Display:

Results

Viewing 1 to 30 of 837
2015-01-14
Technical Paper
2015-26-0177
Mandip Goswami, Prashant SAXENA, Shashi Bhushan
Automotive OEMs, the world over, have always given high priority for the luggage area of the vehicle. This area primarily consists of the luggage board or luggage carpet for keeping luggage and various other items. Most OEMs also provide an additional structure known as the parcel shelf or parcel tray. This part has varied usage, depending upon the OEM, ranging from holding light weight items, providing support and even as a part for covering the luggage area which looks aesthetically pleasing. In a country like India, the parcel shelf generally attracts unwanted high load storage. A majority of the solutions to this problem have been in the form of part thickness increase leading to subsequent increase in weight and cost, the two major concern areas for all auto manufacturers. A strong, but light-weight and cost effective solution is, hence, desired through innovation in design, material and manufacturing process.
2015-01-14
Technical Paper
2015-26-0156
Anil Kumar Jaswal, MV Rajasekhar, J Perumal, Samir Rawte
Vehicle Safety is always been in prime focus for development engineers while introducing newer products in markets for the customers. It is now common to see vehicles catching fire on roads and in parking places leading to destruction of the surroundings as well as hazard to the passengers. Thermal events can take place due to the heat dissipated by the heat emitters such as Engine, Turbo, Alternator, Exhaust System etc. The most critical area where Thermal events can usually take place are under hoods which includes the complete engine compartment and under body area. The extent of fire depends on the fire source, characteristics of the materials used in constructing and furnishing the vehicle. The Performance and life of Electronic parts and parts made of polymeric materials such as rubbers and plastics are also greatly influenced by the temperatures of their surroundings.
2014-11-25
Standard
AS245C
This specification covers the following types and classes of extinguishers: Type I Stored pressure type: Category A - Operational Temperature range -40 to +140 °F (-40 to +60 °C), Category B - Operational Temperature range +35 to +140 °F (+1.7 to +60 °C) Type II Cartridge operated type: Category A - Operational Temperature range -40 to +140 °F (-40 to +60 °C), Category B - Operational Temperature range +35 to +140 °F (+1.7 to +60 °C)
2014-10-16
Standard
AIR1169C
The scope of this document is to provide a list of documents of types pertaining to the effects of oxygen on ignition and combustion of materials. Consolidating these references in one place makes it easier to find documents of this type as these references are difficult to locate.
2014-10-01
Magazine
Propulsion: Energy Sources Flying on vegetation Avionics/Electronics Avionics heat up, in a good way Unmanned Vehicles Reaching the benchmark in secure unmanned vehicle software Thermal Management Submersion and directed flow cooling technology for military applications RF & Microwave Technology Airborne antenna considerations for C-Band telemetry systems Software-designed system improves wireless test speed and coverage
2014-09-30
Technical Paper
2014-01-2384
Prashant Shinde, Pratik Gore
Abstract This paper is an attempt to address one of the causes of catastrophic failures attributed to incidents of fire and smoke in commercial vehicles during last few years in China and India which have resulted in a considerable number of casualties. Some of the accidents encountered happened because of a crash with fire originating from the fuel tank. This was attributed to fuel leakage and excessive heat produced due to friction of debris with the fuel tank which happened within a few seconds of the crash. A Fuel-Tank Safety ECU for preventing such fire-mishaps shall be designed for spotting this failure and activating prevention methods in order. This ECU shall process the data coming from temperature-sensor and fuel-pressure sensor placed on the fuel tank of the vehicle. This real-time data shall be compared with the previously computed values and then the delta-differentiated value shall be used to conclude the likelihood of a fire-occurrence.
2014-09-30
Technical Paper
2014-01-2398
Sanket Pawar
Abstract Off-road commercial vehicles many times have to work at remote areas in poor working conditions like reduced visibility due to fog, snow, inadequate ambient lighting, dust etc. They may not have any access to emergency facilities in such places. Challenging geographical terrains and adverse weather conditions makes the situation worse. The combination of both can further degrade working conditions. The operator may need to either work or guide his vehicle through tight places or in hilly areas having such conditions. That imposes many challenges to operator in terms of efficiency & safety of both operator & vehicle. In an effort to increase productivity and efficiency operator may miss to look at safety aspects consequently, leading to accidents that can incur heavy losses due to damages to vehicle further delaying the work. It can even lead to a life threatening emergency in some cases.
2014-09-30
Technical Paper
2014-01-2319
Iman Hazrati Ashtiani, Mehrnoosh Abedi
Abstract Road train vehicles have been applied as one of the common and efficient ways for transportation of goods, specifically hazardous liquid cargos, in different nations. These vehicles have a wide variety of lengths and towing systems such as the fifth wheel or the dolly draw-bar. Based upon specific regulations, they could be authorized to move on specific roads. In order to avoid hazard and danger in case of accidents, safety performance of a B-train vehicle as a specific type of road train vehicles is investigated in this paper. A Multi-Body Dynamic (MBD) model, which consists of a prime mover and two trailers coupled by fifth wheels, are simulated in the initial phase of the study. The developed dynamic model is capable of simulating required tests as well as the SAE lane change, along with a constant radius turn for the purpose of roll and yaw stability analysis and safety evaluation. The effects of variation of the fluid fill level are considered in this research.
2014-09-05
Standard
ARP5548
This equipment specification covers requirements for Multi-Tasking Equipment (MTE) for airfield snow removal purposes. The unit shall include a combination of a carrier vehicle, snow plow, rotary broom and high velocity air blast system. This vehicle as a unit shall be an integrated snow plow, rotary broom and high velocity air blast. Primary application is for the high-speed plowing, sweeping and cleaning of ice and snow from airfield operational areas such as runways, taxiways and ramp aprons. The term carrier vehicle represents the various self-propelled prime movers that provide the motive power necessary to move snow and ice control equipment during winter operations. The airport operator may require this specified piece of equipment in order to maintain the airfield during large and small snow events. When necessary, the MTE shall be a central and critical element in the winter pavement maintenance fleet in the effort to accomplish the airport’s published snow plan.
2014-08-14
Standard
J3024_201408
This document presents a catalog of safety sign text and artwork that can be used by any ready mixed concrete truck manufacturer to warn of common hazards.
2014-06-20
Standard
ARP8058
This SAE Aerospace Recommended Practice (ARP) provides design guidance and a method for testing thermal performance of airplane in-flight food storage carts. It is noted that thermal performance criteria is not part of AS8056.
2014-06-11
WIP Standard
ARP5414B
This SAE Aerospace Recommended Practice (ARP) defines lightning strike zones and provides guidelines for locating them on particular aircraft, together with examples. The zone definitions and location guidelines described herein are applicable to Parts 23, 25, 27, and 29 aircraft. The zone location guidelines and examples are representative of in-flight lightning exposures.
2014-06-09
WIP Standard
ARP6331
This document recommends contents for Emergency Medical Kits, including medications and instrumentation, intended for use on passenger-carrying aircraft serviced by at least 1 flight attendant. Recommended practices for carriage of, access to, and maintenance of Emergency Medical Kits are also included.
2014-04-14
Standard
ARP5446A
These recommendations are provided to aid the international air transport industry by identifying a standard, minimum amount of safety instructions that should be given to sight-impaired passengers. This document is not meant to address problems associated with communicating safety information to sight- impaired passengers who are also hearing impaired or non- conversant in the language(s) used by the cabin crew to disseminate general safety information to passengers. Aircraft operators are encouraged to customize the safety instructions for their own operations in order to ensure that required safety information is provided to sight-impaired passengers.
2014-04-01
Journal Article
2014-01-0556
Sebastian Karwaczynski, Mehmet H. Uras
This work is based on a current project funded by the United States Army Small Business Innovation Research (SBIR) Program and is being conducted with the Tank Automotive Research, Development and Engineering Center (TARDEC) Ground Systems Survivability (GSS) Team and Paradigm Research and Engineering. The focus of this project is to develop an advanced and novel sensing and activation strategy for Pyrotechnic Restraint Systems, Air Bags and other systems that may require activation. The overriding technical challenge is to activate these systems to effectively protect the Soldier during blast events in addition to Crash, Rollover and Other Injury Causing events. These activations of Pyrotechnic systems must occur in fractions of milliseconds as compared to typical automotive crashes.
2014-04-01
Collection
This technical paper collection focuses on current developments in the fields of vehicle fire science, statistics, risks, assessment and mitigation. Papers addressing vehicle design, live-fire tests and fire investigation issues applicable to traditional, electric and alternatively fueled vehicles are included.
2014-04-01
Technical Paper
2014-01-0859
Haizhen Liu, Weiwen Deng, Changfu Zong, Jian Wu
Abstract This paper first presents an algorithm to detect tire blowout based on wheel speed sensor signals, which either reduces the cost for a TPMS or provides a backup in case it fails, and a tire blowout model considering different tire pressure is also built based on the UniTire model. The vehicle dynamic model uses commercial software CarSim. After detecting tire blowout, the active braking control, based on a 2DOF reference model, determines an optimal correcting yaw moment and the braking forces that slow down and stop the vehicle, based on a linear quadratic regulator. Then the braking force commands are further translated into target pressure command for each wheel cylinder to ensure the target braking forces are generated. Some simulations are conducted to verify the active control strategy.
2014-04-01
Technical Paper
2014-01-0429
Guanyu Zheng, Indrek Wichman, Andre Benard, Hongyu Wang, Xiaohui Li, Jie Gao
Abstract Flame spread over a melting thermally thick composite polymer is investigated in a channel flow above a condensed fuel. The condensed fuel consists of an isotropic (melted layer of) liquid near the heated surface and an anisotropic (not-yet-melted) solid surrounding it. The influence of the solid anisotropy is evaluated by changing the solid conductivity (ksx or ksy) in one particular direction (x in horizontal flame spread direction or y in vertical direction, see schematics in Figure 1) while keeping the other properties fixed. Note that the liquid conductivity kl has no isotropic behavior. Numerically, it is found that the flame spread rate decreases with either increasing ksx or ksy. The decrease with respect to ksy is less than for a comparable case described by the de Ris formula for an isotropic pure solid. The flame spread rate is more accurately determined by an analytical formula derived for spread across a melting solid fuel.
2014-04-01
Technical Paper
2014-01-0423
Raúl Ochoterena, Maria Hjohlman, Michael Försth
Abstract Fires in the engine compartments of surface and underground non-rail heavy duty vehicles are still highly frequent. Statistics show that most of the reported fires commenced in the engine compartment and that these were not promptly detected by the drivers. Fires which were not detected rapidly, spread oftentimes beyond the firewall of the engine compartment having notorious economical and environmental repercussions; furthermore, endangering the safety of the occupants. Detecting fires in the engine compartments of heavy duty (HD) vehicles with inexpensive and simple automatic detection systems is in general challenging. High air flows and large amounts of suspended pollutants, together with the complicated geometry and wide range of surface temperatures typically occurring during the normal operation of the vehicle, complicate the reliable operation of almost all types of detectors.
2014-04-01
Journal Article
2014-01-0419
Bryan Styles, Jeffrey Santrock, Curtis Vincent, Michael Leffert, Narasimha Putcha
An evaluation methodology has been developed for assessing the suitability of R-1234yf in vehicles. This relates primarily to evaluating the flammability of R-1234yf in the engine compartment during a frontal collision. This paper will discuss the process followed in the methodology, the technical rationale for this process, and the results of the analysis. The specific types of analysis included in the methodology are: exhaust-system thermal characterization, computer simulated crash tests, actual crash tests, teardown and examination of crashed parts, and releases of refrigerant onto hot exhaust manifolds. Each type of analysis was logically ordered and combined to produce a comprehensive evaluation methodology. This methodology has been applied and demonstrates that R-1234yf is difficult to ignite when factors that occur in frontal crashes are simultaneously considered.
2014-04-01
Journal Article
2014-01-1838
Vijay Somandepalli, Hubert Biteau
The emergence of Plug-in hybrid electric vehicles (PHEVs) and electric vehicles (EVs) as a viable means of transportation has been coincident with the development of lithium-ion (Li-ion) battery technology and electronics. These developments have enabled the storage and use of large amounts of energy that were previously only possible with internal combustion engines. However, the safety aspects of using these large energy storage battery packs are a significant challenge to address. In addition, the rapid advances in electrode and electrolyte materials for Li-Ion batteries have made comparisons and ranking of safety parameters difficult because of the substantial variations in cell designs. In this work, we outline a method for quantifying the thermal safety aspects of Li-ion battery technologies using a Cone Calorimeter.
2014-04-01
Technical Paper
2014-01-1398
Ahmed A. Abdel-Rehim, Ahmed A.A. Attia
Abstract The effect of magnetic field has attracted many researchers to investigate the impact of this type of force on different applications such as combustion and water. Different systems supported by many patents were introduced to the market to treat these applications. In the present study, a series of experiments were conducted to explore the impact of magnetic fuel treatment on engine performance. The magnetic field was produced from two different sources based on permanent and electromagnetic coils. Two engines with different configurations were used. Three fuels were tested, gasoline and diesel as liquid fuels and natural gas as a gaseous fuel. Vast numbers of experiments at different operating conditions were conducted on the two engines. Fuel consumption, output power, and exhaust emissions were analyzed under the exposure of magnetic field. Gasoline was the most affected fuel while other fuels showed less or negligible effect.
2014-04-01
Journal Article
2014-01-0422
Lothar Seybold, Bryan Styles, Ioannis Lazaridis, Hans-Joerg Kneusels
The European Commission (EC) as well as the United States Environmental Protection Agency (EPA) published legislations to regulate or encourage the use of low Global Warming Potential (GWP) refrigerants applied to Mobile Air Conditioning (MAC) systems. Europe mandates a GWP less than 150 of MAC refrigerants for new vehicle types. The thermodynamic refrigerant properties of R-1234yf are slightly different from the properties of R-134a, currently used in MAC systems. Although the basic material data show that R-1234yf is flammable, ignition tests performed for an automotive engine under-hood environment reveal design and packaging influences of its ignition behavior. After extensive collaborative research in 2009, the Society of Automotive Engineers Cooperative Research Team (SAE CRP1234) concluded that R-1234yf is suitable for use in automotive applications. Further ignition risk assessment regarding R-1234yf usage in MAC systems was done by SAE CRP1234-4 in 2013.
2014-04-01
Journal Article
2014-01-0428
Masashi Takahashi, Masayuki Takeuchi, Kiyotaka Maeda, Shouma Nakagawa
Electric vehicles have become more popular and may be involved in fires due to accidents. However, characteristics of fires in electric vehicles are not yet fully understood. The electrolytic solution of lithium-battery vehicles is inflammable, so combustion characteristics and gases generated may differ from those of gasoline cars. Therefore, we conducted fire tests on lithium-ion battery vehicles and gasoline vehicles and investigated the differences in combustion characteristics and gases generated. The fire tests revealed some differences in combustion characteristics. For example, in lithium-ion battery vehicles, the battery temperature remained high after combustion of the body. However, there was almost no difference in the maximum CO concentration measured 0.5 to 1 m above the roof and 1 m from the side of the body. Furthermore, HF was not detected in either type of vehicle when measured at the same positions as for CO.
2014-04-01
Technical Paper
2014-01-0426
Jeff D. Colwell
Abstract Results from a full-scale vehicle burn test involving a 1998 compact passenger car were used to evaluate vehicle fire dynamics and how burn patterns produced during the fire correlated with important characteristics of the fire, such as the area of origin. After the fire was initiated at the air filter in the engine compartment, the fire spread locally and, once the temperature near the origin reached about 750°C, the temperature at all but one location within the engine compartment began to increase. These temperatures continued to increase for the next 6 minutes and then a temperature gradient began to develop in the passenger compartment between the ceiling and the floor. About 5 minutes after the engine compartment became fully involved, the ceiling temperature reached about 590°C and flame spread within the passenger compartment increased. Over the next 4 minutes, the passenger compartment also became fully involved.
2014-04-01
Journal Article
2014-01-0421
Yohsuke Tamura, Masayuki Takeuchi, Kiyotaka Maeda, Noriaki Ohtsuka, Kenji Sato
The localized fire test provided in the Global Technical Regulation for Hydrogen Fuel Cell Vehicles gives two separate test methods: the ‘generic installation test - Method 1′ and the ‘specific vehicle installation test - Method 2′. Vehicle manufacturers are required to apply either of the two methods. Focused on Method 2, the present study was conducted to determine the characteristics and validity of Method 2. Test results under identical burner flame temperature conditions and the effects of cylinder protection covers made of different materials were compared between Method 1 and Method 2.
2014-04-01
Journal Article
2014-01-1857
Vijay Somandepalli, Kevin Marr, Quinn Horn
As lithium-ion cells and systems become larger and more ubiquitous in automotive applications, fire and explosion hazards that are rare or non-existent in smaller systems may exist in these larger systems. One potential hazard can occur when flammable gases emitted from a lithium-ion cell failure accumulate in or around automobiles and are ignited by electrical activity or by the cells themselves and result in a fire or explosion. In some instances, the safety aspects related to fires and explosions protection of electric vehicles and hybrid vehicles using these large energy storage battery packs are a significant challenge to address. This paper describes and characterizes the combustion and explosion hazards that can occur when a lithium ion battery pack fails and goes into thermal runaway in an enclosed space. Metrics such as gas composition, maximum overpressure, rate of pressure rise, and flammability limits are described.
2014-02-26
WIP Standard
AS6296
This SAE Aerospace Standard (AS) specifies minimum performance standards for Electronic Flight Information System (EFIS) Displays that are intended for use in the flight deck by the flightcrew in all 14 CFR Part 23, 25, 27, and 29 aircraft.
2014-02-03
Magazine
Thermal simulation and testing of expanded metal foils for lightning protection With the implementation of major aircraft structures fabricated from carbon fiber reinforced plastic materials, lightning protection has become a more complicated issue for designers and engineers to solve. Electronics take charge Digital controls are handling more engine control tasks on a wider range of aircraft.
2013-12-17
Standard
AS8036A
This SAE Aerospace Standard (AS) specifies minimum performance standards for the following types of fire detection instruments intended for use in protecting aircraft cargo compartments, galleys, electronic equipment bays and other similar installations.
Viewing 1 to 30 of 837

Filter