Display:

Results

Viewing 1 to 30 of 861
2016-06-03
Standard
J2990/1_201606
Electric and alternative fueled vehicles present different hazards for first and second responders than conventional gasoline internal combustion engines. Hydrogen vehicles (H2V) including Fuel Cell Vehicles (FCVs) involved in incidents may present unique hazards associated with the fuel storage and high voltage systems. The electrical hazards associated with the high voltage systems of hybrid-electric vehicles and FCVs are already addressed in the parent document, SAE J2990. This Recommended Practice therefore addresses electric issues by reference to SAE J2990 and supplements SAE J2990 to address the potential consequences associated with hydrogen vehicle incidents and suggest common procedures to help protect emergency responders, tow and/or recovery, storage, repair, and salvage personnel after an incident has occurred. Industry design standards and tools were studied and where appropriate, suggested for responsible organizations to implement.
2016-06-01
Magazine
Digital Design Tools Simulating Thermal Expansion in Composites with Expanded Metal Foil for Lightning Protection Rugged Computing Designing VME Power Systems with Standard Modules Optical Sensors Optical Ice Sensors for UAVs Rotorcraft Technology Rotorcraft Icing Computational Tool Development RF & Microwave Technology Curled RF MEMS Switches for On-Chip Design: Design Software Supports BAE System's Mixed-Signal Chip Design
2016-05-24
Standard
ARP594E
The requirements presented in this document cover the design factors which might cause any part of an electrically motor driven fuel pump assembly to act as an ignition source for explosive fuel vapors within the airplane tank.
2016-05-19
WIP Standard
AS1426C
This specification is intended to be used as a general standard for industry use for design and construction of air transport galley equipment and inflight food service systems.
2016-04-05
Technical Paper
2016-01-1424
Yi G. Glaser, Robert E. Llaneras, Daniel S. Glaser, Charles A. Green
Abstract Partially automated driving involves the relinquishment of longitudinal and/or latitudinal control to the vehicle. Partially automated systems, however, are fallible and require driver oversight to avoid all road hazards. Researchers have expressed concern that automation promotes extended eyes-off-road (EOR) behavior that may lead to a loss of situational awareness (SA), degrading a driver’s ability to detect hazards and make necessary overrides. A potential countermeasure to visual inattention is the orientation of the driver’s glances towards potential hazards via cuing. This method is based on the assumption that drivers are able to rapidly identify hazards once their attention is drawn to the area of interest regardless of preceding EOR duration. This work examined this assumption in a simulated automated driving context by projecting hazardous and nonhazardous road scenes to a participant while sitting in a stationary vehicle.
2016-04-05
Technical Paper
2016-01-1403
Jeff D. Colwell, Christopher D. Henry
Abstract Data from a full-scale vehicle burn test involving a cargo van illustrated how temperature distributions changed over time, the manner in which fire spread, and how patterns produced correlated to the origin of the fire. The fire was initiated on the driver’s side of the engine compartment and initially grew slowly with the high-temperature zone near the area of origin. Once the peak temperature reached about 540°C, the rate of flame spread increased such that over the next 4 minutes the fire spread across the entire engine compartment. In the next stage of the fire, which occurred shortly after full involvement of the engine compartment, the fire spread into the passenger compartment. A strong vertical temperature gradient developed from the ceiling to the floor and as the passenger compartment became fully involved, the passenger compartment temperatures both increased and became more uniform.
2016-04-05
Journal Article
2016-01-0340
Tina Hull, Monika A. Minarcin
Abstract Applications using industrial robotics have typically led to establishing a safeguarded space encompassing a wide radius around the robot. Operator access to this hazard zone was restricted by a combination of means, such as hard guarding, safeguarding, awareness means, and personal protective equipment. The introduction of collaborative robots is redefining safeguarding requirements. Many collaborative robots have inherently safe designs that enable an operator and a robot to work within a shared, collaborative workspace. New technology in industrial robotics has opened up opportunities for collaborative operation. Collaborative operation could include either industrial or collaborative robots, depending on its application. The current defined modes of collaborative operation are hand guiding; speed and separation monitoring; safety-rated monitored stop; and, power and force limiting.
2016-03-27
Technical Paper
2016-01-1737
Thitsadee Ngernsukphaiboon, Sunhapos Chantranuwathana, Nuksit Noomwongs, Angkee Sripakagorn, Solaphat Hemrungrojn MD
Abstract The world is aging rapidly. Many countries can already be categorized as aging or aged societies while a few are becoming super-aged societies. In Thailand as well as in other countries, traffic accidents caused by elderly drivers will continue to rise as a significant percentage of elderly people still prefer to drive. Accidents may be prevented with driving tests and screening methods for elderly drivers. However, it is also necessary to understand the effect of aging on driving ability. With this understanding, driver training, driver assistant systems, and improvements on infrastructure may be designed accordingly. Among various physical changes, cognitive ability of the brain is one of the most significant factors affecting driving ability. In this paper, correlation between various cognitive functions of the brain and car following skill of drivers are considered.
2015-12-06
Standard
ARP4712A
This SAE Aerospace Recommended Practice (ARP) establishes general criteria for the installation (e.g., type, location, accessibility, stowage) and crew member training needed for hand-held fire extinguishers.
2015-09-29
Technical Paper
2015-01-2832
Keith Friedman, John Hutchinson, Khahn Bui, Matthew Stephens, Alyssa Schmidt
Abstract The incidence of fire in heavy trucks has been shown to be about ten times higher under crash conditions than occurs in passenger vehicles. Fuel tank protection testing defined in SAE standard J703 was originally issued in 1954 and presently echoes federal regulations codified in 49 CFR 393. These tests do not reflect dynamic impact conditions representative of those that can be expected by heavy trucks on the road today. Advanced virtual testing of current and alternative fuel tank designs and locations under example impact conditions is reported. Virtual testing methods can model vehicle to vehicle and vehicle to fixed object impacts. These results can then be utilized to evaluate and refine fuel tank protection system design approaches.
2015-09-15
Technical Paper
2015-01-2474
Christopher W. Lum, Alexander Summers, Brian Carpenter, Angel Rodriguez, Matthew Dunbabin
Abstract In many parts of the world, uncontrolled fires in sparsely populated areas are a major concern as they can quickly grow into large and destructive conflagrations in short time spans. Detecting these fires has traditionally been a job for trained humans on the ground, or in the air. In many cases, these manned solutions are simply not able to survey the amount of area necessary to maintain sufficient vigilance and coverage. This paper investigates the use of unmanned aerial systems (UAS) for automated wildfire detection. The proposed system uses low-cost, consumer-grade electronics and sensors combined with various airframes to create a system suitable for automatic detection of wildfires. The system employs automatic image processing techniques to analyze captured images and autonomously detect fire-related features such as fire lines, burnt regions, and flammable material.
2015-09-15
Journal Article
2015-01-2621
Douglas Leicht
Abstract Aviation regulations requires that engine mounts, and other flight structures located in designated fire zones must be constructed of fireproof material so that they are capable of withstanding the effects of fire. Historically, steel is defined as being inherently fireproof, however, titanium was not. Therefore, a fireproof test was conducted using 6AL-4V titanium structure for the attachment of the propulsion system on a mid-size business jet to satisfy FAA Federal Aviation Requirement 25.865. To determine if the titanium structure would be able to support normal operating loads during the fire event, finite element analysis was performed on the titanium structure simulating the fire test. The fire test simulates a fire on the aircraft from the propulsion system by using a burner with jet fuel exposing the component to a 2000 °F (1093°C) flame. The 2000 °F (1093°C) Flame is calibrated based on FAA Advisory Circular AC20-135.
2015-09-07
Standard
ARP5533A
This SAE Aerospace Recommended Practice (ARP) covers the requirements for a Stationary Runway Weather Information System (referred to as the system) to monitor the surface conditions of airfield operational areas to ensure safer ground operations of aircraft. The system provides (1) temperature and condition information of runway, taxiway, and ramp pavements and (2) atmospheric weather conditions that assist airport personnel to maintain safer and more efficient airport operations. The system can be either a wired system or a wireless system.
2015-08-28
Standard
AIR6185
This SAE Aerospace Information Report (AIR) describes hydraulic system design and installation to minimize the effects of lightning, especially when the aircraft structure is composite. Techniques for effective electrical bonding, hydraulic system lightning protection, and lightning protection verification techniques are discussed.
2015-06-15
Technical Paper
2015-01-2117
Miki Shimura, Makoto Yamamoto
Abstract It is well known that SLD (Supercooled Large Droplets) icing is very dangerous because it is more unpredictable than general icing caused by smaller droplets. In SLD conditions, a droplet deforms largely. Vargas et al. (2011) performed the experiments about the droplet deformation and they confirmed that the droplet deforms to an oblate spheroid, as the droplet approaches the leading edge of an airfoil. Therefore, the assumption that a droplet behaves as a sphere might be no longer valid. There are many models to predict the droplet deformation in which the deformation is described with the change of drag coefficient. For example, Hospers (2013) summarized the linear relations between the Reynolds number and the drag coefficient. Wiegand (1987) developed a model which uses a quasi-steady normal mode analysis of droplet deformation. However, the effect of the droplet deformation models on SLD icing simulations has not been completely clarified yet.
2015-06-15
Technical Paper
2015-01-2152
Earle Williams, Michael F. Donovan, David J. Smalley, Robert G. Hallowell, Elaine P. Griffin, Kenta T. Hood, Betty J. Bennett, Mengistu Wolde, Alexei V. Korolev
Abstract MIT Lincoln Laboratory is tasked by the U.S. Federal Aviation Administration to investigate the use of the NEXRAD polarimetric radars* for the remote sensing of icing conditions hazardous to aircraft. A critical aspect of the investigation concerns validation that has relied upon commercial airline icing pilot reports and a dedicated campaign of in situ flights in winter storms. During the month of February in 2012 and 2013, the Convair-580 aircraft operated by the National Research Council of Canada was used for in situ validation of snowstorm characteristics under simultaneous observation by NEXRAD radars in Cleveland, Ohio and Buffalo, New York. The most anisotropic and easily distinguished winter targets to dual pol radar are ice crystals.
2015-06-15
Technical Paper
2015-01-2092
David M. Orchard, Catherine Clark, Myron Oleskiw
Abstract Simulations of supercooled large droplet (SLD) icing environments within the NRC's Altitude Icing Wind Tunnel (AIWT) have been performed in which broad band mass distribution spectra are achieved that include a distinct pattern of liquid water content (LWC) over a range of droplet sizes (i.e., bi-modal distribution). The mass distribution is achieved through modification of the existing spray system of the AIWT to allow two spray profiles with differing LWC and median volumetric diameter (MVD) to be simultaneously injected into the flow. Results of spray profile distributions measured in the test section have demonstrated that freezing drizzle conditions, where MVD is either less than or greater than 40 μm, can be achieved.
2015-05-07
Standard
J2980_201505
This SAE Recommended Practice presents a method and example results for determining the Automotive Safety Integrity Level (ASIL) for automotive electrical and electronic (E/E) systems. This activity is required by ISO 26262-3:2011 [1], and it is intended that the process and results herein are consistent with ISO 26262:2011 [1]. The technical focus of this document is on vehicle motion control systems. It is limited to passenger cars weighing up to 3.5 metric tons. Furthermore, the scope of this recommended practice is limited to collision-related hazards. ISO 26262:2011 [1] has a wider scope than SAE J2980, covering other functions and accidents (not just motion control or collisions as in SAE J2980).
2015-04-14
Technical Paper
2015-01-1399
Dee Kivett, Victor Gallas Cervo, Aparna Mantha, John Smith
Abstract A common result of aging is a decline in peripheral vision. This study provides a preliminary feasibility analysis of an improved method for alerting drivers of oncoming traffic in blind-spots. Luminescence with an intuitive color-scheme is used as the primary stimulus to permeate a wider field of useful vision than that of existing technology in use today. This method was developed based on concepts of affordance-based design through its adaptation to address specific cognitive and visual acuity challenges of the elderly. The result is an improved, intuitive technique for hazard alert that shows significant improvement over existing technology for all age groups, not just the elderly.
2015-04-14
Technical Paper
2015-01-1382
Lisa Schei Blikeng, Siril Hegén Agerup
Abstract This paper is based on the bachelor thesis “Fire in electric cars” [1] 2013, written in Norwegian. The number of electric vehicles has increased significantly in recent years. Today, there are more than 35,000 electric cars in Norway, and the government's goal is 200,000 cars by 2020. [3] The main question investigated was: What happens when the lithium-ion battery pack ignites? The major part of this assignment was to perform a full-scale fire experiment with a modern and drivable electric car. This experiment took place in February 2013, when a Peugeot iOn 2012 model was set on fire. The car burned out without any attempt being made to extinguish the fire. We had to supply much heat from the external heat source to achieve thermal runaway in the cells. Observations and results from the experiment indicated that fire in the lithium-ion battery cells consists of two phases.
2015-04-14
Technical Paper
2015-01-1444
Ada H. Tsoi, John Hinch, H. Gabler
Abstract Event data recorders (EDRs) must survive regulatory frontal and side compliance crash tests if installed within a car or light truck built on or after September 1, 2012. Although previous research has shown that EDR data are surviving these tests, little is known about whether EDRs are capable of surviving collisions of higher delta-v, or crashes involving vehicle fire or immersion. The goal of this study was to determine the survivability of light vehicle EDRs in real world fire, immersion, and high change in velocity (delta-v) cases. The specific objective was to identify the frequency of these extreme events and to determine the EDR data download outcome when subject to damage caused by these events. This study was performed using three crash databases: the Fatality Analysis Reporting System (FARS), the National Automotive Sampling System / Crashworthiness Data System (NASS/CDS), and the National Motor Vehicle Crash Causation Survey (NMVCCS).
2015-04-14
Technical Paper
2015-01-1449
Ada H. Tsoi, John Hinch, Michael Winterhalter, H. Gabler
Abstract Event data recorder (EDR) data are currently only required to survive the crash tests specified by Federal Motor Vehicle Safety Standard (FMVSS) 208 and FMVSS 214. Although these crash tests are severe, motor vehicles are also exposed to more severe crashes, fire, and submersion. Little is known about whether current EDR data are capable of surviving these events. The objective of this study was to determine the limits of survivability for EDR data for realistic car crash conditions involving heat, submersion, and static crush. Thirty-one (31) EDRs were assessed in this study: 4 in the pilot tests and 27 in the production tests. The production tests were conducted on model year (MY) 2011-2012 EDRs enclosed in plastic, metal, or a combination of both materials. Each enclosure type was exposed to 9 tests. The high temperature tests were divided into 3 oven testing conditions: 100°C, 150°C, and 200°C.
2015-04-14
Technical Paper
2015-01-1380
Kumar Kumar
Abstract According to the National Fire Protection Agency (NFPA), from the most recent available data, it was estimated that there were 164,000 highway vehicle fires in 2013 causing roughly 300 civilian fire deaths, 925 civilian fire injuries and $1.1 billion in property damages [1]. In a modern automobile, the plastics content is dramatically higher than it was in 1972, when Federal Motor Vehicle Safety Standard (FMVSS) 302 was implemented [2]. FMVSS 302 applies only to materials in the passenger compartment and was put in place to address accidental fires started from sources such as cigarettes, matches, etc. There has never been any regulation for the plastic materials used outside the vehicle interior, including those used in under-the-hood (UTH) applications, and this is true even for today's automobiles.
2015-04-14
Journal Article
2015-01-1379
Hideki Matsumura, Shinichiro Itoh, Kenichi Ando
Abstract Lithium-ion cells are being used in an increasing number of electric and hybrid vehicles. Both of these vehicle types contain many cells. Despite various safety measures, however, there are still reports of accidents involving abnormal heat, smoke, and fire caused by thermal runaway in the cells. If thermal runaway in one cell triggers that of another and thus causes thermal runaway propagation, this can lead to rupture of the battery pack, car fire, or other serious accidents. This study is aimed to ensure the safety of vehicles with lithium-ion cells by clarifying such accident risks, and so we investigated the process of thermal runaway propagation. In the experiment, we created a battery module made of seven laminate-type cells tightly stacked one on another. Then, we induced thermal runaway in one of the cells, measured the surface temperatures of the cells, and collected video data as the process developed. As a result, all of the seven cells underwent thermal runaway.
2015-04-14
Journal Article
2015-01-1383
Andrew Blum, Richard Thomas Long
Abstract Fires involving cars, trucks, and other highway vehicles are a common concern for emergency responders. In 2013 alone, there were approximately 188,000 highway vehicle fires. Fire Service personnel are accustomed to responding to conventional vehicle (i.e., internal combustion engine [ICE]) fires, and generally receive training on the hazards associated with those vehicles and their subsystems. However, in light of the recent proliferation of electric drive vehicles (EDVs), a key question for emergency responders is, “what is different with EDVs and what tactical adjustments are required when responding to EDV fires?” The overall goal of this research program was to develop the technical basis for best practices for emergency response procedures for EDV battery incidents, with consideration for suppression methods and agents, personal protective equipment (PPE), and clean-up/overhaul operations.
2015-04-14
Journal Article
2015-01-1381
Jason P. Huczek, R. Rhoads Stephenson
Abstract The Department of Transportation (DOT) National Highway Traffic Safety Administration (NHTSA) awarded a contract to Southwest Research Institute (SwRI) to conduct research and testing in the interest of motorcoach fire safety. The goal of this program was to develop and validate procedures and metrics to evaluate current and future detection, suppression, and exterior fire-hardening technologies that prevent or delay fire penetration into the passenger compartment of a motorcoach - in order to increase passenger evacuation time. The program was initiated with a literature review and characterization of the thermal environment of motorcoach fires and survey of engine compartments, firewalls, and wheel wells of motorcoaches currently in North American service. These characterizations assisted in the development of test methods and identification of the metrics for analysis.
2015-01-20
Standard
J1212_201501
This document applies to off-road forestry work machines defined in SAE J1116 or ISO 6814.
2015-01-14
Technical Paper
2015-26-0156
Anil Kumar Jaswal, MV Rajasekhar, J Perumal, Samir Rawte
Abstract This paper details the methodology used to prevent Thermal events in a vehicle at design and development stages which can lead to vehicle fire or Thermal events. Vehicle Safety is always been in prime focus for designers while introducing newer products in markets for the customers. It is now common to see vehicles catching on fire in roads and in parking places leading to destruction of the surroundings as well as hazard to the passengers. Thermal events can take place due to the heat dissipated by the heat emitters such as Engine, Turbo, Alternator, Exhaust System etc. So the most critical area where Thermal event can take place are under hood which includes the complete engine compartment and under body. The extent of fire depends on the fire source, characteristics of the materials used in constructing and furnishing the vehicle.
2014-11-25
Standard
AS245C
This specification covers the following types and classes of extinguishers: Type I Stored pressure type Category A - Operational Temperature range −40 to +140 °F (−40 to +60 °C) Category B - Operational Temperature range +35 to +140 °F (+1.7 to +60 °C) Type II Cartridge operated type Category A - Operational Temperature range −40 to +140 °F (−40 to +60 °C) Category B - Operational Temperature range +35 to +140 °F (+1.7 to +60 °C)
2014-10-16
Standard
AIR1169C
The scope of this document is to provide a list of documents of types pertaining to the effects of oxygen on ignition and combustion of materials. Consolidating these references in one place makes it easier to find documents of this type as these references are difficult to locate.
Viewing 1 to 30 of 861

Filter