Criteria

Display:

Results

Viewing 31 to 60 of 5944
2017-03-28
Technical Paper
2017-01-1380
Richard Young
Abstract Dingus and colleagues recently estimated the crash odds ratios (ORs) for secondary tasks in the Strategic Highway Research Program Phase 2 (SHRP 2) naturalistic driving study. Their OR estimate for hand-held cell phone conversation (Talk) was 2.2, with a 95% confidence interval (CI) from 1.6 to 3.1. This Talk OR estimate is above 1, contrary to previous estimates below 1. A replication discovered two upward biases in their analysis methods. First, for video clips with exposure to a particular secondary task, Dingus and colleagues selected clips not only with exposure to that task, but often with concurrent exposure to other secondary tasks. However, for video clips without exposure to that task, Dingus and colleagues selected video clips without other secondary tasks. Hence, the OR estimate was elevated simply because of an imbalanced selection of video clips, not because of risk from a particular secondary task.
2017-03-28
Technical Paper
2017-01-1375
Louis Tijerina, Danielle Warren, Sang-Hwan Kim, Francine Dolins
Abstract This study investigated the effects of three navigation system human-machine interfaces (HMIs) on driver eye-glance behavior, navigational errors, and subjective assessments. Thirty-six drivers drove an unfamiliar 3-segment route in downtown Detroit. HMIs were 2D or 3D (level-of-detail) electronic map display + standard voice prompts, or 3D map-display augmented by photorealistic images + landmark-enhanced voice prompts. Participants drove the same three route segments in order but were assigned a different HMI condition/segment in a 3-period/3-treatment crossover experimental design. Results indicate that drivers’ visual attention using the advanced navigation systems HMIs were within US Department of Transportation recommended visual distraction limits. More turns missed in the first route segment, regardless of HMI, were attributable to greater route complexity and a late-onset voice prompt.
2017-03-28
Technical Paper
2017-01-1376
David H. Weir, Kevin Chao, R. Michael Van Auken
Abstract A class of driver attentional workload metrics has been developed for possible application to the measuring and monitoring of attentional workload and level of distraction in actual driving, as well as in the evaluation and comparison of in-vehicle human machine interface (HMI or DVI) devices. The metrics include driver/vehicle response and performance measures, driver control activity, and driver control models and parameters. They are the result of a multidisciplinary, experimental and analytical effort, applying control theory, manual control, and human factors principles and practices. Driving simulator and over-the-road experiments were used to develop, confirm, and demonstrate the use of the metrics in distracted driving situations. The visual-manual secondary tasks used in the study included navigation destination entry, radio tuning, critical tracking task, and a generic touch screen entry task.
2017-03-28
Technical Paper
2017-01-1364
Kashif Ali, Vikas Kumar, Virat Kalra
Abstract Vehicle occupant packaging and interior and exterior body design determine the overall visibility that the driver of the vehicle has. Visibility is also dependent on technological features inside and outside the passenger cell like proximity sensors and cameras etc. The focus of this research is to find and analyze the visibility percentages, blind spot angles and blind spot areas using statistical data both individually and as vehicle class put together in order to justify the need for standardization of basic visibility enhancing aids. This study has an added significance considering the Indian road transportation statistics. On an average, 16 people die every hour due to road accidents in India. The aim is to focus on cases that affect visibility in low speed driving, coasting and reversing that causes loss to public and private property.
2017-03-28
Technical Paper
2017-01-0650
Xinyu Li, Xinyu Ge, Ying Wang
Abstract The automotive industry is dramatically changing. Many automotive Original Equipment Manufacturers (OEMs) proposed new prototype models or concept vehicles to promote a green vehicle image. Non-traditional players bring many latest technologies in the Information Technology (IT) industry to the automotive industry. Typical vehicle’s characteristics became wider compared to those of vehicles a decade ago, and they include not only a driving range, mileage per gallon and acceleration rating, but also many features adopted in the IT industry, such as usability, connectivity, vehicle software upgrade capability and backward compatibility. Consumers expect the latest technology features in vehicles as they enjoy in using digital applications in laptops and mobile phones. These features create a huge challenge for a design of a new vehicle, especially for a human-machine-interface (HMI) system.
2017-03-28
Technical Paper
2017-01-0494
Michael Christian Haverkamp, Anja Moos
Abstract Material authenticity is an important factor for appearance and perceived quality of the vehicle interior. The term authenticity implies ambivalence: For the product designer, it means identification and trueness of the origin of the material. The customers, however, can only access information on the nature of the materials via their own perception of surface features. Thus, the intended authenticity of a material always needs to be conveyed by its surface. Specific cases illustrate the context: 1. The customer touches a part of known matter, but various layers prevent from directly touching the natural material: e.g. leather at the steering wheel, applications of wood. 2. Perception of a thin surface layer indicates authentic material, which is not fulfilled by the whole part: e.g. plastic parts plated with metal. 3.
2017-03-28
Technical Paper
2017-01-0059
Barbaros Serter, Christian Beul, Manuela Lang, Wiebke Schmidt
Abstract Today, highly automated driving is paving the road for full autonomy. Highly automated vehicles can monitor the environment and make decisions more accurately and faster than humans to create safer driving conditions while ultimately achieving full automation to relieve the driver completely from participating in driving. As much as this transition from advanced driving assistance systems to fully automated driving will create frontiers for re-designing the in-vehicle experience for customers, it will continue to pose significant challenges for the industry as it did in the past and does so today. As we transfer more responsibility, functionality and control from human to machine, technologies become more complex, less transparent and making constant safe-guarding a challenge. With automation, potential misuse and insufficient system safety design are important factors that can cause fatal accidents, such as in TESLA autopilot incident.
2017-03-28
Technical Paper
2017-01-0061
Sultan A.M Alkhteeb, Shigeru Oho, Yuki Nagashima, Seisuke Nishimura, Hiroyuki Shimizu
Abstract Lightning strikes on automobiles are usually rare, though they can be fatal to occupants and hazardous to electronic control systems. Vehicles’ metal bodies are normally considered to be an effective shield against lightning. Modern body designs, however, often have wide window openings, and plastic body parts have become popular. Lightning can enter the cabin of vehicles through their radio antennas. In the near future, automobiles may be integrated into the electric power grid, which will cause issues related to the smart grid and the vehicle-to-grid concept. Even today, electric vehicles (EVs) and plug-in hybrid vehicles (PHEVs) are charged at home or in parking lots. Such automobiles are no longer isolated from the power grid and thus are subject to electric surges caused by lightning strikes on the power grid.
2017-03-28
Technical Paper
2017-01-0326
Samuel J. Tomlinson, Martin J D Fisher, Thomas Smith, Kevin Pascal
Abstract When sealing an application with a radial O-ring system design there is a balance that must be struck between O-ring function and the ease of assembly. If design parameters are not properly controlled or considered it is possible to design an O-ring seal that would require assembly insertion forces that exceed acceptable ergonomic practices from a manufacturing standpoint. If designs are released into production with these high insertion forces manufacturing operators will struggle to assemble parts, creating opportunity for potential operator injury due to repetitive strain or CTD. In this study several variables impacting O-ring system insertion forces were tested to quantify the effects. Results were analyzed to identify design controls that could be implemented from an early design phase to optimize both functionality and ease of assembly.
2017-03-28
Technical Paper
2017-01-0184
Miyoko Oiwake, Ozeki Yoshiichi, Sogo Obata, Hideaki Nagano, Itsuhei Kohri
Abstract In order to develop various parts and components for hybrid electric vehicles, understanding the effect of their structure and thermal performance on their fuel consumption and cruising distance is essential. However, this essential information is generally not available to suppliers of vehicle parts and components. In this report, following a previous study of electric vehicles, a simple method is proposed as the first step to estimate the algorithm of the energy transmission and then the cruising performance for hybrid electric vehicles. The proposed method estimates the cruising performance using only the published information given to suppliers, who, in general, are not supplied with more detailed information. Further, an actual case study demonstrating application of the proposed method is also discussed.
2017-03-28
Technical Paper
2017-01-0168
B. Vasanth, Muthukumar Arunachalam, Sathya Narayana, S. Sathish Kumar, Murali govindarajalu
In current scenario, there is an increasing need to have faster product development and achieve the optimum design quickly. In an automobile air conditioning system, the main function of HVAC third row floor duct is to get the sufficient airflow from the rear heating ventilating and air-conditioning (HVAC) system and to provide the sufficient airflow within the leg locations of passenger. Apart from airflow and temperature, fatigue strength of the duct is one of the important factors that need to be considered while designing and optimizing the duct. The challenging task is to package the duct below the carpet within the constrained space and the duct should withstand the load applied by the passenger leg and the luggage. Finite element analysis (FEA) has been used extensively to validate the stress and deformation of the duct under different loading conditions applied over the duct system.
2017-03-28
Technical Paper
2017-01-0163
Gursaran D. Mathur
The author has developed a model that can be used to predict build-up of cabin carbon dioxide levels for automobiles based on many variables. There are a number of parameters including number of occupants that dictates generation of CO2 within the control volume, cabin leakage (infiltration or exfiltration) characteristics, cabin volume, blower position or airflow rate; vehicle age, etc. Details of the analysis is presented in the paper. Finally, the developed model has been validated with experimental data. The simulated data follows the same trend and matches fairly well with the experimental data.
2017-03-28
Technical Paper
2017-01-0155
Yongbing Xu, Gangfeng Tan, Xuexun Guo, Xianyao Ping
Abstract The closed cabin temperature is anticipated to be cooled down when it is a bit hot inside the driving car. The traditional air-condition lowers the cabin temperature by frequently switching the status of the compressor, which increases the engine’s parasitic power and shortens the compressor’s service-life. The semiconductor auxiliary cooling system with the properties of no moving parts, high control precision and quick response has the potential to assist the on-board air-condition in modulating the cabin temperature with relative small ranges. Little temperature differences between the cabin and the outside environment means that the system energy consumption to ensure the occupant comfort is relatively low and the inefficiency could be made up by the renewable energy source.
2017-03-28
Technical Paper
2017-01-0143
Neelakandan Kandasamy, Steve Whelan
Abstract During cabin warm-up, effective air distribution by vehicle climate control systems plays a vital role. For adequate visibility to the driver, major portion of the air is required to be delivered through the defrost center ducts to clear the windshield. HVAC unit deliver hot air with help of cabin heater and PTC heater. When hot air interacts with cold windshield it causes thermal losses, and windshield act as sink. This process may causes in delay of cabin warming during consecutive cabin warming process. Thus it becomes essential to predict the effect of different windscreen defrost characteristics. In this paper, sensitivity analysis is carried for different windscreen defrosts characteristics like ambient conditions, modes of operation; change in material properties along with occupant thermal comfort is predicted. An integrated 1D/3D CFD approach is proposed to evaluate these conditions.
2017-03-28
Technical Paper
2017-01-0433
Yang Xing, Chen Lv, Wang Huaji, Hong Wang, Dongpu Cao
Abstract Recently, the development of braking assistance system has largely benefit the safety of both driver and pedestrians. A robust prediction and detection of driver braking intention will enable driving assistance system response to traffic situation correctly and improve the driving experience of intelligent vehicles. In this paper, two types unsupervised clustering methods are used to build a driver braking intention predictor. Unsupervised machine learning algorithms has been widely used in clustering and pattern mining in previous researches. The proposed unsupervised learning algorithms can accurately recognize the braking maneuver based on vehicle data captured with CAN bus. The braking maneuver along with other driving maneuvers such as normal driving will be clustered and the results from different algorithms which are K-means and Gaussian mixture model (GMM) will be compared.
2017-03-28
Technical Paper
2017-01-0432
Bing Zhu, Zhipeng Liu, Jian Zhao, Weiwen Deng
Abstract Adaptive cruise control system with lane change assistance (LCACC) is a novel advanced driver assistance system (ADAS), which enables dual-target tracking, safe lane change, and longitudinal ride comfort. To design the personalized LCACC system, one of the most important prerequisites is to identify the driver’s individualities. This paper presents a real-time driver behavior characteristics identification strategy for LCACC system. Firstly, a driver behavior data acquisition system was established based on the driver-in-the-loop simulator, and the behavior data of different types of drivers were collected under the typical test condition. Then, the driver behavior characteristics factor Ks we proposed, which combined the longitudinal and lateral control behaviors, was used to identify the driver behavior characteristics. And an individual safe inter-vehicle distances field (ISIDF) was established according to the identification results.
2017-03-28
Technical Paper
2017-01-0406
Jindong Ren, Xiaoming Du, Tao Liu, Honghao Liu, Meng Hua, Qun Liu
Abstract This paper presents an integrated method for rapid modeling, simulation and virtual evaluation of the interface pressure between driver human body and seat. For simulation of the body-seat interaction and for calculation of the interface pressure, besides body dimensions and material characteristics an important aspect is the posture and position of the driver body with respect to seat. In addition, to ensure accommodation of the results to the target population usually several individuals are simulated, whose body anthropometries cover the scope of the whole population. The multivariate distribution of the body anthropometry and the sampling techniques are usually adopted to generate the individuals and to predict the detailed body dimensions. In biomechanical modeling of human body and seat, the correct element type, the rational settings of the contacts between different parts, the correct exertion of the loads to the calculation field, etc., are also crucial.
2017-03-28
Technical Paper
2017-01-0409
Divyanshu Joshi, Anindya Deb, Clifford Chou
Abstract It is recognized that there is a dearth of studies that provide a comprehensive understanding of vehicle-occupant system dynamics for various road conditions, sitting occupancies and vehicle velocities. In the current work, an in-house-developed 50 degree-of-freedom (DOF) multi-occupant vehicle model is employed to obtain the vehicle and occupant biodynamic responses for various cases of vehicle velocities and road roughness. The model is solved using MATLAB scripts and library functions. Random road profiles of Classes A, B, C and D are generated based on PSDs (Power Spectral Densities) of spatial and angular frequencies given in the manual ISO 8608. A study is then performed on vehicle and occupant dynamic responses for various combinations of sitting occupancies, velocities and road profiles. The results obtained underscore the need for considering sitting occupancies in addition to velocity and road profile for assessment of ride comfort for a vehicle.
2017-03-28
Technical Paper
2017-01-0407
Fei Huo, Huyao Wu
Abstract Biomechanics and biodynamics are increasingly focused on the automotive industry to provide comfortable driving environment, reduce driver fatigue, and improve passenger safety. Man-centered conception is a growing emphasis on the open design of automobile. During the long-term driving, occupational drivers are easily exposed to the neck pain, so it is important to reduce the muscle force load and its fatigue, which are not usually considered quantitatively during traditional ergonomics design, so standards related are not well developed to guide the vehicle design; On the other hand, the head-neck models are always built based on the statics theory, these are not sufficient to predict the instantaneous variation of the muscle force. In this paper, a head-neck model with multi DOFs is created based on multibody dynamics. Firstly, a driver-vehicle-road model considering driver multi-rigid body model, vehicle subsystems, and different ranks of pavement is built.
2017-03-28
Technical Paper
2017-01-1636
Lukas Preusser
Abstract Along with the development and marketability of vehicles without an internal combustion engine, electrically heated surfaces within these vehicles are getting more and more important. They tend to have a quicker response while using less energy than a conventional electric heater fan, providing a comfortable temperature feel within the cabin. Due to the big area of heated surface it is important to spread the heating power in a way that different heat conduction effects to underlying materials are considered. In case an accurate sensor feedback of the targeted homogeneous surface temperature cannot be guaranteed, a thermal energy model of the heated system can help to set and maintain a comfortable surface temperature. For a heated steering wheel development project, different models have been created to meet that aim using mechanistic approaches starting with a predominantly first-order dynamics model and ending with a distributed parameter multi-feedback system.
2017-03-28
Technical Paper
2017-01-1647
Se Jin Park, Murali Subramaniyam, Seunghee Hong, Damee Kim, Jaehak Yu
Abstract Driving is a complex activity with the continuously changing environment. Safe driving can be challenged by changes in drivers’ physical, emotional, and mental condition. Population in the developed world is aging, so the number of older drivers is increasing. Older drivers have relatively higher incidences of crashes precipitated by drivers’ medical emergencies when compared to another age group. On the elderly population, automakers are paying more attention to developing cars that can measure and monitor the drivers’ health status to protect them. In recent years, the automotive industry has been integrating health, wellness, and wellbeing technologies into cars with Internet of Things (IoT). A broad range of applications is possible for the IoT-based elderly smart healthcare monitoring systems.
2017-03-28
Technical Paper
2017-01-1368
Jeffrey Aaron Suway, Steven Suway
Abstract Mapping the luminance values of a visual scene is of broad interest to accident reconstructionists, human factors professionals, and lighting experts. Such mappings are useful for a variety of purposes, including determining the effectiveness and appropriateness of lighting installations, and performing visibility analyses for accident case studies. One of the most common methods for mapping luminance is to use a spot type luminance meter. This requires individual measurements of all objects of interest and can be extremely time consuming. Luminance cameras can also be used to create a luminance map. While luminance cameras will map a scene’s luminance values more quickly than a spot luminance meter, commercially available luminance cameras typically require long capture times during low illuminance (up to 30 seconds). Previous work has shown that pixel intensity captured by consumer-grade digital still cameras can be calibrated to measure luminance.
2017-03-28
Technical Paper
2017-01-1365
Michael Larsen
Abstract Vehicle certification requirements generally fall into 2 categories: self-certification and various forms of type approval. Self-certification requirements used in the United States under Federal Motor Vehicle Safety Standards (FMVSS) regulations must be objective and measurable with clear pass / fail criteria. On the other hand, Type Approval requirements used in Europe under United Nations Economic Commission for Europe (UNECE) regulations can be more open ended, relying on the mandated 3rd party certification agency to appropriately interpret and apply the requirements based on the design and configuration of a vehicle. The use of 3rd party certification is especially helpful when applying regulatory requirements for complex vehicle systems that operate dynamically, changing based on inputs from the surrounding environment. One such system is Adaptive Driving Beam (ADB).
2017-03-28
Technical Paper
2017-01-1411
Gary A. Davis
Abstract For at least 15 years it has been recognized that pre-crash data captured by event data recorders might help illuminate the actions of drivers prior to crashes. In left-turning crashes where pre-crash data are available from both vehicles it should be possible to estimate features such as the location and speed of the opposing vehicle at the time of turn initiation and the reaction time of the opposing driver. Difficulties arise however from measurement errors in pre-crash data and because the EDR data from the two vehicles are not synchronized so the resulting uncertainties should be accounted for. This paper describes a method for accomplishing this using Markov Chain Monte Carlo computation. First, planar impact methods are used to estimate the speeds at impact of the involved vehicles. Next, the impact speeds and pre-crash EDR data are used to reconstruct the vehicles’ trajectories during approximately 5 seconds preceding the crash.
2017-03-28
Technical Paper
2017-01-1398
Yoshiyuki Hatakeyema
Abstract Since drowsy driving is a major cause of serious traffic accidents, there is a growing requirement for drowsiness prevention technologies. This study proposes a drowsy driving prediction method based on eye opening time. One issue of using eye opening time is predicting strong drowsiness before the driver actually feels sleepy. Because overlooking potential hazards is one of the causes of traffic accidents and is closely related to driver cognition and drowsiness, this study focuses on eye opening movements during driving. First, this report describes hypotheses concerning drowsiness and eye opening time based on the results of previous studies. It is assumed that the standard deviation of eye opening time (SDEOP) indicates driver drowsiness and the following two transitions are considered: increasing and decreasing SDEOP. To confirm the hypotheses, the relationship between drowsiness and SDEOP was investigated.
2017-03-28
Technical Paper
2017-01-1397
Alba Fornells, Núria Parera, Adria Ferrer, Anita Fiorentino
Abstract While accident data show a decreasing number of fatalities and serious injuries on European Union (EU) roads, recent data from ERSO (European Road Safety Observatory) show an increasing proportion of elderly in the fatality statistics. Due to the continuous increase of life expectancy in Europe and other highly-developed countries, the elderly make up a higher number of drivers and other road users such as bicyclists and pedestrians whose mobility needs and habits have been changing over recent years. Moreover, due to their greater vulnerability, the elderly are more likely to be seriously injured in any given accident than younger people. With the goal of improving the safety mobility of the elderly, the SENIORS Project, funded by the European Commission, is investigating and assessing the injury reduction that can be achieved through innovative tools and safety systems.
2017-03-28
Technical Paper
2017-01-1402
SeHwan Kim, Junmin Wang, Dennis Guenther, Gary Heydinger, Joshua Every, M. Kamel Salaani, Frank Barickman
Abstract The rapid development of driver assistance systems, such as lane-departure warning (LDW) and lane-keeping support (LKS), along with widely publicized reports of automated vehicle testing, have created the expectation for an increasing amount of vehicle automation in the near future. As these systems are being phased in, the coexistence of automated vehicles and human-driven vehicles on roadways will be inevitable and necessary. In order to develop automated vehicles that integrate well with those that are operated in traditional ways, an appropriate understanding of human driver behavior in normal traffic situations would be beneficial. Unlike many research studies that have focused on collision-avoidance maneuvering, this paper analyzes the behavior of human drivers in response to cut-in vehicles moving at similar speeds. Both automated and human-driven vehicles are likely to encounter this scenario in daily highway driving.
2017-03-28
Technical Paper
2017-01-1390
Monica Lynn Haumann Jones, Jangwoon Park, Sheila Ebert-Hamilton, K. Han Kim, Matthew P. Reed
Abstract Seat fit is characterized by the spatial relationship between the seat and the vehicle occupant’s body. Seat surface pressure distribution is one of the best available quantitative measures of this relationship. However, the relationships between sitter attributes, pressure, and seat fit have not been well established. The objective of this study is to model seat pressure distribution as a function of the dimensions of the seat and the occupant’s body. A laboratory study was conducted using 12 production driver seats from passenger vehicles and light trucks. Thirty-eight men and women sat in each seat in a driving mockup. Seat surface pressure distribution was measured on the seatback and cushion. Relevant anthropometric dimensions were recorded for each participant and standardized dimensions based on SAE J2732 (2008) were acquired for each test seat.
2017-03-28
Technical Paper
2017-01-1389
Ankush Kamra, Sandeep Raina, Pankaj Maheshwari, Abhishek Agarwal, Prasad Latkar
Abstract Automotive seating is designed by considering safety, comfort and aesthetics for the occupants. Seating comfort is one of the important parameters for the occupant for enhancing the overall experience in a vehicle. Seating comfort is categorized as static (or showroom) comfort and dynamic comfort. The requirements for achieving static and dynamic comfort can sometimes differ and may require design parameters such as PU hardness to be set in opposite directions. This paper presents a case wherein a base seat with good dynamic comfort is taken and an analysis is done to improve upon the static comfort, without compromising on the dynamic comfort. The study focuses on improving the initial comfort by considering various options for seating upholstery.
2017-03-28
Technical Paper
2017-01-1392
Abhilash CHOUBEY, RAJESH PAL, Kotanageswararao Puli, Pankaj Maheshwari, Sandeep Raina
Abstract The seating system is an inseparable part of any automobile. Its main function is not only to provide a space to the user for driving but also to provide support, comfort and help to ergonomically access the various features and necessary operations of the vehicle. For comfort and accessibility, seats are provided with various mechanisms for adjustments in different directions. Typical mechanisms used for seating adjustment include seatback recliners, lifters (height adjusters), longitudinal adjusters, lumber support, rear seat folding mechanism etc. These mechanisms can be power operated or manual based on vehicle/market requirements. For manual mechanisms, the occupant adjusts the position of seat by operating the mechanism with his/her hand. Often comfort to the occupant during operation is limited to the operating effort of the mechanism. However, as will be shown through this study, operating effort is only one of the parameters which provide overall comfort feeling.
Viewing 31 to 60 of 5944