Criteria

Display:

Results

Viewing 121 to 150 of 5950
2016-09-27
Technical Paper
2016-01-2093
Rainer Mueller, Matthias Vette, Ortwin Mailahn
Abstract Many assembly processes, particularly in the manufacture of aircraft components, are still carried out by humans manually. In addition to rationalization aspects, high quality requirements, non-ergonomic activities, the lack of well-qualified workers etc. may require the use of automation technology. Through novel possibilities of human-robot-cooperation these challenges can be met through a skills-based division of labor. Tasks are assigned to humans and robots in a way that the respective strengths can be used most efficiently. This article presents, how assembly processes can get empowered for human-robot-cooperation, using a specific work description for humans and robots, an assembly priority chart and suitable robot programs, to prepare for a skills-based task assignment. In the area of formerly exclusively manual assembly, the operations for the assembly of the product must first be described in detail.
2016-09-27
Journal Article
2016-01-8030
Dai Quoc Vo, Hormoz Marzbani, Mohammad Fard, Reza N. Jazar
Abstract As long as a tire steers about a titled kingpin pivot, the point coming in contact with the road moves along its perimeter. This movement affects the determination of kingpin moments caused by the tire forces, especially for large steering angles. The movement, however, has been neglected in the literature on the steerable-tire-kinematics-related topics. In this investigation, the homogeneous transformation is employed to develop a kinematic model of a steering tire in which the instantaneous ground-contact point on the tire is considered. The moments about the kingpin axis caused by tire forces are then computed based on the kinematics. A four-wheel-car model is constructed for determining the kingpin moment of steering system during the low-speed cornering maneuver. The result shows that the displacement of the ground-contact point along the tire perimeter is significant for large steering angles.
2016-09-16
Journal Article
2016-01-9018
Judhajit Roy, E. Harry Law
Abstract It is well known that the ride quality of trucks is much harsher than that of automobiles. Additionally, truck drivers typically drive trucks for much longer duration than automobile drivers. These two factors contribute to the fatigue that a truck driver typically experiences during long haul deliveries. Fatigue reduces driver alertness and increases reaction times, increasing the possibility of an accident. One may conclude that better ride quality contributes to safer operation. The secondary suspensions of a tractor have been an area of particular interest because of the considerable ride comfort improvements they provide. A gap exists in the current engineering domain of an easily configurable high fidelity low computational cost simulation tool to analyze the ride of a tractor semi-trailer. For a preliminary design study, a 15 d.o.f. model of the tractor semi-trailer was developed to simulate in the Matlab/Simulink environment.
2016-09-14
Technical Paper
2016-01-1890
Jun Ma, Zaiyan Gong, Yiwei Dong
Abstract With the development of automotive HMI and mobile internet, many interactive modes are available for drivers to fulfill the in-vehicle secondary tasks, e.g. dialing, volume adjustment, music playing. For driving safety and drivers’ high expectation for HMI, it is urgent to effectively evaluate interactive mode with good efficiency, safety and good user experience for each secondary tasks, e.g. steering wheel buttons, voice control. This study uses a static driving simulation cockpit to provide driving environment, and sets up a high-fidelity driving cockpit based on OKTAL SacnerStudio and three-dimensional modeling technology. The secondary tasks supported by HMI platform are designed by customer demands research. The secondary task test is carried out based on usability test theory, and the influence on driving safety by different interactive modes is analyzed.
2016-09-14
Technical Paper
2016-01-1888
Jie Hu, Yehui Li, Jun Cai, Richard Turkson, Feng Lin, Meiyun Qiao
Abstract This research is based on the Controller Area Network (CAN) bus, and briefly analyzed its communication protocol with reference to the layered model of Open System Interconnect Reference Model (OSI). Subsequently, a data acquisition system was designed and developed including a Vehicle Communication Interface (VCI) and a laptop. After the overall architecture was built, the communication mechanism of the VCI was studied. Furthermore, the lap top app was built using the layered design followed by the implementation of a scheme for data collection and experimentation involving the test driving of a real car on road. Finally, the driving style was identified by means of fuzzy reasoning and solving ambiguity based on fuzzy theory; via training the acceleration sample and forecast using the excellent learning and generalization ability of Support Vector Machine (SVM) for high-dimensional, finite samples.
2016-09-14
Technical Paper
2016-01-1870
Jun Ma, Maofei Xu, Yuchun Du
Abstract Gesture control has been increasingly applied to automotive industry to reduce the distraction caused by in-vehicle interactions to the primary task of driving. The aim of this study is to find out if gestures can reasonably be used to control in-car devices. Since there exists a big cultural difference of gesture between different countries because of its particularity, a set of gestures which support intuitive human-machine interaction in an automotive environment is searched. The results show a gesture dictionary for a variety of on-board functions, which conforms to Chinese drivers’ driving habits. Furthermore, this paper also describes a driving simulator test to evaluate the usability of gesture from different aspects including the effectiveness, efficiency, satisfaction, memorability and security. Static driving simulator is considered as an excellent environment for the in-car secondary task as its high safety level, repeatability and reliability.
2016-09-14
Technical Paper
2016-01-1872
Bin Wu, Xichan Zhu, Lin li
Abstract Based on the emergency lane change cases extracted from the China naturalistic driving data, the driving steering behavior divides into three phases: collision avoidance, lateral movement and steering stabilization. Using the steering primitive fitting by Gaussian function, the distribution of the duration time, the relationship between steering wheel rate and deflection were analyzed in three phases. It is shown that the steering behavior essentially is composed of steering primitives during the emergency lane-change. However, the combination of the steering primitives is different according to the specific steering constraints in three phases. In the collision avoidance phase, a single steering primitive with high peak is used for the fast steering; in the lateral movement and stabilization phase, a combination of two or even more steering primitives is built to a more accurate steering.
2016-06-15
Technical Paper
2016-01-1782
Kyoung-Jin Chang, Dong Chul Park
Abstract This paper discusses approaches to emotionally improve the driving sound based on Active Sound Design (ASD). In the first step, target sound design methods are suggested in order to represent the vehicle’s concept and brand image via a driving sound. In this method, formant filter and musical chords are applied to the target sound synthesis. In the second step, a technique to make a target sound realistic in ASD system is discussed, which enables to stimulate the customers' emotion. In this technique, the process to simulate a musical instrument sound for a vivid driving sound and synthesize the sound with FIR filter is studied. Finally, the improved driving sound is demonstrated in ASD system.
2016-05-01
Journal Article
2015-01-9132
Husain Kanchwala, Harutoshi Ogai
Abstract Japan is suffering from the problem of an ageing society. In Kitakyushu city more than a quarter of people are aged above 65 years. The roads in this region are narrow with steep gradient and vulnerable roadbed. A big ratio of elderly people are living on their own. These characteristics make driving unsuitable. The problem is magnified by infrequent public transportation. A need-assessment survey for an autonomous vehicle at a community event suggested the applicability of small electric vehicle Toyota COMS. The vehicle is then equipped with features like automatic driving and platooning. The autonomous drive system is built to develop an intelligent transport system (ITS) using various sensors and actuators. Stereo camera and ultrasonic sensors were used to get a judgment of obstacle. Google earth and GPS were used to generate the target path using the Bezier curve method and optimized route is chosen.
2016-04-05
Journal Article
2016-01-1540
Timothy Keon
Abstract The National Highway Traffic Safety Administration has performed research investigating the Test Device for Human Occupant Restraint 50th male (THOR-50M) response in Oblique crash tests. This research is being expanded to investigate THOR-50M in the driver position in a 56 km/h frontal impact crash. Hybrid III 5th percentile adult female (AF05) anthropomorphic test devices (ATDs) were used in this testing to evaluate the RibEye Deflection Measurement System. The AF05 ATDs were positioned in the right front passenger and right rear passenger seating positions. For the right front passenger, the New Car Assessment Procedure (NCAP) seating procedure was used, except the seat fore-aft position was set to mid-track. For the right rear passenger, the seating followed the FMVSS No. 214 Side Impact Compliance Test Procedure. The NCAP frontal impact test procedure was followed with additional vehicle instrumentation and pre/post-test measurements.
2016-04-05
Technical Paper
2016-01-1421
Sean Seaman, Li Hsieh, Richard Young
Abstract This study investigated driver glances while engaging in infotainment tasks in a stationary vehicle while surrogate driving: watching a driving video recorded from a driver’s viewpoint and projected on a large screen, performing a lane-tracking task, and performing the Tactile Detection Response Task (TDRT) to measure attentional effects of secondary tasks on event detection and response. Twenty-four participants were seated in a 2014 Toyota Corolla production vehicle with the navigation system option. They performed the lane-tracking task using the vehicle’s steering wheel, fitted with a laser pointer to indicate wheel movement on the driving video. Participants simultaneously performed the TDRT and a variety of infotainment tasks, including Manual and Mixed-Mode versions of Destination Entry and Cancel, Contact Dialing, Radio Tuning, Radio Preset selection, and other Manual tasks. Participants also completed the 0-and 1-Back pure auditory-vocal tasks.
2016-04-05
Technical Paper
2016-01-1422
Tarek Ouali, Nirav Shah, Bill Kim, David Fuente, Bo Gao
Abstract This paper introduces a new method for driving style identification based on vehicle communication signals. The purpose of this method is to classify a trip, driven in a vehicle, into three driving style categories: calm, normal or aggressive. The trip is classified based on the vehicle class, the type of road it was driven on (urban, rural or motorway) and different types of driving events (launch, accelerating and braking). A representative set of parameters, selected to take into consideration every part of the driver-vehicle interaction, is associated to each of these events. Due to the usage of communication signals, influence factors, other than vehicle speed and acceleration (e.g. steering angle or pedals position), can be considered to determine the level of aggressiveness on the trip. The conversion of the parameters from physical values to dimensionless score is based on conversion maps that consider the road and vehicle types.
2016-04-05
Technical Paper
2016-01-1419
Helen S. Loeb, Sam Chamberlain, Yi-Ching Lee
Abstract Motor vehicles crashes are the leading cause of injury and death of US teens. Driving simulators offer a way to safely expose drivers to specific events in a controlled and repeatable manner. They empower researchers by enabling them to compare different groups and driving behaviors and assess the cognitive and attention skills that are essential to safe driving. Classically, assessment of eye glances and gaze duration relies largely on time-consuming data reduction and video coding. In addition, the synchronization of eye tracker and simulator data is essential to a valid analysis of the eye glances patterns in relation to the driving scenario. To better understand and quantify eye glances in relation to a driving scene, Eyesync was developed as a synchronization bridge between an eye tracker and a driving simulator. It allows the real time synchronization and logging of eye tracking and simulator data. The design of the software is presented in this paper.
2016-04-05
Technical Paper
2016-01-1420
Shinichi Kojima, Shigeyoshi Hiratsuka, Nobuyuki Shiraki, Kazunori Higuchi, Toshihiko Tsukada, Keiichi Shimaoka, Kazuya Asaoka, Sho Masuda, Kazuhiko Nakashima
Abstract This study aims at the development of a projection pattern that is capable of shortening the time required by a driver to perceive a pedestrian at night when a vehicle’s high beams are utilized. Our approach is based on the spatio-temporal frequency characteristics of human vision. Visual contrast sensitivity is dependent on spatiotemporal frequency, and maximum contrast sensitivity frequency varies depending on environmental luminance. Conventionally, there are several applications that utilize the spatio-temporal frequency characteristics of human vision. For example, the National Television System Committee (NTSC) television format takes into consideration low-sensitivity visual characteristics. In contrast, our approach utilizes high-sensitivity visual characteristics based on the assumption that the higher contrast sensitivity of spatio-temporal frequencies will correlate more effectively with shorter perception times.
2016-04-05
Technical Paper
2016-01-1416
Rambabu Radakrishnan, Ganesh Dharmar, Mohanraj Balakrishnan, Sarath Padattil
Abstract Infotainment screens have become critical interface between occupant and Vehicle. Historical development of In-vehicle infotainment (IVI) has shown us the growth of interface size and usability is tremendously increased. The basic small segmented displays of past decades have transformed into large touch screen interface [1]. Earlier small screen interfaces had minimal information and less driver assist functions. It was mainly entertainment based information, which does not require much attention from driver. But recently it has changed from glancing the screen to seeing the screen, due to increased driver assist functions like GPS navigation etc. The amount of information displayed is also increased tremendously [2]. This scenario demands that the infotainment screen positioning inside the vehicle should be free from any visual obscuration, reflection and direct illumination on the infotainment screen due to ambient lighting.
2016-04-05
Technical Paper
2016-01-1417
Toshinao Fukui, Kazuhiko Nakamoto, Hiroyuki Satake
Abstract The use of a head-up display (HUD) system has become popular recently, as it can provide feedback information at a position easily seen by the driver. However, the outline of the HUD bezel often reflects on the windshield of a HUD equipped vehicle. This phenomenon occurs when the sun is at a high position and reflects off the top of the instrument panel and the front view is dark. For this reason, it can occur when driving on asphalt paved roads, causing annoyance to the driver. Under fixed environmental conditions, the vehicle based factors that influence the annoyance caused by reflected boundary lines are the position of the reflection, line thickness, and the contrast of the reflected boundary line. These can be represented by the conspicuity of a striped pattern (contrast sensitivity function). In previous research in 1991, M. S. Banks et al. studied a contrast sensitivity function that included the factors stated above.
2016-04-05
Technical Paper
2016-01-1429
Jangwoon Park, Sheila Ebert-Hamilton, K. Han Kim, Monica Jones, Byoung-Keon Park, Matthew Reed
Abstract This paper reports on the development and validation of an automated seat-dimension extraction system that can efficiently and reliably measure SAE J2732 (2008) seat dimensions from 3D seat scan data. The automated dimension-extraction process consists of four phases: (1) import 3D seat scan data along with seat reference information such as H-point location, back and cushion angles, (2) calculate centerline and lateral cross-section lines on the imported 3D seat scan data, (3) identify landmarks on the centerline and cross-section lines based on the SAE J2732 definitions, and (4) measure seat-dimensions using the identified landmarks. To validate the automated seat measurements, manually measured dimensions in a computer-aided-design (CAD) environment and automatically extracted ones in the current system were compared in terms of mean discrepancy and intra- and inter-observer standard deviations (SD).
2016-04-05
Technical Paper
2016-01-1430
Se Jin Park, Murali Subramaniyam, Seoung Eun Kim, Tae Hyun Kim, Hee Su Sin, Dong Hag Seo, Hyu Hyeong Nam, Jeong Cheol Lee
Abstract Seating comfort is associated with the various factors, and one of the principal components of a vehicle environment which can affect passenger’s comfort is vibration. The seat design plays a vital role in the vibration isolation. In recent years, automotive seat designers are paying more attention for the improvement of seat cushion properties. This paper provides information about a new automotive seat concept that use double-wall 3D air-mat in cushion along with foam cushion in the seat cushion system. To test the developed seat on vibration isolation characteristics, seating comfort, and ride quality experiments have been performed. This research is divided into two parts. At first, the newly developed seat tested on the motion simulator. In study 2, road tests were performed on the national highway. Two tri-axial accelerometers were used to measure acceleration at the foot and hip in two different seats (seat with and without double-wall 3D air-mat).
2016-04-05
Journal Article
2016-01-1427
Richard Young, Li Hsieh, Sean Seaman
Abstract The Dimensional Model of Driver Demand is extended to include Auditory-Vocal (i.e., pure “voice” tasks), and Mixed-Mode tasks (i.e., a combination of Auditory-Vocal mode with visual-only, or with Visual-Manual modes). The extended model was validated with data from 24 participants using the 2014 Toyota Corolla infotainment system in a video-based surrogate driving venue. Twenty-two driver performance metrics were collected, including total eyes-off-road time (TEORT), mean single glance duration (MSGD), and proportion of long single glances (LGP). Other key metrics included response time (RT) and miss rate to a Tactile Detection Response Task (TDRT). The 22 metrics were simplified using Principal Component Analysis to two dimensions. The major dimension, explaining 60% of total variance, we interpret as the attentional effects of cognitive demand. The minor dimension, explaining 20% of total variance, we interpret as physical demand.
2016-04-05
Technical Paper
2016-01-1428
Bruce Mehler, Bryan Reimer, Jonathan Dobres, James Foley, Kazutoshi Ebe
Abstract This paper presents the results of a study of how people interacted with a production voice-command based interface while driving on public roadways. Tasks included phone contact calling, full address destination entry, and point-of-interest (POI) selection. Baseline driving and driving while engaging in multiple-levels of an auditory-vocal cognitive reference task and manual radio tuning were used as comparison points. Measures included self-reported workload, task performance, physiological arousal, glance behavior, and vehicle control for an analysis sample of 48 participants (gender balanced across ages 21-68). Task analysis and glance measures confirm earlier findings that voice-command interfaces do not always allow the driver to keep their hands on the wheel and eyes on the road, as some assume.
2016-04-05
Technical Paper
2016-01-1426
Lex Fridman, Joonbum Lee, Bryan Reimer, Bruce Mehler
Abstract The challenge of developing a robust, real-time driver gaze classification system is that it has to handle difficult edge cases that arise in real-world driving conditions: extreme lighting variations, eyeglass reflections, sunglasses and other occlusions. We propose a single-camera end-toend framework for classifying driver gaze into a discrete set of regions. This framework includes data collection, semi-automated annotation, offline classifier training, and an online real-time image processing pipeline that classifies the gaze region of the driver. We evaluate an implementation of each component on various subsets of a large onroad dataset. The key insight of our work is that robust driver gaze classification in real-world conditions is best approached by leveraging the power of supervised learning to generalize over the edge cases present in large annotated on-road datasets.
2016-04-05
Technical Paper
2016-01-1425
Thomas McWilliams, Daniel Brown, Bryan Reimer, Bruce Mehler, Jonathan Dobres
Abstract Advanced driver assistance systems (ADAS) are an increasingly common feature of modern vehicles. The influence of such systems on driver behavior, particularly in regards to the effects of intermittent warning systems, is sparsely studied to date. This paper examines dynamic changes in physiological and operational behavior during lane departure warnings (LDW) in two commercial automotive systems utilizing on-road data. Alerts from the systems, one using auditory and the other haptic LDWs, were monitored during highway driving conditions. LDW events were monitored during periods of single-task driving and dual-task driving. Dual-task periods consisted of the driver interacting with the vehicle’s factory infotainment system or a smartphone to perform secondary visual-manual (e.g., radio tuning, contact dialing, etc.) or auditory-vocal (e.g. destination address entry, contact dialing, etc.) tasks.
2016-04-05
Technical Paper
2016-01-1424
Yi G. Glaser, Robert E. Llaneras, Daniel S. Glaser, Charles A. Green
Abstract Partially automated driving involves the relinquishment of longitudinal and/or latitudinal control to the vehicle. Partially automated systems, however, are fallible and require driver oversight to avoid all road hazards. Researchers have expressed concern that automation promotes extended eyes-off-road (EOR) behavior that may lead to a loss of situational awareness (SA), degrading a driver’s ability to detect hazards and make necessary overrides. A potential countermeasure to visual inattention is the orientation of the driver’s glances towards potential hazards via cuing. This method is based on the assumption that drivers are able to rapidly identify hazards once their attention is drawn to the area of interest regardless of preceding EOR duration. This work examined this assumption in a simulated automated driving context by projecting hazardous and nonhazardous road scenes to a participant while sitting in a stationary vehicle.
2016-04-05
Journal Article
2016-01-1423
Richard Young, Sean Seaman, Li Hsieh
Abstract Many metrics have been used in an attempt to predict the effects of secondary tasks on driving behavior. Such metrics often give rise to seemingly paradoxical results, with one metric suggesting increased demand and another metric suggesting decreased demand for the same task. For example, for some tasks, drivers maintain their lane well yet detect events relatively poorly. For other tasks, drivers maintain their lane relatively poorly yet detect events relatively well. These seeming paradoxes are not time-accuracy trade-offs or experimental artifacts, because for other tasks, drivers do both well. The paradoxes are resolved if driver demand is modeled in two orthogonal dimensions rather than a single “driver workload” dimension. Principal components analysis (PCA) was applied to the published data from four simulator, track, and open road studies of visual-manual secondary task effects on driving.
2016-04-05
Technical Paper
2016-01-1436
K. Han Kim, Sheila Ebert-Hamilton, Matthew Reed
Abstract Automotive seats are commonly described by one-dimensional measurements, including those documented in SAE J2732. However, 1-D measurements provide minimal information on seat shape. The goal of this work was to develop a statistical framework to analyze and model the surface shapes of seats by using techniques similar to those that have been used for modeling human body shapes. The 3-D contour of twelve driver seats of a pickup truck and sedans were scanned and aligned, and 408 landmarks were identified using a semi-automatic process. A template mesh of 18,306 vertices was morphed to match the scan at the landmark positions, and the remaining nodes were automatically adjusted to match the scanned surface. A principal component (PC) analysis was performed on the resulting homologous meshes. Each seat was uniquely represented by a set of PC scores; 10 PC scores explained 95% of the total variance. This new shape description has many applications.
2016-04-05
Technical Paper
2016-01-1435
Amber Hall, Michael Kolich
Abstract Many studies have been conducted and supporting literature has been published to better understand thermal comfort for the automotive environment, particularly, for the HVAC system within the cabin. However, reliable assessment of occupant thermal comfort for seating systems has lacked in development and understanding. Evaluation of seat system performance in terms of comfort has been difficult to quantify and thus most tests have been established such that the hardware components are tested to determine if the thermal feature does no harm to the customer. This paper evaluates the optimal seat surface temperature range to optimize human thermal comfort for an automotive seating system application for heated and ventilated seats.
2016-04-05
Technical Paper
2016-01-1438
Alexander Siefert
Abstract The objective evaluation of occupant comfort is a complex task where numerous aspects such as posture, pressure distribution, internal tissue loads, handling of steering wheel or gear shift have to be taken into consideration. Currently the standard evaluation procedures are hardware tests with human subjects, who are sensitive to all these aspects. However, the reproducibility of subjective tests for the comparison of design variants is a questionable issue and the costs for each test cycle with new prototypes are very high. As an alternative, numerical approaches using human body models such as AnyBody [1], CASIMIR [2] or RAMSIS [3] are applied. Here the issue of reproducibility does not exist and only little effort is required to investigate new setups. However, the disadvantage is that each approach focuses only on one specific aspect of occupant comfort, while in reality the emotions of the occupant are always a combination of all impressions.
2016-04-05
Technical Paper
2016-01-1432
Alexander Siefert
Abstract Predicting the vibration comfort is a difficult challenge in seat design. There is a broad range of requirements as the load cases strongly vary, representing different excitation levels, e.g. cobblestones or California roads. Another demand is the driver expectation, which is different for a pickup and a sports car. There are several approaches for assessing the vibrations of occupants while driving. One approach is the evaluation of comfort by integral quantities like the SEAT value, taking into account a weighting based on the human body sensitivity. Another approach is the dimension of perception developed by BMW, which is similar to psychoacoustics as the frequency range is separated with respect to occurring vibration phenomena. The seat transmissibility is in the focus of all activities. In the frequency range it defines the relation between the input at the seat slides and the output at the interface of human body and trim.
2016-04-05
Technical Paper
2016-01-1437
Giorgio Previati, Massimiliano Gobbi, Giampiero Mastinu
Abstract The paper is focused on both the subjective and the objective ride comfort evaluation of farm tractors. The experimental measurement of the relevant accelerations occurring at the tractor body, at the cabin and at the seat was performed on a number of different farm tractors. A subjective rating of the ride comfort level was performed by considering five different drivers. The comfort index was computed according with ISO 2631 and other standards. The acceleration of the seated subject was computed by means of a proper mechanical model of a farm tractor and derived at different positions on the subject body. It turned out that the acceleration of the lower torso was particularly relevant for establishing a matching between the subjective perception and the objective measurement and computation. A number of indices have been derived from the measured data which are able to correlate the subjective driver feeling with the measured accelerations.
2016-04-05
Technical Paper
2016-01-1431
Subramanian Premananth, Ganesh Dharmar, Hareesh Krishnan, Riyaz Mohammed
Abstract Virtual assessment of an occupant postural ergonomics has become an essential part of vehicle development process. To design vehicle for different market is one of the primary reason for manufacturers using digital tools to address the specific needs of the target market including cultural background, road and traffic conditions. RAMSIS is a widely used software for creating digital human models (DHM) of different target population which allows manufacturers to assess design with unique customer requirements in product design. Defining these requirements with RAMSIS human module helped development team to accurately define occupant targets such as occupant space, visibility and reachability etc. Occupant behavior and usage scenario are factors which are unique to target market and they influence the occupant posture and usage pattern inside the vehicle.
Viewing 121 to 150 of 5950