Criteria

Text:
Topic:
Content:
Display:

Results

Viewing 1 to 30 of 63
CURRENT
2017-09-07
Standard
J1498_201709
The heating value or heat of combustion is a measure of the energy available from the fuel. The fraction or percentage of the heat of combustion that is converted to useful work is a measure of the thermal efficiency of an engine. Thus, a knowledge of the heat of combustion of the fuel is basic to the engineering of automotive engines. This SAE Information Report provides information on the standardized procedures for determining the heat of combustion of fuels that may be used for automotive engines.
2017-07-20
WIP Standard
J1928
This SAE Standard covers the minimum requirements for design, construction, and testing of devices to prevent the propagation of backfire flame from within the gasoline engine to the surrounding atmosphere.
CURRENT
2016-10-04
Standard
J1832_201610
This SAE Recommended Practice Document promotes uniformity in the evaluation tests and performance measurements that are conducted on fuel injectors that are used in low-pressure gasoline engine applications. The scope of this document is limited to electronically-actuated fuel injection devices that are utilized in automotive gasoline port fuel injection systems where the fuel supply pressure is usually below 1000 kPa (low-pressure). Detailed test procedures are provided for determining numerous PFI injector parameters, including, but not limited to, flow curves, leakage, electromechanical performance, fluid compatibility and corrosion susceptibility, durability, the effects of vibration and torsional deflection, thermal cycling effects and noise. The standardized measurement procedures in this document are all bench tests.
2015-04-22
WIP Standard
J285
This SAE recommended practice provided standard dimensions for liquid fuel dispenser nozzle spouts and a system for differentiating between nozzels that dispense liquid fuel into vehicles with Spark Ignition (SI) Engines and compression Ignition (CI) Engines for land vehicles. Current legal definitions only distinguish between "UNLEADED Fuel" and "All Other Types of Fuel." These definitions are no longer valid. This document establishes a new set of definitions that have practical application to current automobile liquid fuel inlets and liquid fuel dispenser nozzle spouts.
CURRENT
2014-11-20
Standard
ARP739A
Various gas systems are classified in a broad sense, component operation is described in moderate detail, pertinent design parameters are discussed, and possible modes for system operation are listed.
CURRENT
2013-05-28
Standard
J2027_201305
This SAE Standard includes performance requirements for protective covers for flexible, non-metallic fuel tubing. Ultimate performance of the protective cover may be dependent on the interaction of the fuel tubing and protective cover. Therefore, it is recommended that tubing and cover combinations be tested as an assembly, where appropriate, to qualify to this document.
CURRENT
2013-05-14
Standard
J1747_201305
This SAE Recommended Practice presents standardized test methods developed for use in testing with hydrocarbon fuels or their surrogates and those same fuels when blended with oxygenated fuel additives. Hydrocarbon fuels include Gasoline and Diesel fuel or their surrogates described in SAE J1681. Oxygenated additives include Ethanol, Methanol Methyl Tertiary Butyl Ether (MTBE) and Fatty Acid Methyl Esters (FAME or Biodiesel).
CURRENT
2013-04-29
Standard
J1537_201304
This SAE Recommended Practice defines the minimum design verification testing required to verify the suitability of in-tank mounted electric motor driven fuel pumps used for pumping gasoline or gasoline blend fuels. Additional tests not specified in SAE J1537 will be required for frame mounted pump applications or pumps intended for use on aircraft, motorcycles, or marine equipment.
CURRENT
2012-11-21
Standard
ARP5062A
The purpose of this SAE Aerospace Recommended Practice (ARP) is to provide recommended test fluids for testing of electrical components used on aircraft exterior or for ground support near aircraft. These fluids were selected based on a consolidation of test fluids used by military and commercial sources and on review of national and international component specifications. These recommendations are general guidelines. Safety factors for any unusual testing applications or operating conditions should be given special consideration by the designer. The test fluids provided are intended to be recommendations and are not intended to limit or supersede those recommended by aircraft or ground support equipment manufacturers.
CURRENT
2012-05-31
Standard
J285_201205
This SAE recommended practice provides standard dimensions for liquid fuel dispenser nozzle spouts and a system for differentiating between nozzles that dispense liquid fuel into vehicles with Spark Ignition (SI) Engines and Compression Ignition (CI) Engines for land vehicles. Current legal definitions only distinguish between “UNLEADED Fuel” and “All Other Types of Fuel.” These definitions are no longer valid. This document establishes a new set of definitions that have practical application to current automobile liquid fuel inlets and liquid fuel dispenser nozzle spouts.
CURRENT
2012-01-06
Standard
J1928_201201
This SAE Standard covers the minimum requirements for design, construction, and testing of devices to prevent the propagation of backfire flame from within the gasoline engine to the surrounding atmosphere.
CURRENT
2011-11-30
Standard
J1350_201111
This information report covers fuel fired pre-heaters which burn gasoline, diesel, or propane fuels. This type of heater must be used in remote areas where 110/220 V, 60 Hz electric power is not available, and is recommended anywhere an on-board self contained system is required. The guidelines in this report are applicable, but not limited to, fuel burning heater installations on the off-road self-propelled work machines described in SAE J1116.
CURRENT
2011-02-04
Standard
J2793_201102
This SAE Recommended Practice is applicable to gasoline and diesel fuel filters installed on fuel dispensing equipment, mobile or stationary. It describes a set of tests used to characterize the structural integrity, filtration performance, and reaction to water contaminant with fuel dispensing filters.
CURRENT
2010-11-05
Standard
J312_201011
This SAE Recommended Practice summarizes the composition of modern automotive gasolines, the significance of their physical and chemical characteristics, and the pertinent test methods for defining or evaluating these properties.
2008-05-07
WIP Standard
J1681
This SAE Recommended Practice presents recommendations for test fluids that can be used to simulate real world fuels. The use of standardized test fluids is required in order to limit the variability found in commercial fuels and fluids. Commercial fuels can vary substantially between manufacturers, batches, seasons, and geographic location. Further, standardized test fluids are universally available and will promote consistent test results for materials testing. Therefore, this document: a. Explains commercial automotive fuel components b. Defines standardized components of materials test fluids c. Defines a nomenclature for test fluids d. Describes preparations for test fluids and e. Recommends fluids for testing fuel system materials The test fluid compositions specified in Section 7 of this document are recommended solely for evaluating materials.
HISTORICAL
2007-07-20
Standard
J1747_200707
This SAE Information Report is intended to convey the test methods developed for use in testing with methanol and gasoline blends. Corrosion testing of metals has a long and varied history. In spite of the problems inherent in extrapolating results of accelerated tests on standard specimens to actual field durability, engineers have been able, to a large extent, to rely on these results in making materials selection decisions. However, these tests have generally employed aqueous media and are not strictly applicable to the use of organic chemical media. With methanol-gasoline fuel blends and their high electrical conductivity relative to gasoline, the relevance of the historical database is lost. Therefore, to allow rapid build-up of a new database, several corrosion test procedures have been reviewed and amended where appropriate.
HISTORICAL
2007-04-23
Standard
J285_200704
This SAE recommended practice provided standard dimensions for liquid fuel dispenser nozzle spouts and a system for differentiating between nozzels that dispense liquid fuel into vehicles with Spark Ignition (SI) Engines and compression Ignition (CI) Engines for land vehicles. Current legal definitions only distinguish between "UNLEADED Fuel" and "All Other Types of Fuel." These definitions are no longer valid. This document establishes a new set of definitions that have practical application to current automobile liquid fuel inlets and liquid fuel dispenser nozzle spouts.
HISTORICAL
2005-07-26
Standard
J1928_200507
This SAE Standard covers the minimum requirements for design, construction, and testing of devices to prevent the propagation of backfire flame from within the gasoline engine to the surrounding atmosphere. The purpose of this document is to recommend a procedure for testing and establishing acceptable flame arresting characteristics of the devices.
CURRENT
2003-07-31
Standard
J2116_200307
This SAE Standard was prepared by Technical Committee 1, Engine Lubrication, of SAE Fuels and Lubricants Council. The intent is to improve communications among engine manufacturers, engine users, and lubricant marketers in describing lubricant performance characteristics. The key objective is to ensure that a correct lubricant is used in each two-stroke-cycle engine.
HISTORICAL
2001-11-07
Standard
J1510_200111
The information in this SAE Recommended Practice has been compiled by Technical Committee 1 (Engine Lubricants) of the SAE Fuels and Lubricants Division. The intent is to provide those concerned with the design and maintenance of two-stroke-cycle engines with a better understanding of the properties of two-stroke-cycle lubricants. Reference is also made to test procedures which may be used to measure the chemical and physical characteristics of these lubricants.
HISTORICAL
2001-02-26
Standard
J1832_200102
This SAE Recommended Practice promotes uniformity in the evaluation and qualification tests conducted on fuel injectors used in gasoline engine applications. Its scope is limited to electronically actuated fuel injection devices used in automotive port or throttle body fuel injection systems where fuel supply pressure is below 1000 kPa. It is primarily restricted to bench tests. More specifically, this document is intended for use as a guide to the following: Standardize use of nomenclature specifically related to fuel injectors. Identify and define those parameters that are used to measure fuel injector characteristics or performance.
HISTORICAL
2001-02-01
Standard
J312_200102
This SAE Recommended Practice summarizes the composition of modern automotive gasolines, the significance of their physical and chemical characteristics, and the pertinent test methods for defining or evaluating these properties.
CURRENT
2000-12-07
Standard
J171_200012
This SAE Recommended Practice describes a procedure for measuring evaporative emissions from fuel systems of passenger cars and light trucks. Emissions are measured during a sequence of laboratory tests that simulate typical vehicle usage in a metropolitan area during summer months: a. A 1 h soak representing one diurnal cycle in which temperature of fuel in the vehicle's tank is raised from 15.6 to 28.9 °C (60 to 84 °F) b. A 17.9 km (11.1 mile) drive on a chassis dynamometer c. A 1 h hot soak immediately following the 17.9 km (11.1 mile) drive The method described in this document, commonly known as the SHED (Sealed Housing for Evaporative Determination) technique, employs an enclosure in which the vehicle is placed during the diurnal and hot soak phases of the test.
CURRENT
2000-01-10
Standard
J1681_200001
This SAE Recommended Practice presents recommendations for test fluids that can be used to simulate real world fuels. The use of standardized test fluids is required in order to limit the variability found in commercial fuels and fluids. Commercial fuels can vary substantially between manufacturers, batches, seasons, and geographic location. Further, standardized test fluids are universally available and will promote consistent test results for materials testing. Therefore, this document Explains commercial automotive fuel components Defines standardized components of materials test fluids Defines a nomenclature for test fluids Describes preparations for test fluids and Recommends fluids for testing fuel system materials The test fluid compositions specified in Section 7 of this document are recommended solely for evaluating materials.
HISTORICAL
1999-01-01
Standard
J285_199901
This SAE Recommended Practice provides standardized dimensions for nozzle spouts and a system for differentiating between 'unleaded gasoline' nozzle spouts and all other fuel nozzle spouts. If emission control equipment requires unleaded gasoline exclusively and others fuels not meeting this specification are available, differention is accomplished by providing differences between the outside diameter of the nozzle spouts used to dispense 'unleaded gasoline' and those used for all other fuels. These differences establish a basis on which fuel filler inlets that will accept only 'unleaded gasoline' can be designed.
HISTORICAL
1998-06-01
Standard
J2027_199806
This SAE Standard includes performance requirements for protective covers for flexible, non-metallic fuel tubing. Ultimate performance of the protective cover may be dependent on the interaction of the fuel tubing and protective cover. Therefore, it is recommended that tubing and cover combinations be tested as an assembly, where appropriate, to qualify to this document. This document is intended to provide guidance in regard to key performance parameters for protective covers for fuel tubing. This document is designed to allow selection of predetermined performance levels for these parameters. The engineer may select a specification by the use of a line call-out designation, which will denote the pertinent characteristics of the cover material and/or the tube/cover assembly and their corresponding performance criteria. The engineer is not required to select every characteristic, but only those deemed important to the application.
HISTORICAL
1998-04-01
Standard
ARP5062
The purpose of this SAE Aerospace Recommended Practice (ARP) is to provide recommended test fluids for testing of electrical components used on aircraft exterior or for ground support near aircraft. These fluids were selected based on a consolidation of test fluids used by military and commercial sources and on review of national and international component specifications. These recommendations are general guidelines. Safety factors for any unusual testing applications or operating conditions should be given special consideration by the designer. The test fluids provided are intended to be recommendations and are not intended to limit or supersede those recommended by aircraft or ground support equipment manufacturers.
HISTORICAL
1997-05-01
Standard
J312_199705
This SAE Recommended Practice summarizes the composition of modern automotive gasolines, the significance of their physical and chemical characteristics, and the pertinent test methods for defining or evaluating these properties.
HISTORICAL
1994-12-01
Standard
J1747_199412
This SAE Information Report is intended to convey the test methods developed for use in testing with methanol and gasoline blends. Corrosion testing of metals has a long and varied history. In spite of the problems inherent in extrapolating results of accelerated tests on standard specimens to actual field durability, engineers have been able, to a large extent, to rely on these results in making materials selection decisions. However, these tests have generally employed aqueous media and are not strictly applicable to the use of organic chemical media. With methanol-gasoline fuel blends and their high electrical conductivity relative to gasoline, the relevance of the historical database is lost. Therefore, to allow rapid build-up of a new database, several corrosion test procedures have been reviewed and amended where appropriate.
HISTORICAL
1994-06-01
Standard
J2027_199406
This SAE Standard covers the performance requirements for protective covers for gasoline fuel tubing. The ultimate performance of the protective cover can be highly dependant on the interaction of the fuel line tubing and protective cover. Therefore, it is recommended that specific tubing and cover combinations be tested as an assembly to qualify to this document. This document is intended to provide guidance to the engineer on the key performance parameters for protective covers for gasoline fuel tubing. This document is designed to allow selection of predetermined performance levels for these key performance parameters. The engineer may select a specification by the use of a line call-out designation, which will denote the pertinent characteristics of the cover material and/or the tube/cover assembly and their corresponding performance criteria. The engineer is not required to select every characteristic, but only those deemed important to the application.
Viewing 1 to 30 of 63

Filter

  • Standard
    63