshi Fukushima, Hitoshi Takagi, Toshio Enomoto, Hiroyuki Sawada, Tomoyuki Kaneda
Abstract Interior noise caused by exterior air flow, or wind noise, is one of the noise-and-vibration phenomena for which a systematic simulation method has been desired for enabling their prediction. One of the main difficulties in simulating wind noise is that, unlike most other noises from the engine or road input, wind noise has not one but two different types of sources, namely, convective and acoustic ones. Therefore, in order to synthesize the interior sound pressure level (SPL), the body sensitivities (interior SPL/outer source level) for both types of sources have to be considered. In particular, sensitivity to the convective input has not been well understood, and hence it has not been determined. Moreover, the high-frequency nature of wind noise (e.g., the main energy range extends up to 4000 Hz) has limited the effective application of CAE for determining body sensitivities, for example, from the side window glass to the occupants’ ears.
2016-04-05
Technical Paper
2016-01-1412
Takeshi Hamaguchi, Satoshi Inoue, Shigeyuki Kimura, Terumasa Endo
Abstract In driver-focused vehicle development, driver workload is generally evaluated subjectively, with physiological, psychological, and behavioral indexes used to quantify and substantiate the subjective rating. In contrast, a model of driver behavior expresses the driver’s behavioral characteristics which make it possible to estimate how the driver will incorporate information into vehicle operation. Therefore, it is presumed to be capable of estimating the internal state of a driver. Conventionally, a model of driver behavior related to pedal operation has been used for evaluating the driver’s habits and the acceptability of various types of support devices. However, it has not been used for estimating driver workload related to pedal operation. To examine driver workload, this study divided pedal operation magnitude into two components: a learning/judgment component and a correcting component for prediction errors. A method was devised of separating these two components.
2016-04-05
Journal Article
2016-01-1414
Shigeyoshi Hiratsuka, Shinichi Kojima, Nobuyuki Shiraki, Kazunori Higuchi, Toshihiko Tsukada, Keiichi Shimaoka, Kazuya Asaoka, Sho Masuda, Kazuhiko Nakashima
Abstract We investigated a lighting method that supports pedestrian perception by vehicle drivers. This lighting method makes active use of visual characteristics such as the spatio-temporal frequency of contrast sensitivity. Using reasonable parameter values derived from preliminary experiments using a Campbell-Robson chart, we determined a suitable lighting pattern that improves the driver's pedestrian perception. In order to assess the influence of visual characteristics on a reaction-time-dependent task, such as pedestrian perception in nighttime, tests were performed in the target environment, the results of which validated the proposed method.
2016-04-05
Technical Paper
2016-01-0014
Shun Yang, Weiwen Deng, Haizhen Liu, Rui He, Lei Qian, Wenlong Sun, Ji Gao
Abstract Nowadays, the vehicle market puts forward urgent requirement for new kinds of braking booster because the traditional vacuum booster cannot meet the demands of new energy vehicles anymore. However, one problem that all the new plans should face is how to guarantee an ideal pedal feeling. In this paper, a novel mechatronics braking booster is proposed, and servo motor introduced into the booster makes the assist rate can be adjusted under a great degrees of freedom, so the structural parameters and control parameters of the booster should be determined elaborately to get an optimal pedal feeling. The pedal feeling is always represented by the pedal stoke-force curve which is influenced by different parameters.
2016-04-05
Technical Paper
2016-01-0144
Morgan A. Price, Vindhya Venkatraman, Madeleine Gibson, John Lee, Bilge Mutlu
Abstract Increasingly sophisticated vehicle automation can perform steering and speed control, allowing the driver to disengage from driving. However, vehicle automation may not be capable of handling all roadway situations and driver intervention may be required in such situations. The typical approach is to indicate vehicle capability through displays and warnings, but control algorithms can also signal capability. Psychophysical methods can be used to link perceptual experiences to physical stimuli. In this situation, trust is an important perceptual experience related to automation capability that is revealed by the physical stimuli produced by different control algorithms. For instance, precisely centering the vehicle in the lane may indicate a highly capable system, whereas simply keeping the vehicle within lane boundaries may signal diminished capability.
2016-04-05
Technical Paper
2016-01-0114
Chris Schwarz, Timothy Brown, John Lee, John Gaspar, Julie Kang
Abstract Distracted driving remains a serious risk to motorists in the US and worldwide. Over 3,000 people were killed in 2013 in the US because of distracted driving; and over 420,000 people were injured. A system that can accurately detect distracted driving would potentially be able to alert drivers, bringing their attention back to the primary driving task and potentially saving lives. This paper documents an effort to develop an algorithm that can detect visual distraction using vehicle-based sensor signals such as steering wheel inputs and lane position. Additionally, the vehicle-based algorithm is compared with a version that includes driving-based signals in the form of head tracking data. The algorithms were developed using machine learning techniques and combine a Random Forest model for instantaneous detection with a Hidden Markov model for time series predictions.
2016-04-05
Technical Paper
2016-01-1505
William W. Van Arsdell, Paul Weber, Charles Stankewich, Brian Larson, Ryan Hoover, Richard Watson
Abstract This paper investigates the role that load-limiters play with respect to the performance of occupant protection systems, with focus on performance in frontal crashes. Modern occupant protection systems consist of not just the seat belt, but also airbags, interior vehicle surfaces and vehicle structure. Modern seat belts very often incorporate load-limiters as well as pretensioners. Published research has established that load-limiters and pretensioners increase the effectiveness of occupant protection systems. Some have argued that load-limiters with higher deployment thresholds are always better than load-limiters with lower deployment thresholds. Through testing, modeling and analysis, we have investigated this hypothesis, and in this paper we present test and modeling data as well as a discussion to this data and engineering mechanics to explain why this hypothesis is incorrect.
2016-04-05
Technical Paper
2016-01-1512
Jeya Padmanaban, Roger Burnett, Andrew Levitt
Abstract This paper updates the findings of prior research addressing the relationship between seatback strength and likelihood of serious injury/fatality to belted drivers and rear seat occupants in rear-impact crashes. Statistical analyses were performed using 1995-2014 CY police-reported crash data from seventeen states. Seatback strength for over 100 vehicle model groupings (model years 1996-2013) was included in the analysis. Seatback strength is measured in terms of the maximum moment that results in 10 inches of seat displacement. These measurements range from 5,989 in-lbs to 39,918 in-lbs, resulting in a wide range of seatback strengths. Additional analysis was done to see whether Seat Integrated Restraint Systems (SIRS) perform better than conventional belts in reducing driver and rear seat occupant injury in rear impacts. Field data shows the severe injury rate for belted drivers in rear-impact crashes is less than 1%.
2016-04-05
Technical Paper
2016-01-1158
Toshiaki Watanabe, Masaya Ishida
Abstract Wireless charging systems for electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) employing the resonant magnetic coupling method and using induction coils have been intensively studied in recent years. Since this method requires kW class high power to be transmitted using resonant magnetic coupling in the high frequency range, it is necessary to pay attention to the leakage of the magnetic field generated by the coil current, and to its influence on surrounding objects, particularly human bodies. Noting that acceptable values for human body exposure to electromagnetic fields have previously been issued by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) as guidelines, we have developed a method for predicting product compliance with those guidelines at the basic design development stage.
2016-04-05
Technical Paper
2016-01-0164
Jamy Li, Xuan Zhao, Mu-Jung Cho, Wendy Ju, Bertram F. Malle
Abstract Autonomous vehicles represent a new class of transportation that may be qualitatively different from existing cars. Two online experiments assessed lay perceptions of moral norms and responsibility for traffic accidents involving autonomous vehicles. In Experiment 1, 120 US adults read a narrative describing a traffic incident between a pedestrian and a motorist. In different experimental conditions, the pedestrian, the motorist, or both parties were at fault. Participants assigned less responsibility to a self-driving car that was at fault than to a human driver who was at fault. Participants confronted with a self-driving car at fault allocated greater responsibility to the manufacturer and the government than participants who were confronted with a human driver at fault did.
2016-04-05
Technical Paper
2016-01-0396
Prasad S. Mehta, Jennifer Solis Ocampo, Andres Tovar, Prathamesh Chaudhari
Abstract Biologically inspired designs have become evident and proved to be innovative and efficacious throughout the history. This paper introduces a bio-inspired design of protective structures that is lightweight and provides outstanding crashworthiness indicators. In the proposed approach, the protective function of the vehicle structure is matched to the protective capabilities of natural structures such as the fruit peel (e.g., pomelo), abdominal armors (e.g., mantis shrimp), bones (e.g., ribcage and woodpecker skull), as well as other natural protective structures with analogous protective functions include skin and cartilage as well as hooves, antlers, and horns, which are tough, resilient, lightweight, and functionally adapted to withstand repetitive high-energy impact loads. This paper illustrates a methodology to integrate designs inspired by nature, Topology optimization, and conventional modeling tools.
2016-04-05
Technical Paper
2016-01-0254
Gursaran D. Mathur
Field tests were conducted on a late full sized sedan with the HVAC unit operating in both Recirculation and OSA modes to monitor build-up of the CO2 concentration inside the cabin and its influence on occupant’s fatigue and alertness. These tests were conducted during 2015 summer on interstate highways with test durations ranging from 4 to 7 hours. During the above tests, fatigue or tiredness of the occupants (including CO2 levels) was monitored and recorded at 30 min intervals. Based on this investigation it is determined that the measured cabin concentration levels reaches ASHRAE (Standard 62-1999) specified magnitudes (greater than 700 ppm over ambient levels) with three occupants in the vehicle. Further, the occupants did show fatigue when the HVAC unit was operated in recirculation mode in excess of 5 hours. Further details have been presented in the paper.
2016-04-05
Technical Paper
2016-01-1542
Shaosong Li, Jiafei Niu, Ren Sheng, Zhixin Yu, Shunhang Zheng, Yongfa Tu
Abstract With motor and reduction mechanism applied to Electric Power Steering (short for EPS) system of automobile, the frictional loss torque of steering system is increased. The common friction compensation control through the sign function of angular velocity or the saturation function of angular velocity is conducted to reduce the frictional loss torque of steering system. However, when the motor used in steering system generates assist torque based on the common friction compensation control, the longitudinal intercepts of steering torque change obviously at different steering wheel angles. The driver will get different frictional loss torque of steering system at different steering wheel angle. The information of steering torque contains the change of steering reaction torque and the frictional loss torque of steering system, so the change of frictional loss torque can cause the fuzzy of road feeling.
2016-04-05
Journal Article
2016-01-1161
Akira Mori
Abstract In 2007, researchers at the Massachusetts Institute of Technology successfully completed a Wireless Power Transfer (WPT) experiment. Ever since, interest in WPT has been growing. At Toyota, we have been developing the underlying technology of a WPT system. Simultaneously we have been working with regulatory committees to create a standard for WPT. In particular, there are concerns that WPT’s radiated emissions could cause harm to humans and the neighboring electronic equipment. There are many challenges that need to be overcome, but a key concern is understanding WPT’s electromagnetic compatibility (EMI: Electro-Magnetic Interference and EMF: Electro-Magnetic Field). In this paper, we show the technical issues, the evaluation method, and the development status of EMI and EMF on PHVs/EVs when using WPT. For Electromagnetic interference (EMI) performance, we investigated both an open area test site and an electromagnetic anechoic chamber as evaluation environments.
2016-04-05
Technical Paper
2016-01-1121
Fang Liao, Weimin Gao, Yan Gu, Fei Kang, Yinan Li, Cheng Wang
Abstract Noise signals of the driver’s right ear include those of engine, environment, chassis dynamometer, loaded gears and unloaded gears when they are recorded in full vehicle on chassis dynamometer in semi-anechoic room. Gear rattle noise signals of the driver’s right ear caused by unloaded gear pairs can’t be identified or quantified directly. To solve the problems, relative approaches are used to identify and quantify the gear rattle noise signals. Firstly, the rattle noise signals of the driver’s right ear are filtered by human ear characteristic functions and steady noise signals are extracted by regression and smoothing processes. The noise signals are regressed at 200ms interval in the hearing critical frequency bands and smoothed in the flanking frequencies. Then, the noise relative approaches are obtained by subtracting the steady noise signals from the filtered noise signals, which are the transient noise signals of the unloaded gear pairs inducing the rattle noise.
2016-04-05
Technical Paper
2016-01-1555
Jack Ekchian, William Graves, Zackary Anderson, Marco Giovanardi, Olivia Godwin, Janna Kaplan, Joel Ventura, James R. Lackner, Paul DiZio
Abstract It is widely anticipated that autonomous vehicles will offer increased productivity and convenience by freeing occupants from the responsibility of driving. However, studies indicate that the occurrence of motion sickness in autonomous vehicles will be substantially higher than in conventionally driven vehicles. Occupants of autonomous vehicles are more likely to be involved in performing tasks and activities, such as reading, writing and using a computer or tablet, that typically increase the occurrence of motion sickness. The authors present a novel high bandwidth active suspension system, GenShock®, and tailored control algorithms targeted toward mitigating motion sickness in autonomous vehicles. GenShock actuators can actively push and pull the wheels of a vehicle in order to keep the chassis level and reduce heave, pitch, and roll motion.
2016-04-05
Technical Paper
2016-01-1357
Junyi Chen, Bangshui Jiang, Shutao Song, Hongyan Wang, Xuguang Wang
Abstract Driving posture study is essential for the evaluation of the occupant packaging. This paper presents a method of reconstructing driver’s postures in a real vehicle using a 3D laser scanner and Human Builder (HB), the digital human modeling tool under CATIA. The scanning data was at first converted into the format readable by CATIA, and then a personalized HB manikin was generated mainly using stature, sitting height and weight. Its pelvis position and joint angles were manually adjusted so as to match the manikin with the scan envelop. If needed, a fine adjustment of some anthropometric dimensions was also preceded. Finally the personalized manikin was put in the vehicle coordinate system, and joint angels and joint positions were extracted for further analysis.
2016-04-05
Technical Paper
2016-01-1559
Francesco Vinattieri, Tim Wright, Renzo Capitani, Claudio Annicchiarico, Giacomo Danisi
Abstract The adoption of Electrical Power Steering (EPS) systems has greatly opened up the possibilities to control the steering wheel torque, which is a critical parameter in the subjective and objective evaluation of a new vehicle. Therefore, the tuning of the EPS controller is not only becoming increasing complicated, containing dozens of parameters and maps, but it is crucial in defining the basic DNA of the steering feeling characteristics. The largely subjective nature of the steering feeling assessment means that EPS tuning consists primarily of subjective tests on running prototypes. On account of that, this paper presents an alternative test bench for steering feeling simulation and evaluation. It combines a static driving simulator with a physical EPS assisted steering rack. The end goal is to more accurately reproduce the tactile feedback to the driver by including a physical hardware in lieu of complicated and difficult to obtain software models.
2016-04-05
Technical Paper
2016-01-0246
Rupesh Sonu Kakade, Prashant Mer
Abstract Vehicle occupants, unlike building occupants, are exposed to continuously varying, non-uniform solar heat load. Automotive manufacturers use photovoltaic cells based solar sensor to measure intensity and direction of the direct-beam solar radiation. Use of the time of the day and the position - latitude and longitude - of a vehicle is also common to calculate direction of the direct-beam solar radiation. Two angles - azimuth and elevation - are used to completely define the direction of solar radiation with respect to the vehicle coordinate system. Although the use of solar sensor is common in today’s vehicles, the solar heat load on the occupants, because of their exposure to the direct-beam solar radiation remains the area of in-car subjective evaluation and tuning. Since the solar rays travel in parallel paths, application of the ray tracing method to determine solar insolation of the vehicle occupants is possible.
2016-04-05
Technical Paper
2016-01-0135
Ji Zhang, Mengjing Shen, Xiangyu Zhu, Qipeng Chen
Abstract Nowadays researches of automotive electromagnetic field mainly focus on the component level and electromagnetic compatibility, while there is a lack of relevant studies on internal electromagnetic environment of the vehicles. With the increasingly complex internal electromagnetic environment of the vehicle, people are increasingly concerned about its potential impact of human health. This article researches on a type of electric vehicle and the occupants and analyses its electromagnetic radiation effects on human health. Firstly, considering the characters of Pro/E, Hypermesh and FEKO, the “Characteristics grouping subdivision” method is used to establish the entire vehicle body FE model. According to the requirement of MOM/FEM method, the entire vehicle model is optimized to be a high quality body model with simple construction and moderate grid size.
2016-04-05
Technical Paper
2016-01-0133
Masahiro Matsubara, Fumio Narisawa, Atsuhiro Ohno, Toshiaki Aoki, Yuki Chiba
Abstract Safety concepts are essential to conform to functional safety standard ISO 26262 for automotive products. Safety requirements, which are a part of safety concepts, shall be satisfied by products to avoid hazards by vehicles to maintain their safety. Incompleteness of safety requirements must be avoided in deriving parent requirements to its children. However, measure for checking is only reviewing when the safety requirements are described in a natural language. This measure for checking is not objective or stringent. We developed a specification technique written in formal notation that addresses some of the shortcomings of capturing safety requirements for verification purposes. Safety requirements in this notation are expressed in goal tree models, which originate from goal-oriented requirement engineering Knowledge Acquisition in autOmated Specification (KAOS). Each requirement is written with propositional logic as the node of a tree.
2016-04-05
Journal Article
2016-01-0004
Ganesh Dharmar, Rambabu Radakrishnan, Subramanian Premananth, Sarath Padattil
Abstract Achieving comfortable Ingress-Egress (I/E) is a major ergonomic challenge for Occupant packaging engineers during vehicle design. Vehicles should be designed so that the targeted drivers are able to comfortably get in and out of it. Simulating occupant ingress/egress motion for vehicle involves many constraints and capturing actual behavior of human motion is cumbersome. In recent years, there are number of studies to investigate occupant ingress/egress motion and to understand perceived discomfort, influence of specific design parameters, age impact etc. These studies majorly used techniques like real time motion capturing in a vehicle mockup, comparison of joint torques developed during the ingress/egress motions etc., to identify the occupants discomfort aspects. This paper aims to capture the ingress/egress influencing parameters and incorporating the parameters in vehicle architecture layout during concept phase itself considering various anthropometric measurements.
2016-04-05
Technical Paper
2016-01-1546
Dongpil Lee, Bongchoon Jang, Kyongsu Yi, Sehyun Chang, Byungrim Lee
Abstract This paper describes a reference steering feel tracking algorithm for Electric-Power-Steering (EPS) system. Development of the EPS system with intended steering feel has been time-consuming procedure, because the feedforward map-based method has been applied to the conventional EPS system. However, in this study, a three-dimensional reference steering feel surface, which is determined from current vehicle states, is proposed. In order to track the proposed reference steering feel surface, sliding mode approach is applied to second-order steering dynamics model considering a coulomb friction model. An adaptive technique is utilized for robustness against uncertainties. In order to validate the proposed EPS control algorithm, hardware-in-the-loop simulation (HILS) has been conducted with respect to a typical steering test. It is shown that the reference steering feel is realized well by the proposed EPS control algorithm.
2016-04-05
Technical Paper
2016-01-1552
Renato Galluzzi, Andrea Tonoli, Nicola Amati, Gabriele Curcuruto, Piero Conti, Giordano Greco, Andrea Nepote
Abstract The development of suspension systems has seen substantial improvements in the last years due to the use of variable dampers. Furthermore, the efficiency increase in the subsystems within the automotive chassis has led to the use of regenerative solutions, in which electric machines can be employed as generators to recover part of the energy otherwise dissipated. However, the harvesting capability of regenerative suspensions is often limited by friction and inertial phenomena. The former ones waste mechanical energy into heat, while the latter ones hamper the shock absorption by locking the suspension when subject to dynamic excitation. Besides a suitable design and sizing of components, recent research works highlight the use of the so-called motion rectifier to improve energy recovery by constraining the motion of the electric motor to a single sense of rotation.
2016-04-05
Technical Paper
2016-01-1530
Yury Chudnovsky, Justin Stocks-Smith, Jeya Padmanaban, Joe Marsh
Abstract NASS/CDS data (1993-2013) was used to examine serious injury rates and injury sources for belted drivers in near- and far-side impacts. Frequency and severity of near- and far-side impacts by crash severity (delta-V) were compared for older (1994-2007 MY) and newer (2008-2013 MY) vehicles. For 2008-2013 MY, individual cases were examined for serious thorax injury in far-side impacts. Results show that, for newer passenger cars, about 92% of side impacts have a delta-V under 15 mph and, for older cars, the percentage is about 86%. The rate of serious injury is higher for nearside compared to far-side crashes for both older and newer models, and the near-side injury rate is much lower for newer models. Safety features, including side airbags, are effective in reducing injuries to near-side belted drivers in newer models. The serious injury rate for near-side belted drivers in older cars is 5.5% for near-side crashes and 1.2% for far-side crashes.
2016-04-05
Journal Article
2016-01-0461
Wenfei Li, Haiping Du, Weihua Li
Abstract This paper proposes a new braking torque distribution strategy for electric vehicles equipped with a hybrid hydraulic braking and regenerative braking system. The braking torque distribution strategy is proposed based on the required braking torque and the regenerative braking system’s status. To get the required braking torque, a new strategy is designed based on the road conditions and driver's braking intentions. Through the estimated road surface, a robust wheel slip controller is designed to calculate the overall maximum braking torque required for the anti-lock braking system (ABS) under this road condition. Driver's braking intentions are classified as the emergency braking and the normal braking. In the case of emergency braking, the required braking torque is to be equal to the overall maximum braking torque. In the case of normal braking, the command braking torque is proportional to the pedal stroke.
Viewing 211 to 240 of 5950