Criteria

Display:

Results

Viewing 181 to 210 of 5937
2016-04-05
Technical Paper
2016-01-0144
Morgan A. Price, Vindhya Venkatraman, Madeleine Gibson, John Lee, Bilge Mutlu
Abstract Increasingly sophisticated vehicle automation can perform steering and speed control, allowing the driver to disengage from driving. However, vehicle automation may not be capable of handling all roadway situations and driver intervention may be required in such situations. The typical approach is to indicate vehicle capability through displays and warnings, but control algorithms can also signal capability. Psychophysical methods can be used to link perceptual experiences to physical stimuli. In this situation, trust is an important perceptual experience related to automation capability that is revealed by the physical stimuli produced by different control algorithms. For instance, precisely centering the vehicle in the lane may indicate a highly capable system, whereas simply keeping the vehicle within lane boundaries may signal diminished capability.
2016-04-05
Technical Paper
2016-01-0133
Masahiro Matsubara, Fumio Narisawa, Atsuhiro Ohno, Toshiaki Aoki, Yuki Chiba
Abstract Safety concepts are essential to conform to functional safety standard ISO 26262 for automotive products. Safety requirements, which are a part of safety concepts, shall be satisfied by products to avoid hazards by vehicles to maintain their safety. Incompleteness of safety requirements must be avoided in deriving parent requirements to its children. However, measure for checking is only reviewing when the safety requirements are described in a natural language. This measure for checking is not objective or stringent. We developed a specification technique written in formal notation that addresses some of the shortcomings of capturing safety requirements for verification purposes. Safety requirements in this notation are expressed in goal tree models, which originate from goal-oriented requirement engineering Knowledge Acquisition in autOmated Specification (KAOS). Each requirement is written with propositional logic as the node of a tree.
2016-04-05
Technical Paper
2016-01-1505
William W. Van Arsdell, Paul Weber, Charles Stankewich, Brian Larson, Ryan Hoover, Richard Watson
Abstract This paper investigates the role that load-limiters play with respect to the performance of occupant protection systems, with focus on performance in frontal crashes. Modern occupant protection systems consist of not just the seat belt, but also airbags, interior vehicle surfaces and vehicle structure. Modern seat belts very often incorporate load-limiters as well as pretensioners. Published research has established that load-limiters and pretensioners increase the effectiveness of occupant protection systems. Some have argued that load-limiters with higher deployment thresholds are always better than load-limiters with lower deployment thresholds. Through testing, modeling and analysis, we have investigated this hypothesis, and in this paper we present test and modeling data as well as a discussion to this data and engineering mechanics to explain why this hypothesis is incorrect.
2016-04-05
Technical Paper
2016-01-0141
Prasanna Vasudevan, Sreegururaj Jayachander
Abstract Several studies in the field of hedonics using subjective responses to gauge the nature and influence of odors have attempted to explain the complex psychological and chemical processes. Work on the effect of odors in alleviating driver fatigue is limited. The potential to improve road safety through non-pharmacological means such as stimulating odors is the impetus behind this paper. This is especially relevant in developing countries today with burgeoning economies such as India. Longer road trips by commercial transport vehicles with increasingly fatigued drivers and risk of accidents are being fuelled by distant producer - consumer connections. This work describes a two stage comparative study on the effects of different odors typically obtainable in India. The stages involve administration of odorants orthonsally and retronasally after the onset of circadian fatigue in test subjects. This is followed by a small cognitive exercise to evaluate hand-eye coordination.
2016-04-05
Technical Paper
2016-01-1448
Rong Chen, Rini Sherony, Hampton C. Gabler
Abstract The effectiveness of Forward Collision Warning (FCW) or similar crash warning/mitigation systems is highly dependent on driver acceptance. If a FCW system delivers the warning too early, it may distract or annoy the driver and cause them to deactivate the system. In order to design a system activation threshold that more closely matches driver expectations, system designers must understand when drivers would normally apply the brake. One of the most widely used metrics to establish FCW threshold is Time to Collision (TTC). One limitation of TTC is that it assumes constant vehicle velocity. Enhanced Time to Collision (ETTC) is potentially a more accurate metric of perceived collision risk due to its consideration of vehicle acceleration. This paper compares and contrasts the distribution of ETTC and TTC at brake onset in normal car-following situations, and presents probability models of TTC and ETTC values at braking across a range of vehicle speeds.
2016-04-05
Technical Paper
2016-01-1431
Subramanian Premananth, Ganesh Dharmar, Hareesh Krishnan, Riyaz Mohammed
Abstract Virtual assessment of an occupant postural ergonomics has become an essential part of vehicle development process. To design vehicle for different market is one of the primary reason for manufacturers using digital tools to address the specific needs of the target market including cultural background, road and traffic conditions. RAMSIS is a widely used software for creating digital human models (DHM) of different target population which allows manufacturers to assess design with unique customer requirements in product design. Defining these requirements with RAMSIS human module helped development team to accurately define occupant targets such as occupant space, visibility and reachability etc. Occupant behavior and usage scenario are factors which are unique to target market and they influence the occupant posture and usage pattern inside the vehicle.
2016-04-05
Technical Paper
2016-01-1435
Amber Hall, Michael Kolich
Abstract Many studies have been conducted and supporting literature has been published to better understand thermal comfort for the automotive environment, particularly, for the HVAC system within the cabin. However, reliable assessment of occupant thermal comfort for seating systems has lacked in development and understanding. Evaluation of seat system performance in terms of comfort has been difficult to quantify and thus most tests have been established such that the hardware components are tested to determine if the thermal feature does no harm to the customer. This paper evaluates the optimal seat surface temperature range to optimize human thermal comfort for an automotive seating system application for heated and ventilated seats.
2016-04-05
Journal Article
2016-01-1304
Tadayoshi Fukushima, Hitoshi Takagi, Toshio Enomoto, Hiroyuki Sawada, Tomoyuki Kaneda
Abstract Interior noise caused by exterior air flow, or wind noise, is one of the noise-and-vibration phenomena for which a systematic simulation method has been desired for enabling their prediction. One of the main difficulties in simulating wind noise is that, unlike most other noises from the engine or road input, wind noise has not one but two different types of sources, namely, convective and acoustic ones. Therefore, in order to synthesize the interior sound pressure level (SPL), the body sensitivities (interior SPL/outer source level) for both types of sources have to be considered. In particular, sensitivity to the convective input has not been well understood, and hence it has not been determined. Moreover, the high-frequency nature of wind noise (e.g., the main energy range extends up to 4000 Hz) has limited the effective application of CAE for determining body sensitivities, for example, from the side window glass to the occupants’ ears.
2016-04-05
Technical Paper
2016-01-1490
Hans W. Hauschild, Frank Pintar, Dale Halloway, Mark Meyer, Rodney Rudd
Abstract Oblique crashes to the vehicle front corner may not be characteristic of either frontal or side impacts. This research evaluated occupant response in oblique crashes for a driver, rear adult passenger, and a rear child passenger. Occupant responses and injury potential were evaluated for seating positions as either a far-or near-side occupant. Two crash tests were conducted with a subcompact car. The vehicle’s longitudinal axis was oriented 45 degrees to the direction of travel on a moving platform and pulled into a wall at 56 km/h. Dummies utilized for the seating positions were an adult dummy (50th-percentile-HIII and THOR-Alpha) for the front-left (driver) position, 5th-percentile-female-HIII for the right-rear position, and a 3-year-old HIII for the left-rear position.
2016-04-05
Technical Paper
2016-01-0118
Shinji Niwa, Mori Yuki, Tetsushi Noro, Shunsuke Shioya, Kazutaka Inoue
Abstract This paper presents detection technology for a driver monitoring system using JINS MEME, an eyewear-type wearable device. Serious accidents caused by human error such as dozing while driving or inattentive driving have been increasing recently in Japan. JINS MEME is expected to contribute to reducing the number of traffic deaths by constantly monitoring the driver with an ocular potential sensor. This paper also explains how a driver’s drowsiness level can be estimated from information on their blink rate, which can be calculated from the ocular potential.
2016-04-05
Technical Paper
2016-01-1552
Renato Galluzzi, Andrea Tonoli, Nicola Amati, Gabriele Curcuruto, Piero Conti, Giordano Greco, Andrea Nepote
Abstract The development of suspension systems has seen substantial improvements in the last years due to the use of variable dampers. Furthermore, the efficiency increase in the subsystems within the automotive chassis has led to the use of regenerative solutions, in which electric machines can be employed as generators to recover part of the energy otherwise dissipated. However, the harvesting capability of regenerative suspensions is often limited by friction and inertial phenomena. The former ones waste mechanical energy into heat, while the latter ones hamper the shock absorption by locking the suspension when subject to dynamic excitation. Besides a suitable design and sizing of components, recent research works highlight the use of the so-called motion rectifier to improve energy recovery by constraining the motion of the electric motor to a single sense of rotation.
2016-04-05
Technical Paper
2016-01-1420
Shinichi Kojima, Shigeyoshi Hiratsuka, Nobuyuki Shiraki, Kazunori Higuchi, Toshihiko Tsukada, Keiichi Shimaoka, Kazuya Asaoka, Sho Masuda, Kazuhiko Nakashima
Abstract This study aims at the development of a projection pattern that is capable of shortening the time required by a driver to perceive a pedestrian at night when a vehicle’s high beams are utilized. Our approach is based on the spatio-temporal frequency characteristics of human vision. Visual contrast sensitivity is dependent on spatiotemporal frequency, and maximum contrast sensitivity frequency varies depending on environmental luminance. Conventionally, there are several applications that utilize the spatio-temporal frequency characteristics of human vision. For example, the National Television System Committee (NTSC) television format takes into consideration low-sensitivity visual characteristics. In contrast, our approach utilizes high-sensitivity visual characteristics based on the assumption that the higher contrast sensitivity of spatio-temporal frequencies will correlate more effectively with shorter perception times.
2016-04-05
Technical Paper
2016-01-1444
Shayne McConomy, Johnell Brooks, Paul Venhovens, Yubin Xi, Patrick Rosopa, John DesJardins, Kevin Kopera, Kathy Lococo
Abstract The research objective was to measure and understand the preferred seat position of older drivers and younger drivers within their personal vehicles to influence recommended practices and meet the increased safety needs of all drivers. Improper selection of driver’s seat position may impact safety during a crash event and affect one’s capacity to see the roadway and reach the vehicle’s controls, such as steering wheel, accelerator, brake, clutch, and gear selector lever. Because of the stature changes associated with ageing and the fact that stature is normally distributed for both males and females, it was hypothesized that the SAE J4004 linear regression would be improved with the inclusion of gender and age terms that would provide a more accurate model to predict the seat track position of older drivers. Participants included 97 older drivers over the age of 60 and 20 younger drivers between the ages of 30 to 39.
2016-04-05
Technical Paper
2016-01-1417
Toshinao Fukui, Kazuhiko Nakamoto, Hiroyuki Satake
Abstract The use of a head-up display (HUD) system has become popular recently, as it can provide feedback information at a position easily seen by the driver. However, the outline of the HUD bezel often reflects on the windshield of a HUD equipped vehicle. This phenomenon occurs when the sun is at a high position and reflects off the top of the instrument panel and the front view is dark. For this reason, it can occur when driving on asphalt paved roads, causing annoyance to the driver. Under fixed environmental conditions, the vehicle based factors that influence the annoyance caused by reflected boundary lines are the position of the reflection, line thickness, and the contrast of the reflected boundary line. These can be represented by the conspicuity of a striped pattern (contrast sensitivity function). In previous research in 1991, M. S. Banks et al. studied a contrast sensitivity function that included the factors stated above.
2016-04-05
Technical Paper
2016-01-1506
David Poulard, Huipeng Chen, Matthew Panzer
Abstract Pedestrian finite element models (PFEM) are used to investigate and predict the injury outcomes from vehicle-pedestrian impact. As postmortem human surrogates (PMHS) differ in anthropometry across subjects, it is believed that the biofidelity of PFEM cannot be properly evaluated by comparing a generic anthropometry model against the specific PMHS test data. Global geometric personalization can scale the PFEM geometry to match the height and weight of a specific PMHS, while local geometric personalization via morphing can modify the PFEM geometry to match specific PMHS anatomy. The goal of the current study was to evaluate the benefit of morphed PFEM compared to globally-scaled and generic PFEM by comparing the kinematics against PMHS test results. The AM50 THUMS PFEM (v4.01) was used as a baseline for anthropometry, and personalized PFEM were created to the anthropometric specifications of two obese PMHS used in a previous pedestrian impact study using a mid-size sedan.
2016-04-05
Technical Paper
2016-01-1487
Zhenhai Gao, Chuzhao Li, Hongyu Hu, Chaoyang Chen, Hui Zhao, Helen Yu
Abstract At the collision moment, a driver’s lower extremity will be in different foot position, which leads to the different posture of the lower extremity with various muscle activations. These will affect the driver’s injury during collision, so it is necessary to investigate further. A simulated collision scene was constructed, and 20 participants (10 male and 10 female) were recruited for the test in a driving simulator. The braking posture and muscle activation of eight major muscles of driver’s lower extremity (both legs) were measured. The muscle activations in different postures were then analyzed. At the collision moment, the right leg was possible to be on the brake (male, 40%; female, 45%), in the air (male, 27.5%; female, 37.5%) or even on the accelerator (male, 25%; female, 12.5%). The left leg was on the floor all along.
2016-04-05
Technical Paper
2016-01-1536
Chung-Kyu Park, Cing-Dao Kan
Abstract In this study, the available metrics to evaluate the crash pulse severity are reviewed and their assessability is investigated by using frontal New Car Assessment Program (NCAP) test data. Linear regression analysis and sled test simulations are conducted. In addition, a new approach is proposed to measure the crash pulse severity and restraint system performance separately and objectively.
2016-04-05
Technical Paper
2016-01-1510
Chinmoy Pal, Tomosaburo Okabe, Kulothungan Vimalathithan, Jeyabharath Manoharan, Pratapnaidu Vallabhaneni, Munenori Shinada, Kazuto Sato
Abstract Many active safety systems are being developed with the intent of protecting pedestrians namely; pedestrian airbags, active hood, active emergency braking (AEB), etc. Effectiveness of such protection system relies on the efficiency of the sensing systems. The pop-uphood system was developed to help reduce pedestrian head injuries. A pop-up system is expected to make full deployment of the hood before the pedestrian’s head could hit the hood. The system should have the capability to detect most road users ranging from a six year old (6YO) child to a large male. To test the sensing system, an impactor model (PDI-2) was developed. Sensor response varies for vehicles with different front end profile dimensions.
2016-04-05
Technical Paper
2016-01-0158
Toshio Ito, Arata Takata, Kenta Oosawa
Abstract Automation of vehicles can be expected to improve safety, comfort and efficiency, and is being developed in various countries. Introduction of automated driving can be ranked from 0 to 5 (0: no automation, 1: driver assistance, 2: partial automation, 3: conditional automation, 4: high automation, 5: full automation). Currently, feasible automation levels are considered to be levels 2 or 3, and human manual take-over from the automated system is needed when the automated system exceeds these levels. In this situation, time required for take-over is an important issue. This study focuses on describing driving simulator experimental results of time required for take-over. The experimental scenario is that the automated system finds an object ahead during automated driving on the highway, and issues a take-over request to the driver. The subject driver can be in the following driver situations: hands-on or hands-off the steering, and strong or weak distractions.
2016-04-05
Technical Paper
2016-01-1518
Carolyn W. Roberts, Jacek Toczyski, Jack Cochran, Qi Zhang, Patrick Foltz, Bronislaw Gepner, Jason Kerrigan, Mark Clauser
Abstract Multiple laboratory dynamic test methods have been developed to evaluate vehicle crashworthiness in rollover crashes. However, dynamic test methods remove some of the characteristics of actual crashes in order to control testing variables. These simplifications to the test make it difficult to compare laboratory tests to crashes. One dynamic method for evaluating vehicle rollover crashworthiness is the Dynamic Rollover Test System (DRoTS), which simulates translational motion with a moving road surface and constrains the vehicle roll axis to a fixed plane within the laboratory. In this study, five DRoTS vehicle tests were performed and compared to a pair of unconstrained steering-induced rollover tests. The kinematic state of the unconstrained vehicles at the initiation of vehicle-to-ground contact was determined using instrumentation and touchdown parameters were matched in the DRoTS tests.
2016-04-05
Technical Paper
2016-01-0456
Zhaozhong Zhang, Dongpu Cao
Abstract One main objective is to find out how these parameters interact and optimal driver control gain and driver preview time are obtained. Some steps further, neuromuscular dynamics is considered and the system becomes different from the simplified driver-vehicle system studied before. New optimal driver control gain and driver preview time could be obtained for both tensed and relaxed muscle state. Final step aims at analysing the full system considering driver, neuromuscular, steer-by-wire and vehicle models. The steer-by-wire system could potentially have a significant influence on the vehicle when the driver is at impaired state, which could be represented by setting higher response delay time or smaller preview time. Vehicle's stability and active safety could also be improved by introducing the steer-by-wire system.
2016-04-05
Technical Paper
2016-01-1124
Luca Castellazzi, Andrea Tonoli, Nicola Amati, Alessandro Piu, Enrico Galliera
Abstract The term driveability describes the driver's complex subjective perception of the interactions with the vehicle. One of them is associated to longitudinal acceleration aspects. A relevant contribution to the driveability optimization process is, nowadays, realized by means of track tests during which a considerable amount of driveline parameters are tuned in order to obtain a good compromise of longitudinal acceleration response. Unfortunately, this process is carried out at a development stage when a design iteration becomes too expensive. In addition, the actual trend of downsizing and supercharging the engines leads to higher vibrations that are transmitted to the vehicle. A large effort is therefore dedicated to develop, test and implement ignition strategies addressed to minimize the torque irregularities. Such strategies could penalize the engine maximum performance, efficiency and emissions. The introduction of the dual mass flywheel is beneficial to this end.
2016-04-05
Technical Paper
2016-01-1528
Peijun Ji, Qing Zhou
Abstract As the restraint technologies for front-seat occupant protection advance, such as seatbelt pre-tensioner, seatbelt load limiter and airbag, relative effectiveness of rear-seat occupant protection decreases, especially for the elderly. Some occupant protection systems for front-seat have been proved to be effective for rear-seat occupant protection as well, but they also have some drawbacks. Seatbelt could generate unwanted local penetrations to the chest and abdomen. And for rear-seat occupants, it might be difficult to install airbag and set deployment time. For crash protection, it is desirable that the restraint loads are spread to the sturdy parts of human body such as head, shoulders, rib cage, pelvis and femurs, as uniformly as possible. This paper explores a uniform restraint concept aiming at providing protection in wide range of impact severity for rear-seat occupants.
2016-04-05
Journal Article
2016-01-0316
Dorin Drignei, Zissimos Mourelatos, Ervisa Kosova, Jingwen Hu, Matthew Reed, Jonathan Rupp, Rebekah Gruber, Risa Scherer
Abstract We have recently obtained experimental data and used them to develop computational models to quantify occupant impact responses and injury risks for military vehicles during frontal crashes. The number of experimental tests and model runs are however, relatively small due to their high cost. While this is true across the auto industry, it is particularly critical for the Army and other government agencies operating under tight budget constraints. In this study we investigate through statistical simulations how the injury risk varies if a large number of experimental tests were conducted. We show that the injury risk distribution is skewed to the right implying that, although most physical tests result in a small injury risk, there are occasional physical tests for which the injury risk is extremely large. We compute the probabilities of such events and use them to identify optimum design conditions to minimize such probabilities.
2016-04-05
Journal Article
2016-01-0340
Tina Hull, Monika A. Minarcin
Abstract Applications using industrial robotics have typically led to establishing a safeguarded space encompassing a wide radius around the robot. Operator access to this hazard zone was restricted by a combination of means, such as hard guarding, safeguarding, awareness means, and personal protective equipment. The introduction of collaborative robots is redefining safeguarding requirements. Many collaborative robots have inherently safe designs that enable an operator and a robot to work within a shared, collaborative workspace. New technology in industrial robotics has opened up opportunities for collaborative operation. Collaborative operation could include either industrial or collaborative robots, depending on its application. The current defined modes of collaborative operation are hand guiding; speed and separation monitoring; safety-rated monitored stop; and, power and force limiting.
2016-04-05
Journal Article
2016-01-0523
Lauren Abro
Abstract North American customer perception of Quality has changed over time and has shifted from Quality, Dependability, and Reliability (QDR) to Interior Sensory Quality (ISQ). ISQ is defined as the harmony of characteristics that combine to make an emotional connection to the vehicles’ interior. Vehicles need to correctly appeal to customers emotional side through providing class-leading ISQ. Hypotheses for specific interior areas were developed in order to identify key ISQ strengths, weaknesses, and preferences. These hypotheses were then tested at customer clinics held across the country. The key goals were to understand customer judgment of ISQ execution, understand customer ISQ priority, and understand customer preference of detailed component areas.
2016-04-05
Journal Article
2016-01-0004
Ganesh Dharmar, Rambabu Radakrishnan, Subramanian Premananth, Sarath Padattil
Abstract Achieving comfortable Ingress-Egress (I/E) is a major ergonomic challenge for Occupant packaging engineers during vehicle design. Vehicles should be designed so that the targeted drivers are able to comfortably get in and out of it. Simulating occupant ingress/egress motion for vehicle involves many constraints and capturing actual behavior of human motion is cumbersome. In recent years, there are number of studies to investigate occupant ingress/egress motion and to understand perceived discomfort, influence of specific design parameters, age impact etc. These studies majorly used techniques like real time motion capturing in a vehicle mockup, comparison of joint torques developed during the ingress/egress motions etc., to identify the occupants discomfort aspects. This paper aims to capture the ingress/egress influencing parameters and incorporating the parameters in vehicle architecture layout during concept phase itself considering various anthropometric measurements.
2016-04-05
Journal Article
2016-01-0084
Paul Weindorf, James Krier, Carl Evans
Abstract An optical configuration has been developed which offers a seamless appearance where the display aperture is less visible in the “off” condition and is minimized in the “on” condition.
2016-04-05
Journal Article
2016-01-0145
Madeleine Gibson, John Lee, Vindhya Venkatraman, Morgan Price, Jeffrey Lewis, Olivia Montgomery, Bilge Mutlu, Joshua Domeyer, James Foley
Abstract The rapid increase in the sophistication of vehicle automation demands development of evaluation protocols tuned to understanding driver-automation interaction. Driving simulators provide a safe and cost-efficient tool for studying driver-automation interaction, and this paper outlines general considerations for simulator-based evaluation protocols. Several challenges confront automation evaluation, including the limited utility of standard measures of driver performance (e.g., standard deviation of lane position), and the need to quantify underlying mental processes associated with situation awareness and trust. Implicitly or explicitly vehicle automation encourages drivers to disengage from driving and engage in other activities. Thus secondary tasks play an important role in both creating representative situations for automation use and misuse, as well as providing embedded measures of driver engagement.
2016-04-05
Journal Article
2016-01-1161
Akira Mori
Abstract In 2007, researchers at the Massachusetts Institute of Technology successfully completed a Wireless Power Transfer (WPT) experiment. Ever since, interest in WPT has been growing. At Toyota, we have been developing the underlying technology of a WPT system. Simultaneously we have been working with regulatory committees to create a standard for WPT. In particular, there are concerns that WPT’s radiated emissions could cause harm to humans and the neighboring electronic equipment. There are many challenges that need to be overcome, but a key concern is understanding WPT’s electromagnetic compatibility (EMI: Electro-Magnetic Interference and EMF: Electro-Magnetic Field). In this paper, we show the technical issues, the evaluation method, and the development status of EMI and EMF on PHVs/EVs when using WPT. For Electromagnetic interference (EMI) performance, we investigated both an open area test site and an electromagnetic anechoic chamber as evaluation environments.
Viewing 181 to 210 of 5937