Criteria

Display:

Results

Viewing 1 to 30 of 5931
2017-03-28
Technical Paper
2017-01-1647
Se Jin Park, Murali Subramaniyam, Seunghee Hong, Damee Kim, Jaehak Yu
Driving is a complex activity with the continuously changing environment. Safe driving can be challenged by changes in drivers’ physical, emotional, and mental condition. Population in the developed world is aging, so the number of older drivers is increasing. Older drivers have relatively higher incidences of crashes precipitated by drivers’ medical emergencies when compared to another age group. On the aged population, automakers paying more attention to developing cars that can measure and monitor drivers’ health status to protect them. In recent years, the automotive industry integrating health, wellness, and wellbeing technologies into cars with Internet of Things (IoT). A broad range of application for IoT-based elderly smart healthcare monitoring system is possible. For example, smart car, smart home, smart bed, etc., Both luxury automakers and key global original equipment manufacturers integrating healthcare services into their next-generation products.
2017-03-28
Technical Paper
2017-01-1562
Junyu Zhou, Chao Liu, Jan Kubenz, Günther Prokop
This Paper describes a new hybrid algorithm for multi-body Dynamics in vehicle system dynamics which exploits the advantages of both embedding technique algorithm and augmented formulation algorithm. A vehicle dynamic modeling based on the hybrid algorithm is presented. Embedding technique has a relatively small number of equations of motion. Using embedding technique an enhanced parametric vehicle dynamics model can be built, in which the kinematic and compliance characteristics of suspension are represented by characteristic curves. Because of small number of equations the vehicle dynamics model can be simulated very efficiently. Compare to embedding technique a main benefit of augmented formulation is relatively simple for computer programming. With the help of the augmented formulation the structure of the vehicle dynamic model can easily be extended. Advantages of both embedding technique and augmented formulation can be utilized by hybridizing them.
2017-03-28
Technical Paper
2017-01-0163
Gursaran D. Mathur
In southern states (e.g., Arizona) typically people drive their vehicles in summer by running vehicle’s air conditioning systems in recirculation modes only. Carbon dioxide exhaled by occupants remains within the cabin during operation in recirculation mode. The concentration of carbon dioxide starts increasing in the cabin. The CO2 that is inhaled by the occupants goes into their blood stream that negatively affects occupant’s health. ASHRAE Standard 62 specifies the safe levels of carbon dioxide in conditioned space for humans. The CO2 concentration limit per ASHRAE is 700 ppm over the ambient conditions on a continuous basis. Current global average ambient concentration level of CO2 as of March 2015 (NOAA, 2016) is approximately 401 ppm. Hence, if the CO2 concentration exceeds approximately 1100 ppm inside of a home or a vehicle cabin, then we must introduce outside air into the home or vehicle cabin to reduce the CO2 concentration.
2017-03-28
Technical Paper
2017-01-0059
Barbaros Serter, Christian Beul, Manuela Lang, Wiebke Schmidt
Today, highly automated driving is paving the road for full autonomy. From basic cruise control to complex automated systems, there is a wide range of technology on the road and more highly automated systems are being rigorously tested that are soon going to be available to consumers. Highly automated vehicles can monitor the environment and make decisions more accurately and faster than humans to create safer driving conditions while ultimately achieving full automation to relieve the driver completely from participating in driving. As much as this transition from advanced driving assistance systems to fully automated driving will create frontiers for re-designing the in-vehicle experience for customers, it will continue to pose significant challenges for the industry as it did in the past and does so today.
2017-03-28
Technical Paper
2017-01-0061
Sultan A.M Alkhteeb, Shigeru Oho, Yuki Nagashima, Seisuke Nishimura, Hiroyuki Shimizu
Lightning strikes on automobiles are usually deemed rare, though they can be fatal to occupants and hazardous to electronic control systems. Vehicle's metal bodies are normally considered to be an effective shield against lightning. Modern body designs, however, have wide opening of windows, and plastic body parts are becoming popular. Lightning can run into the cabin of vehicles through radio antennas and hit the driver, as it happened in Japan last year. As the shark-fin antenna, which has wiring above the heads of occupants, becomes more popular, it may pose an increased risk of lightning attack to the passengers. In the near future, automobiles may be integrated into the electric power grid as people ponder about the smart grid and vehicle to grid (V2G) concepts. Even today electric vehicles (EV) and plug-in hybrid vehicle (PHEV) are being charged at home or in parking lots.
2017-03-28
Technical Paper
2017-01-1694
Victor Silva, Renato Veiga
Demand for enhanced infotainment systems with features like navigation, real-time traffic, music streaming service, mirroring and others is increasing, forcing automakers to develop solutions that fulfill customer needs. However, many of those systems are too expensive to be fitted to an entry-level vehicle leaving a gap in the market that fails customer’s expectation. This gap is usually filled by a smartphone which may have all the features the customer wants but in many cases it cannot be properly fitted in the vehicle due to lack of specific storage space. This paper describes how the engineering team developed an innovative, flexible and effective solution that holds a smartphone in an ergonmic location.
2017-03-28
Technical Paper
2017-01-1393
Georges Beurier, Michelle Cardoso, Xuguang Wang
A new experimental seat was designed to investigate sitting biomechanics. Previous literature suggested links between sitting discomfort and shear forces, however, research on this topic is limited. The evaluation of sitting discomfort derived from past research has been primarily associated with seat pressure distribution. The key innovative feature of the experimental seat is not only pressure distribution evaluation but shear forces as well. The seat pan of the experimental seat compromises of a matrix of 52 cylinders, each equipped with a tri-axial force sensor, enabling us to measure both normal and shear forces. The position of each cylinder is also adjustable permitting a uniform pressure distribution underneath the soft tissue of the buttocks and thighs. Backrest, armrests, seat pan and flooring are highly adjustable and equipped with forces sensors to measure contact forces.
2017-03-28
Technical Paper
2017-01-1411
Gary A. Davis
For at least 15 years it has been recognized that pre-crash data captured by event data recorders (EDR) might help illuminate the actions taken by drivers prior to a crash. In left-turning crashes where pre-crash data are available from both vehicles it should be possible to estimate features such as the location and speed of the opposing vehicle at the time of turn initiation and the reaction time of the opposing driver. Difficulties arise however from measurement errors in pre-crash speed data and because the EDR data from the two vehicles are not synchronized; the resulting uncertainties should be accounted for. This paper describes a method for accomplishing this using Markov Chain Monte Carlo computation. First, planar impact methods are used to estimate the speeds at impact of the involved vehicles. Next, the impact speeds and pre-crash EDR data are used to reconstruct the vehicles’ trajectories during the approximately 5 seconds preceding the crash.
2017-03-28
Technical Paper
2017-01-1383
Satheesh Kumar Chandran, James Forbes, Carrie Bittick, Kathleen Allanson, Fnu Brinda
There is a strong business case for automotive interfaces to undergo usability testing throughout their product development life cycle. System Usability Scale (SUS) is a simple and standard measure of usability. To meet the timing needs for product development, usability testing needs to be performed in a quick, cost effective manner. Hence the required sample size of participants for a usability study is one of the critical factors. To determine an acceptable sample size, a Monte Carlo simulation using SUS scores from eleven different in-vehicle automotive interface usability studies was used to create 500,000 sub-samples of different sample sizes. The percentage of sub-samples with mean scores within the confidence interval of the population mean was calculated. At a sub-sample size of thirty five, 95% of the sub-samples have a mean SUS score within the 95% confidence interval of the population mean.
2017-03-28
Technical Paper
2017-01-1440
Shixing Chen, Ming Dong, Jerry Le, Mike Rao
Vehicle safety systems may use occupant physiological information, e.g., occupant heights and weights to further enhance occupant safety. Determining occupant physiological information in a vehicle, however, is a challenging problem due to variations in pose, lighting conditions and background complexity. In this paper, we present two novel occupant height estimation approaches. In the first (2D) approach, by detecting the occupant’s eye level, the seating height of the occupant is first computed based on the distance from a conventional camera to the occupant’s head, which is then adjusted for the seat angles received from the seat angle sensors. In the second (3D) approach, we use additional depth information from a depth camera, e.g., Microsoft Kinect. In the 3D approach, we first detect human body and frontal face views (restricted by the Pitch and Roll values in the pose estimation) based on RGB and depth information.
2017-03-28
Technical Paper
2017-01-1442
Dawei Luo, Jianbo Lu, Gang Guo
This paper proposes a low-cost but indirect system which can be used for occupancy detection and occupant counting. The system can serve as a way to confirm the number of occupants riding inside a car or the only way to determine the occupancy where the other means is not reliable (e.g., 2nd row occupants might not use seat belts and weight sensors might not be installed). The system can be used for various mobility applications including car rental, fleet management, taxi, car sharing, etc. The system utilizes existing motion sensors, such as those used for the Roll Stability Control function, together with door ajar signals. The motion signature during occupant’s on-boarding and off-boarding a car is first extracted from the response of the vehicle body which are reflected by the motion sensors. Then the weight of the occupant, during on-boarding and off-boarding, is determined through fitting the vehicle response signals to a transient response from a vehicle model.
2017-03-28
Technical Paper
2017-01-0326
Samuel J. Tomlinson, Martin J D Fisher, Thomas Smith, Kevin Pascal
When sealing an application with a radial O-ring system design there is a balance between O-ring function and ease of assembly. Often times the assembly insertion force rises to the point of unacceptable manufacturing ergonomic practice. Designs are released into production with these high insertion forces while manufacturing operators struggle to assemble parts leaving opportunity for potential operator injury. Several variables impacting O-ring system insertion forces were tested to quantify the effects. Results were analyzed to identify design controls that could be implemented from an early design phase optimizing functionality and ease of assembly.
2017-03-28
Technical Paper
2017-01-0650
Xinyu Li, Xinyu Ge, Ying Wang
The automotive industry is dramatically changing. Stringent emission regulations and rising cost of energy push Original Equipment Manufacturers (OEMs) to adopt aftertreatment equipment and make a vehicle powertrain system more efficient to save consumers’ operation cost. Many OEMs proposed new prototype models or concept designs to promote green vehicle image. However, it is still challenging for an OEM to check whether consumers really accept new designs without sales data. Non-traditional player in the automotive industry bring many latest technology in the Information Technology (IT) industry to the automotive industry. Typical vehicle’s characteristics became wider compared to those of a decade ago including not only a drive range, mileage per gallon and acceleration rating, but also many features adopted in the IT industry, such as easy usability, connectivity, vehicle software upgrade capability and backward compatibility.
2017-03-28
Technical Paper
2017-01-0155
Yongbing Xu, Gangfeng Tan, Xuexun Guo, Xianyao Ping
When it is a bit hot in the vehicle during the driving process, the closed cabin temperature still needs to be cooled down. Though the use of car air-condition can cool down the closed cabin temperature, it needs to start and stop the compressor frequently, which increases the parasitic power of the engine and shorten the life-span of the compressor. With the use of semiconductor auxiliary cooling system to regulate the cabin temperature, the system noise is small and the temperature control precision is high. But the system is inefficiency and the energy consumption is high. This research considered the effects of different body heat producing and transferring characteristics, environment temperature and vehicle speed on the capacity of the system overall, and made the semiconductor auxiliary cooling system in a range of low power consumption under the condition of ensuring human comfort.
2017-03-28
Technical Paper
2017-01-0143
Neelakandan Kandasamy, Steve Whelan
During cabin warm-up, effective air distribution by vehicle climate control systems plays a vital role. For adequate visibility to the driver, major portion of the air is required to be delivered through the defrost center ducts to clear the windshield. Which results in thermal interaction between warm air delivered from the HVAC unit and the cold windshield. This creates thermal losses since the windshield acts as a heat sink, which delays the heating of passenger compartment causing delay in time to providing thermal comfort to the passenger. Thus it becomes essential to predict the effect of different windscreen defrost characteristics and its impact on occupant thermal comfort. In this paper, sensitivity analysis is carried for different windscreen defrosts characteristics like ambient conditions modes of operation; change in material properties along with occupant thermal comfort is predicted. An integrated 1D/3D CFD approach is proposed to evaluate the same.
2017-03-28
Technical Paper
2017-01-1390
Monica Lynn Haumann Jones, Jangwoon Park, Sheila Ebert-Hamilton, K. Han Kim, Matthew P. Reed
Seat fit is characterized as the spatial relationship between the seat and the sitter’s anthropometric dimensions. Seat surface pressure distribution is one of the best available quantitative measures of the interaction between occupant and seat interface. The relationship between areas of contact or pressure and seat fit has not been well established. The objective of this study is to model seat pressure distribution as a function of the dimensions of the seat and the sitter’s body. A laboratory study was conducted using 12 production driver seats from passenger cars and light trucks. Thirty-eight men and women sat in each seat in a driving mockup. Seat surface pressure distribution was measured on the seatback and cushion. Standard anthropometric dimensions were recorded for each participant and standardized dimensions based on SAE J2732 were acquired for each test seat.
2017-03-28
Technical Paper
2017-01-0184
Miyoko Oiwake, Ozeki Yoshiichi, Sogo Obata, Hideaki Nagano, Itsuhei Kohri
For the development of various parts and components of hybrid electric vehicles, it is inevitable to realize the effects of those structure and thermal performance on the fuel consumption and cruising distance. However, in general, essential and detailed information is not always open to the suppliers of the vehicle parts and components. In this report, the authors propose a simple method to estimate the algorithm of the energy transmission and then the cruising performance roughly only based on the published information. In particular, the effects of heat transfer characteristics of glass and body on the cruising performance are introduced as an example of the application.
2017-03-28
Technical Paper
2017-01-1376
David H. Weir, Kevin Chao, R. Michael Van Auken
A class of driver attentional workload metrics has been developed for possible application to the measuring and monitoring of attentional workload and level of distraction in actual driving, as well as in the evaluation and comparison of in-vehicle human machine interface (HMI or DVI) devices. The metrics include driver/vehicle response and performance measures, driver control activity, and driver control models and parameters. They are the result of a multidisciplinary, experimental and analytical effort, applying control theory, manual control, and human factors principles and practices. Driving simulator and over-the-road experiments were used to develop, confirm, and demonstrate the use of the metrics in distracted driving situations. The visual-manual secondary tasks used in the study included navigation destination entry, radio tuning, critical tracking task, and a generic touch screen entry task.
2017-03-28
Technical Paper
2017-01-1386
Yu Zhang, Linda Angell, Silviu Pala, Tetsuya Hara, Doua Vang
In recent decades, innovations in both direct interface (e.g. touchscreen based systems) and indirect interface (e.g. remote controller based systems) have successfully entered consumer markets. These solutions became major channels of infotainment function interaction. However, the popularity of new Human-Machine-Interfaces (HMIs) also comes with growing concerns for driver distraction. It is not a trivial quest to design a system that can make functions accessible to drivers as well as maintain drivers’ ability to cope with the complex driving task. To understand driver distraction, eye behavior has been studied extensively with a focus on off-road glances. Several standards and guidelines are based on off-road glance-related measures. An alternative approach is to consider both on-road and off-road glances. This can be done using an algorithm such as Kircher and Ahlstrom’s (2009) AttenD algorithm.
2017-03-28
Technical Paper
2017-01-1462
Haiyan Li, Xin Jin, Hongfei Zhao, Shihai Cui, Binghui Jiang, King H. Yang
Computational human body models, especially detailed finite element models are suitable for investigation of human body kinetic responds and injury mechanisim. A real-world lateral vehicle-tree impact accident was reconstructed by using finite element method according to the accident description in the CIREN database. At first, a baseline vehicle FE model was modified and validated according to the NCAP lateral impact test. The interaction between the car and the tree in the accident was simulated using LS-Dyna software. Patameters that affect the simulation results, such as the initial pre-crash speed, impact direction, and the initial impact location on the vehicle, was analyzed. The parameters were determined by matching the simulated vehicle body deformations and kinematics to the accident reports.
2017-03-28
Technical Paper
2017-01-1366
Jeffrey Muttart, Swaroop Dinakar, Jeffrey Suway, Michael Kuzel, Timothy Maloney, Wayne Biever, Toby Terpstra, Tilo Voitel, David Cavanaugh, T.J. Harms
More than half all pedestrian fatalities occur at night. To address this problem, in the 1950s through 1970s Blackwell conducted considerable research that showed that a way to account for the limitations related to drivers’ expectancies at night would be to limit a driver’s time to view the forward roadway. The reduced information during the limited exposure time became a surrogate for the limited information available to on-road drivers at night. With the release of the SHRP-2 naturalistic database, we are able to see how drivers responded to in-road obstacles at night such as animals, bicyclists, pedestrians, and tree limbs. Using the naturalistic response data as a baseline, safe closed road recognition methodology was developed. The closed road study built upon the early nighttime recognition work by Blackwell, the observers were allowed to view the forward roadway for 1 or ¼ second.
2017-03-28
Technical Paper
2017-01-1636
Lukas Preusser
Problem Already in the initial design failure mode analysis of this relatively young feature it became clear that an accurate sensor reading is critical to the performance of the heated steering wheel system. As the temperature reception capability of the human palm is very distinct, small deviations [≤0.1°??/??] from the targeted wheel temperature may be registered as "getting too hot" or "remaining too cold". As per industry standard, heated wheels only utilize a single sensor input to the temperature control circuitry, making it even more important for the sensor to reflect the current surface temperature. Certainly the sensor must be placed where it neither can be seen nor felt, decoupling surface from the sensor's temperature. Production tolerances for sensor placement on the heater mat along with heater mat placement tolerances relative to the armature's position add to the decoupling issue, causing unacceptably high or low steering wheel surface temperatures.
2017-03-28
Technical Paper
2017-01-1434
Dongran Liu, Marcos Paul Gerardo-Castro, Bruno Costa, Yi Zhang
Heart rate is one of the most important biological features for health information. Most of the state-of-the-art heart rate monitoring systems relies on invasive technologies that require physical contact with the user. In this paper, we propose a non- invasive technology based on a single camera to measure the users heart rate in real time. The algorithm estimates the heart rate based on facial color changes. The input is a series of video frames with the automatically detected face of the user. A Gaus- sian pyramid spatial filter is applied on the inputs to obtain a down sampled high signal-to-noise ratio images. A temporal Fourier transform is applied to the video to get the signal spec- trum. Next, a temporal band-pass filter is applied on the trans- formed signal in the frequency domain to extract the frequency band of heart beats. The heart rate is then estimated by finding the dominant frequency in the Fourier domain.
2017-03-28
Technical Paper
2017-01-1368
Jeffrey Aaron Suway, Steven Suway
Mapping the luminance values of a visual scene is of broad interest to accident reconstructionists, human factors professionals, and lighting experts. Such mappings are useful for a variety of purposes, including determining the effectiveness and appropriateness of lighting installations, and performing visibility analyses for accident case studies. One of the most common methods for mapping luminance is to use a spot type luminance meter. This requires individual measurements of all objects of interest and can be extremely time consuming. Luminance cameras can also be used to create a luminance map. While luminance cameras will map a scene’s luminance values more quickly than a spot luminance meter, commercially available luminance cameras typically require long capture times during low illuminance (up to 30 seconds). Previous work has shown that pixel intensity captured by consumer-grade digital still cameras can be calibrated to measure luminance.
2017-03-28
Technical Paper
2017-01-1396
Sarah S. Sharpe, Robyn Brinkerhoff, Caroline Crump, Douglas Young
Unintended acceleration events due to pedal misapplication have been shown to occur more frequently in older vs. younger drivers. While such occurrences are well documented, the nature of these movement errors is not well-characterized in common pedal error scenarios: namely, on-road, non-emergency stopping or slowing maneuvers. It is commonly assumed that drivers move in a ballistic or “direct hit” trajectory from the accelerator to the brake pedal. However, recent simulator studies showed that drivers do not always move directly between pedals, with older drivers displaying more variable foot trajectories than younger drivers. Our study investigated pedal movement trajectories in drivers ages 67.9 ± 5.2 years (7 males, 8 females) during on-road driving in response to traffic light changes. Three different sedans and a pick-up truck were utilized.
2017-03-28
Technical Paper
2017-01-0406
Jindong Ren, Xiaoming Du, Tao Liu, Honghao Liu, Meng Hua, Qun Liu
This paper presented an integrated method for rapid modeling, simulation and virtual evaluation of the interface pressure between driver human body and seat. For the simulation of the body-seat interaction and the calculation of the interface pressure, in addition to body dimensions and material characteristics, an important aspect was the posture and position of the driver body with respect to the seat. The correct simulation results could be acquired only by realistic setting of the body posture, by introducing posture prediction models. To ensure accommodation of the results to the target population, usually several individuals were simulated, whose body anthropometries covered the scope of the whole population. The multivariate distribution of the body anthropometry and the sampling techniques were adopted to generate the individuals and to predict the detailed body dimensions.
2017-03-28
Technical Paper
2017-01-0409
Divyanshu Joshi, Anindya Deb, Clifford Chou
Abstract It is recognized that there is a dearth of studies that provide a comprehensive understanding of vehicle-occupant system dynamics for various road conditions, sitting occupancies and vehicle velocities. In the current work, an in-house-developed 50 degree-of-freedom (DOF) multi-occupant vehicle model is employed to obtain the vehicle and occupant biodynamic responses for various cases of vehicle velocities and road roughness. The model is solved using MATLAB scripts and library functions. Random road profiles of Classes A, B, C and D are generated based on PSDs (Power Spectral Densities) of spatial and angular frequencies given in the manual ISO 8608. A study is then performed on vehicle and occupant dynamic responses for various combinations of sitting occupancies, velocities and road profiles. The results obtained underscore the need for considering sitting occupancies in addition to velocity and road profile for assessment of ride comfort for a vehicle.
2017-03-28
Technical Paper
2017-01-0433
Yang Xing, Chen Lv, Wang Huaji, Hong Wang, Dongpu Cao
Abstract Recently, the development of braking assistance system has largely benefit the safety of both driver and pedestrians. A robust prediction and detection of driver braking intention will enable driving assistance system response to traffic situation correctly and improve the driving experience of intelligent vehicles. In this paper, two types unsupervised clustering methods are used to build a driver braking intention predictor. Unsupervised machine learning algorithms has been widely used in clustering and pattern mining in previous researches. The proposed unsupervised learning algorithms can accurately recognize the braking maneuver based on vehicle data captured with CAN bus. The braking maneuver along with other driving maneuvers such as normal driving will be clustered and the results from different algorithms which are K-means and Gaussian mixture model (GMM) will be compared.
2017-03-28
Technical Paper
2017-01-0432
Bing Zhu, Zhipeng Liu, Jian Zhao, Weiwen Deng
Abstract Adaptive cruise control system with lane change assistance (LCACC) is a novel advanced driver assistance system (ADAS), which enables dual-target tracking, safe lane change, and longitudinal ride comfort. To design the personalized LCACC system, one of the most important prerequisites is to identify the driver’s individualities. This paper presents a real-time driver behavior characteristics identification strategy for LCACC system. Firstly, a driver behavior data acquisition system was established based on the driver-in-the-loop simulator, and the behavior data of different types of drivers were collected under the typical test condition. Then, the driver behavior characteristics factor Ks we proposed, which combined the longitudinal and lateral control behaviors, was used to identify the driver behavior characteristics. And an individual safe inter-vehicle distances field (ISIDF) was established according to the identification results.
2017-03-28
Journal Article
2017-01-1564
Minh-Tri Nguyen, Jürgen Pitz, Werner Krantz, Jens Neubeck, Jochen Wiedemann
Abstract In addition to the analysis of human driving behavior or the development of new advanced driver assistance systems, the high simulation quality of today’s driving simulators enables investigations of selected topics pertaining to driving dynamics. With high reproducibility and fast generation of vehicle variants the subjective evaluation process leads to a better system understanding in the early development stages. The transfer of the original on-road test run to the virtual reality of the driving simulator includes the full flexibility of the vehicle model, the maneuver and the test track, which allows new possibilities of investigation. With the opportunity of a realistic whole-vehicle simulation provided by the Stuttgart Driving Simulator new analysis of the human’s thresholds of perception are carried out.
Viewing 1 to 30 of 5931