Criteria

Display:

Results

Viewing 121 to 150 of 5939
2016-04-05
Technical Paper
2016-01-1546
Dongpil Lee, Bongchoon Jang, Kyongsu Yi, Sehyun Chang, Byungrim Lee
Abstract This paper describes a reference steering feel tracking algorithm for Electric-Power-Steering (EPS) system. Development of the EPS system with intended steering feel has been time-consuming procedure, because the feedforward map-based method has been applied to the conventional EPS system. However, in this study, a three-dimensional reference steering feel surface, which is determined from current vehicle states, is proposed. In order to track the proposed reference steering feel surface, sliding mode approach is applied to second-order steering dynamics model considering a coulomb friction model. An adaptive technique is utilized for robustness against uncertainties. In order to validate the proposed EPS control algorithm, hardware-in-the-loop simulation (HILS) has been conducted with respect to a typical steering test. It is shown that the reference steering feel is realized well by the proposed EPS control algorithm.
2016-04-05
Technical Paper
2016-01-1552
Renato Galluzzi, Andrea Tonoli, Nicola Amati, Gabriele Curcuruto, Piero Conti, Giordano Greco, Andrea Nepote
Abstract The development of suspension systems has seen substantial improvements in the last years due to the use of variable dampers. Furthermore, the efficiency increase in the subsystems within the automotive chassis has led to the use of regenerative solutions, in which electric machines can be employed as generators to recover part of the energy otherwise dissipated. However, the harvesting capability of regenerative suspensions is often limited by friction and inertial phenomena. The former ones waste mechanical energy into heat, while the latter ones hamper the shock absorption by locking the suspension when subject to dynamic excitation. Besides a suitable design and sizing of components, recent research works highlight the use of the so-called motion rectifier to improve energy recovery by constraining the motion of the electric motor to a single sense of rotation.
2016-04-05
Journal Article
2016-01-1553
Akihito Yamamoto, Wataru Tanaka, Takafumi Makino, Shunya Tanaka, Ken Tahara
Abstract This paper reports that estimation accuracy of suspension stroke velocity is increased by considering the damping force delay characteristics to an observer. Thereby ride comfort is improved, using the simple and low-cost semi active suspension systems that use only three vertical acceleration sensors.
2016-04-05
Journal Article
2016-01-1540
Timothy Keon
Abstract The National Highway Traffic Safety Administration has performed research investigating the Test Device for Human Occupant Restraint 50th male (THOR-50M) response in Oblique crash tests. This research is being expanded to investigate THOR-50M in the driver position in a 56 km/h frontal impact crash. Hybrid III 5th percentile adult female (AF05) anthropomorphic test devices (ATDs) were used in this testing to evaluate the RibEye Deflection Measurement System. The AF05 ATDs were positioned in the right front passenger and right rear passenger seating positions. For the right front passenger, the New Car Assessment Procedure (NCAP) seating procedure was used, except the seat fore-aft position was set to mid-track. For the right rear passenger, the seating followed the FMVSS No. 214 Side Impact Compliance Test Procedure. The NCAP frontal impact test procedure was followed with additional vehicle instrumentation and pre/post-test measurements.
2016-04-05
Technical Paper
2016-01-1542
Shaosong Li, Jiafei Niu, Ren Sheng, Zhixin Yu, Shunhang Zheng, Yongfa Tu
Abstract With motor and reduction mechanism applied to Electric Power Steering (short for EPS) system of automobile, the frictional loss torque of steering system is increased. The common friction compensation control through the sign function of angular velocity or the saturation function of angular velocity is conducted to reduce the frictional loss torque of steering system. However, when the motor used in steering system generates assist torque based on the common friction compensation control, the longitudinal intercepts of steering torque change obviously at different steering wheel angles. The driver will get different frictional loss torque of steering system at different steering wheel angle. The information of steering torque contains the change of steering reaction torque and the frictional loss torque of steering system, so the change of frictional loss torque can cause the fuzzy of road feeling.
2016-04-05
Technical Paper
2016-01-1421
Sean Seaman, Li Hsieh, Richard Young
Abstract This study investigated driver glances while engaging in infotainment tasks in a stationary vehicle while surrogate driving: watching a driving video recorded from a driver’s viewpoint and projected on a large screen, performing a lane-tracking task, and performing the Tactile Detection Response Task (TDRT) to measure attentional effects of secondary tasks on event detection and response. Twenty-four participants were seated in a 2014 Toyota Corolla production vehicle with the navigation system option. They performed the lane-tracking task using the vehicle’s steering wheel, fitted with a laser pointer to indicate wheel movement on the driving video. Participants simultaneously performed the TDRT and a variety of infotainment tasks, including Manual and Mixed-Mode versions of Destination Entry and Cancel, Contact Dialing, Radio Tuning, Radio Preset selection, and other Manual tasks. Participants also completed the 0-and 1-Back pure auditory-vocal tasks.
2016-04-05
Technical Paper
2016-01-1422
Tarek Ouali, Nirav Shah, Bill Kim, David Fuente, Bo Gao
Abstract This paper introduces a new method for driving style identification based on vehicle communication signals. The purpose of this method is to classify a trip, driven in a vehicle, into three driving style categories: calm, normal or aggressive. The trip is classified based on the vehicle class, the type of road it was driven on (urban, rural or motorway) and different types of driving events (launch, accelerating and braking). A representative set of parameters, selected to take into consideration every part of the driver-vehicle interaction, is associated to each of these events. Due to the usage of communication signals, influence factors, other than vehicle speed and acceleration (e.g. steering angle or pedals position), can be considered to determine the level of aggressiveness on the trip. The conversion of the parameters from physical values to dimensionless score is based on conversion maps that consider the road and vehicle types.
2016-04-05
Technical Paper
2016-01-1419
Helen S. Loeb, Sam Chamberlain, Yi-Ching Lee
Abstract Motor vehicles crashes are the leading cause of injury and death of US teens. Driving simulators offer a way to safely expose drivers to specific events in a controlled and repeatable manner. They empower researchers by enabling them to compare different groups and driving behaviors and assess the cognitive and attention skills that are essential to safe driving. Classically, assessment of eye glances and gaze duration relies largely on time-consuming data reduction and video coding. In addition, the synchronization of eye tracker and simulator data is essential to a valid analysis of the eye glances patterns in relation to the driving scenario. To better understand and quantify eye glances in relation to a driving scene, Eyesync was developed as a synchronization bridge between an eye tracker and a driving simulator. It allows the real time synchronization and logging of eye tracking and simulator data. The design of the software is presented in this paper.
2016-04-05
Technical Paper
2016-01-1420
Shinichi Kojima, Shigeyoshi Hiratsuka, Nobuyuki Shiraki, Kazunori Higuchi, Toshihiko Tsukada, Keiichi Shimaoka, Kazuya Asaoka, Sho Masuda, Kazuhiko Nakashima
Abstract This study aims at the development of a projection pattern that is capable of shortening the time required by a driver to perceive a pedestrian at night when a vehicle’s high beams are utilized. Our approach is based on the spatio-temporal frequency characteristics of human vision. Visual contrast sensitivity is dependent on spatiotemporal frequency, and maximum contrast sensitivity frequency varies depending on environmental luminance. Conventionally, there are several applications that utilize the spatio-temporal frequency characteristics of human vision. For example, the National Television System Committee (NTSC) television format takes into consideration low-sensitivity visual characteristics. In contrast, our approach utilizes high-sensitivity visual characteristics based on the assumption that the higher contrast sensitivity of spatio-temporal frequencies will correlate more effectively with shorter perception times.
2016-04-05
Technical Paper
2016-01-1416
Rambabu Radakrishnan, Ganesh Dharmar, Mohanraj Balakrishnan, Sarath Padattil
Abstract Infotainment screens have become critical interface between occupant and Vehicle. Historical development of In-vehicle infotainment (IVI) has shown us the growth of interface size and usability is tremendously increased. The basic small segmented displays of past decades have transformed into large touch screen interface [1]. Earlier small screen interfaces had minimal information and less driver assist functions. It was mainly entertainment based information, which does not require much attention from driver. But recently it has changed from glancing the screen to seeing the screen, due to increased driver assist functions like GPS navigation etc. The amount of information displayed is also increased tremendously [2]. This scenario demands that the infotainment screen positioning inside the vehicle should be free from any visual obscuration, reflection and direct illumination on the infotainment screen due to ambient lighting.
2016-04-05
Technical Paper
2016-01-1417
Toshinao Fukui, Kazuhiko Nakamoto, Hiroyuki Satake
Abstract The use of a head-up display (HUD) system has become popular recently, as it can provide feedback information at a position easily seen by the driver. However, the outline of the HUD bezel often reflects on the windshield of a HUD equipped vehicle. This phenomenon occurs when the sun is at a high position and reflects off the top of the instrument panel and the front view is dark. For this reason, it can occur when driving on asphalt paved roads, causing annoyance to the driver. Under fixed environmental conditions, the vehicle based factors that influence the annoyance caused by reflected boundary lines are the position of the reflection, line thickness, and the contrast of the reflected boundary line. These can be represented by the conspicuity of a striped pattern (contrast sensitivity function). In previous research in 1991, M. S. Banks et al. studied a contrast sensitivity function that included the factors stated above.
2016-04-05
Technical Paper
2016-01-1429
Jangwoon Park, Sheila Ebert-Hamilton, K. Han Kim, Monica Jones, Byoung-Keon Park, Matthew Reed
Abstract This paper reports on the development and validation of an automated seat-dimension extraction system that can efficiently and reliably measure SAE J2732 (2008) seat dimensions from 3D seat scan data. The automated dimension-extraction process consists of four phases: (1) import 3D seat scan data along with seat reference information such as H-point location, back and cushion angles, (2) calculate centerline and lateral cross-section lines on the imported 3D seat scan data, (3) identify landmarks on the centerline and cross-section lines based on the SAE J2732 definitions, and (4) measure seat-dimensions using the identified landmarks. To validate the automated seat measurements, manually measured dimensions in a computer-aided-design (CAD) environment and automatically extracted ones in the current system were compared in terms of mean discrepancy and intra- and inter-observer standard deviations (SD).
2016-04-05
Technical Paper
2016-01-1430
Se Jin Park, Murali Subramaniyam, Seoung Eun Kim, Tae Hyun Kim, Hee Su Sin, Dong Hag Seo, Hyu Hyeong Nam, Jeong Cheol Lee
Abstract Seating comfort is associated with the various factors, and one of the principal components of a vehicle environment which can affect passenger’s comfort is vibration. The seat design plays a vital role in the vibration isolation. In recent years, automotive seat designers are paying more attention for the improvement of seat cushion properties. This paper provides information about a new automotive seat concept that use double-wall 3D air-mat in cushion along with foam cushion in the seat cushion system. To test the developed seat on vibration isolation characteristics, seating comfort, and ride quality experiments have been performed. This research is divided into two parts. At first, the newly developed seat tested on the motion simulator. In study 2, road tests were performed on the national highway. Two tri-axial accelerometers were used to measure acceleration at the foot and hip in two different seats (seat with and without double-wall 3D air-mat).
2016-04-05
Journal Article
2016-01-1427
Richard Young, Li Hsieh, Sean Seaman
Abstract The Dimensional Model of Driver Demand is extended to include Auditory-Vocal (i.e., pure “voice” tasks), and Mixed-Mode tasks (i.e., a combination of Auditory-Vocal mode with visual-only, or with Visual-Manual modes). The extended model was validated with data from 24 participants using the 2014 Toyota Corolla infotainment system in a video-based surrogate driving venue. Twenty-two driver performance metrics were collected, including total eyes-off-road time (TEORT), mean single glance duration (MSGD), and proportion of long single glances (LGP). Other key metrics included response time (RT) and miss rate to a Tactile Detection Response Task (TDRT). The 22 metrics were simplified using Principal Component Analysis to two dimensions. The major dimension, explaining 60% of total variance, we interpret as the attentional effects of cognitive demand. The minor dimension, explaining 20% of total variance, we interpret as physical demand.
2016-04-05
Technical Paper
2016-01-1428
Bruce Mehler, Bryan Reimer, Jonathan Dobres, James Foley, Kazutoshi Ebe
Abstract This paper presents the results of a study of how people interacted with a production voice-command based interface while driving on public roadways. Tasks included phone contact calling, full address destination entry, and point-of-interest (POI) selection. Baseline driving and driving while engaging in multiple-levels of an auditory-vocal cognitive reference task and manual radio tuning were used as comparison points. Measures included self-reported workload, task performance, physiological arousal, glance behavior, and vehicle control for an analysis sample of 48 participants (gender balanced across ages 21-68). Task analysis and glance measures confirm earlier findings that voice-command interfaces do not always allow the driver to keep their hands on the wheel and eyes on the road, as some assume.
2016-04-05
Technical Paper
2016-01-1426
Lex Fridman, Joonbum Lee, Bryan Reimer, Bruce Mehler
Abstract The challenge of developing a robust, real-time driver gaze classification system is that it has to handle difficult edge cases that arise in real-world driving conditions: extreme lighting variations, eyeglass reflections, sunglasses and other occlusions. We propose a single-camera end-toend framework for classifying driver gaze into a discrete set of regions. This framework includes data collection, semi-automated annotation, offline classifier training, and an online real-time image processing pipeline that classifies the gaze region of the driver. We evaluate an implementation of each component on various subsets of a large onroad dataset. The key insight of our work is that robust driver gaze classification in real-world conditions is best approached by leveraging the power of supervised learning to generalize over the edge cases present in large annotated on-road datasets.
2016-04-05
Technical Paper
2016-01-1425
Thomas McWilliams, Daniel Brown, Bryan Reimer, Bruce Mehler, Jonathan Dobres
Abstract Advanced driver assistance systems (ADAS) are an increasingly common feature of modern vehicles. The influence of such systems on driver behavior, particularly in regards to the effects of intermittent warning systems, is sparsely studied to date. This paper examines dynamic changes in physiological and operational behavior during lane departure warnings (LDW) in two commercial automotive systems utilizing on-road data. Alerts from the systems, one using auditory and the other haptic LDWs, were monitored during highway driving conditions. LDW events were monitored during periods of single-task driving and dual-task driving. Dual-task periods consisted of the driver interacting with the vehicle’s factory infotainment system or a smartphone to perform secondary visual-manual (e.g., radio tuning, contact dialing, etc.) or auditory-vocal (e.g. destination address entry, contact dialing, etc.) tasks.
2016-04-05
Technical Paper
2016-01-1424
Yi G. Glaser, Robert E. Llaneras, Daniel S. Glaser, Charles A. Green
Abstract Partially automated driving involves the relinquishment of longitudinal and/or latitudinal control to the vehicle. Partially automated systems, however, are fallible and require driver oversight to avoid all road hazards. Researchers have expressed concern that automation promotes extended eyes-off-road (EOR) behavior that may lead to a loss of situational awareness (SA), degrading a driver’s ability to detect hazards and make necessary overrides. A potential countermeasure to visual inattention is the orientation of the driver’s glances towards potential hazards via cuing. This method is based on the assumption that drivers are able to rapidly identify hazards once their attention is drawn to the area of interest regardless of preceding EOR duration. This work examined this assumption in a simulated automated driving context by projecting hazardous and nonhazardous road scenes to a participant while sitting in a stationary vehicle.
2016-04-05
Journal Article
2016-01-1423
Richard Young, Sean Seaman, Li Hsieh
Abstract Many metrics have been used in an attempt to predict the effects of secondary tasks on driving behavior. Such metrics often give rise to seemingly paradoxical results, with one metric suggesting increased demand and another metric suggesting decreased demand for the same task. For example, for some tasks, drivers maintain their lane well yet detect events relatively poorly. For other tasks, drivers maintain their lane relatively poorly yet detect events relatively well. These seeming paradoxes are not time-accuracy trade-offs or experimental artifacts, because for other tasks, drivers do both well. The paradoxes are resolved if driver demand is modeled in two orthogonal dimensions rather than a single “driver workload” dimension. Principal components analysis (PCA) was applied to the published data from four simulator, track, and open road studies of visual-manual secondary task effects on driving.
2016-04-05
Technical Paper
2016-01-1436
K. Han Kim, Sheila Ebert-Hamilton, Matthew Reed
Abstract Automotive seats are commonly described by one-dimensional measurements, including those documented in SAE J2732. However, 1-D measurements provide minimal information on seat shape. The goal of this work was to develop a statistical framework to analyze and model the surface shapes of seats by using techniques similar to those that have been used for modeling human body shapes. The 3-D contour of twelve driver seats of a pickup truck and sedans were scanned and aligned, and 408 landmarks were identified using a semi-automatic process. A template mesh of 18,306 vertices was morphed to match the scan at the landmark positions, and the remaining nodes were automatically adjusted to match the scanned surface. A principal component (PC) analysis was performed on the resulting homologous meshes. Each seat was uniquely represented by a set of PC scores; 10 PC scores explained 95% of the total variance. This new shape description has many applications.
2016-04-05
Technical Paper
2016-01-1435
Amber Hall, Michael Kolich
Abstract Many studies have been conducted and supporting literature has been published to better understand thermal comfort for the automotive environment, particularly, for the HVAC system within the cabin. However, reliable assessment of occupant thermal comfort for seating systems has lacked in development and understanding. Evaluation of seat system performance in terms of comfort has been difficult to quantify and thus most tests have been established such that the hardware components are tested to determine if the thermal feature does no harm to the customer. This paper evaluates the optimal seat surface temperature range to optimize human thermal comfort for an automotive seating system application for heated and ventilated seats.
2016-04-05
Technical Paper
2016-01-1438
Alexander Siefert
Abstract The objective evaluation of occupant comfort is a complex task where numerous aspects such as posture, pressure distribution, internal tissue loads, handling of steering wheel or gear shift have to be taken into consideration. Currently the standard evaluation procedures are hardware tests with human subjects, who are sensitive to all these aspects. However, the reproducibility of subjective tests for the comparison of design variants is a questionable issue and the costs for each test cycle with new prototypes are very high. As an alternative, numerical approaches using human body models such as AnyBody [1], CASIMIR [2] or RAMSIS [3] are applied. Here the issue of reproducibility does not exist and only little effort is required to investigate new setups. However, the disadvantage is that each approach focuses only on one specific aspect of occupant comfort, while in reality the emotions of the occupant are always a combination of all impressions.
2016-04-05
Technical Paper
2016-01-1432
Alexander Siefert
Abstract Predicting the vibration comfort is a difficult challenge in seat design. There is a broad range of requirements as the load cases strongly vary, representing different excitation levels, e.g. cobblestones or California roads. Another demand is the driver expectation, which is different for a pickup and a sports car. There are several approaches for assessing the vibrations of occupants while driving. One approach is the evaluation of comfort by integral quantities like the SEAT value, taking into account a weighting based on the human body sensitivity. Another approach is the dimension of perception developed by BMW, which is similar to psychoacoustics as the frequency range is separated with respect to occurring vibration phenomena. The seat transmissibility is in the focus of all activities. In the frequency range it defines the relation between the input at the seat slides and the output at the interface of human body and trim.
2016-04-05
Technical Paper
2016-01-1437
Giorgio Previati, Massimiliano Gobbi, Giampiero Mastinu
Abstract The paper is focused on both the subjective and the objective ride comfort evaluation of farm tractors. The experimental measurement of the relevant accelerations occurring at the tractor body, at the cabin and at the seat was performed on a number of different farm tractors. A subjective rating of the ride comfort level was performed by considering five different drivers. The comfort index was computed according with ISO 2631 and other standards. The acceleration of the seated subject was computed by means of a proper mechanical model of a farm tractor and derived at different positions on the subject body. It turned out that the acceleration of the lower torso was particularly relevant for establishing a matching between the subjective perception and the objective measurement and computation. A number of indices have been derived from the measured data which are able to correlate the subjective driver feeling with the measured accelerations.
2016-04-05
Technical Paper
2016-01-1431
Subramanian Premananth, Ganesh Dharmar, Hareesh Krishnan, Riyaz Mohammed
Abstract Virtual assessment of an occupant postural ergonomics has become an essential part of vehicle development process. To design vehicle for different market is one of the primary reason for manufacturers using digital tools to address the specific needs of the target market including cultural background, road and traffic conditions. RAMSIS is a widely used software for creating digital human models (DHM) of different target population which allows manufacturers to assess design with unique customer requirements in product design. Defining these requirements with RAMSIS human module helped development team to accurately define occupant targets such as occupant space, visibility and reachability etc. Occupant behavior and usage scenario are factors which are unique to target market and they influence the occupant posture and usage pattern inside the vehicle.
2016-04-05
Technical Paper
2016-01-1434
Salvatore Trapanese, Alessandro Naddeo, Nicola Cappetti
Abstract The evaluation of perceived comfort inside a car during the early stages of the design process is still an open issue. Modern technologies like CAE (Computer Aided Engineering) and DHM (Digital Human Modeling) already offer several tools for a preventive evaluation of ergonomic parameters for car drivers using detailed CAD (Computer Aided Design) models of car interiors and by a MBS (multi-body-system) solver for evaluating movements and interactions. Such evaluations are, nonetheless, not sufficient because the subjectivity of comfort perception is due to factors that are very difficult to evaluate in the early stage of design. Physical prototypes are needed and these are often too expensive to be realized.
2016-04-05
Technical Paper
2016-01-1433
Gregory Schaupp, Julia Seeanner, Casey Jenkins, Joseph Manganelli, Sarah Hennessy, Constance Truesdail, Lindsay Swift, Paul Venhovens, Johnell Brooks
Abstract The ability to independently transfer into and out of a vehicle is essential for many wheelchair users to achieve driving independence. This paper presents the results of an exploratory study that investigated the transfer strategies of wheelchair users who drive from their driver’s seat and not from their wheelchair. The goal of this study was to identify typical ingress and egress motions as well as “touch points” of wheelchair users transferring into and out of the driver’s seat. While motion databases exist for the ingress and egress of able-bodied drivers, this study provides insight on drivers with physical disabilities. Twenty-five YouTube videos of wheelchair users who transferred into and out of their own sedans were analyzed.
2016-04-05
Technical Paper
2016-01-1444
Shayne McConomy, Johnell Brooks, Paul Venhovens, Yubin Xi, Patrick Rosopa, John DesJardins, Kevin Kopera, Kathy Lococo
Abstract The research objective was to measure and understand the preferred seat position of older drivers and younger drivers within their personal vehicles to influence recommended practices and meet the increased safety needs of all drivers. Improper selection of driver’s seat position may impact safety during a crash event and affect one’s capacity to see the roadway and reach the vehicle’s controls, such as steering wheel, accelerator, brake, clutch, and gear selector lever. Because of the stature changes associated with ageing and the fact that stature is normally distributed for both males and females, it was hypothesized that the SAE J4004 linear regression would be improved with the inclusion of gender and age terms that would provide a more accurate model to predict the seat track position of older drivers. Participants included 97 older drivers over the age of 60 and 20 younger drivers between the ages of 30 to 39.
2016-04-05
Technical Paper
2016-01-1443
Nazan Aksan, Lauren Sager, Sarah Hacker, Benjamin Lester, Jeffrey Dawson, Matthew Rizzo
Abstract We examined relative effectiveness of heads-up visual displays for lane departure warning (LDW) 39 younger to middle aged drivers (25-50, mean = 35 years) and 37 older drivers (66-87, mean = 77 years). The LDW included yellow “advisory” visuals in the center screen when the driver started drifting toward the adjacent lane. The visuals turned into red “imminent” when the tires overlapped with the lane markers. The LDW was turned off if the driver activated the turn signal. The visuals could be easily segregated from the background scene, making them salient but not disruptive to the driver’s forward field of view. The visuals were placed adjacent to the left and right lane markers in the lower half of the center screen.
2016-04-05
Technical Paper
2016-01-1445
Jonathan Dobres, Bryan Reimer, Bruce Mehler, James Foley, Kazutoshi Ebe, Bobbie Seppelt, Linda Angell
Abstract Driving behaviors change over the lifespan, and some of these changes influence how a driver allocates visual attention. The present study examined the allocation of glances during single-task (just driving) and dual-task highway driving (concurrently tuning the radio using either visual-manual or auditory-vocal controls). Results indicate that older drivers maintained significantly longer single glance durations across tasks compared to younger drivers. Compared to just driving, visual-manual radio tuning was associated with longer single glance durations for both age groups. Off-road glances were subcategorized as glances to the instrument cluster and mirrors (“situationally-relevant”), “center stack”, and “other”. During baseline driving, older drivers spent more time glancing to situationally-relevant targets. During both radio tuning task periods, in both age groups, the majority of glances were made to the center stack (the radio display).
Viewing 121 to 150 of 5939