Criteria

Text:
Content:
Display:

Results

Viewing 1 to 30 of 1659
Standard
2014-04-16
To provide minimum performance requirements for non-pressurized fuel tanks used on snowmobiles as defined in SAE J33.
Standard
2014-04-16
This SAE Standard specifies the major dimensions and tolerances for Engine Flywheel Housings and the Mating Transmission Housing Flanges. It also locates the crankshaft flange face or the transmission pilot bore (or pilot bearing bore) stop face in relation to housing SAE flange face. This document is not intended to cover the design of the flywheel housing face mating with the engine crankcase rear face or the design of housing walls and ribs. Housing strength analysis and the selection of housing materials are also excluded. This document applies to any internal combustion engine which can utilize SAE No. 6 through SAE No. 00 size flywheel housing for mounting a transmission.
WIP Standard
2014-04-15
The purpose of this TIR is to provide guidance for minimizing test requirements based on SAE J2719 while still ensuring fuel quality at hydrogen fueling stations for PEM fuel cell vehicles (FCVs) and ICEVs (to the extent that has been determined). This document is intended to be used by both industry and regulators for routine (or periodic) monitoring of filling station performance.
Standard
2014-04-09
This standard specifies the communications hardware and software requirements for fueling Hydrogen Surface Vehicles (HSV), such as fuel cell vehicles, but may also be used where appropriate, with heavy duty vehicles (e.g., busses) and industrial trucks (e.g., forklifts) with compressed hydrogen storage. It contains a description of the communications hardware and communications protocol that may be used to refuel the HSV. The intent of this standard is to enable harmonized development and implementation of the hydrogen fueling interfaces. This standard is intended to be used in conjunction with the hydrogen fueling protocol, SAE J2601, Compressed Hydrogen Light Duty Vehicle Fueling Protocol and SAE J2600, Compressed Hydrogen Surface Vehicle Fueling Connection Devices.
WIP Standard
2014-04-08
This SAE Information Report lists engine and laboratory tests for service fill engine oils which are associated with specifications and classifications established outside of North America. These specifications and classifications include those developed prior to June 1, 2006 June 1, 2001, by International Technical Societies as well as individual original equipment manufacturers. The information contained within this report applies to engine oils utilized in gasoline and diesel powered automotive vehicles.
WIP Standard
2014-04-04
This SAE Information Report reviews the various physical and chemical properties of engine oils and provides references to test methods and standards used to measure these properties. It also includes general references on the subject of engine oils, base stocks, and additives.
Standard
2014-04-03
This method is designed to evaluate the coking propensity of synthetic ester-based aviation lubricants under two phase air-oil mist conditions as found in certain parts of a gas turbine engine, for instance, bearing chamber vent lines. Based on the results from round robin data in 2008-2009 from four laboratories, this method is currently intended to provide a comparison between lubricants as a research tool; it is not currently a satisfactory pass/fail test. At this juncture a reference oil may improve reproducibility (precision between laboratories); a formal precision statement will be given when there is satisfactory data and an agreed on, suitable reference oil if applicable.
WIP Standard
2014-03-18
This SAE Standard provides general, dimensional and performance specifications for the most common hoses used in hydraulic systems on mobile and stationary equipment. The general specifications contained in Sections 1 through 12 are applicable to all hydraulic hoses and supplement the detailed specifications for the 100R-series hoses contained in the later sections of this document. (See Tables 1A and 1B). This document shall be utilized as a procurement document only to the extent as agreed upon by the manufacturer and user. The maximum working pressure of a hose assembly comprising SAE J517 hose and hose connectors per SAE J516, SAE J518, SAE J1453, etc., shall not exceed the lower of the respective SAE maximum working pressure values. When using SAE J517 hose for marine applications, see SAE J1475, SAE J1942 and SAE J1942-1. The SAE J517 100R9, 100R10 and 100R11 hoses are discontinued due to lack of demand. For DOD orders see Appendix C. The SAE J517 100R1A, 100R2A, 100R2B and 100R 2BT are discontinued due to lack of demand.
WIP Standard
2014-03-17
This specification covers the general requirements for aircraft tank mounted, centrifugal type, fuel booster pumps, used for engine fuel feed and / or fuel transfer.
WIP Standard
2014-03-12
This method is designed to evaluate the changes in the chemical and physical properties of gas turbine engine lubricants subjected to elevated temperaures in the presence of air. The results are primarily applicable to low-oil-consumption gas turbine engines which do not experience regular additions of top-off oil. This is the initial documentation of this procedure and is intended to harmonize test procedures and report. The industry will need to conduct a round robin based on this procedure to develop precision statements.
WIP Standard
2014-03-04
This SAE Recommended Practice provides guidance for the construction, operation, and maintenance of CNG powered medium and heavy-duty trucks. The intent of this document is to cover TRUCKS (6350 kg (14 001 gvw pounds) and above) and specifically excludes passenger vehicles such as: buses, recreational vehicles, motor homes and/or passenger vehicles which may incorporate a truck chassis in their construction.
Standard
2014-02-26
SAE J2293 establishes requirements for Electric Vehicles (EV) and the off-board Electric Vehicle Supply Equipment (EVSE) used to transfer electrical energy to an EV from an Electric Utility Power System (Utility) in North America. This document defines, either directly or by reference, all characteristics of the total EV Energy Transfer System (EV-ETS) necessary to insure the functional interoperability of an EV and EVSE of the same physical system architecture. The ETS, regardless of architecture, is responsible for the conversion of AC electrical energy into DC electrical energy that can be used to charge the Storage Battery of an EV, as shown in Figure 1.
WIP Standard
2014-02-26
This SAE Recommended Practice establishes the minimum interface compatibility requirements for electric vehicle (EV) inductively coupled charging for North America. This part of the specification is applicable to manually connected inductive charging for Levels 1 and 2 power transfer. Requirements for Level 3 compatibility are contained in Appendix B. Recommended software interface messaging requirements are contained in Appendix A. This type of inductively coupled charging is generally intended for transferring power at frequencies significantly higher than power line frequencies. This part of the specification is not applicable to inductive coupling schemes that employ automatic connection methods or that are intended for transferring power at power line frequencies. in the charge coupler). The charge controller signals the charger to stop charging when it determines that the batteries are completely charged or a fault is detected during the charging process. The following steps correspond with the diagram in Figure 1, and describe the closed-loop charging system.
Standard
2014-02-26
SAE J2293 establishes requirements for Electric Vehicles (EV) and the off-board Electric Vehicle Supply Equipment (EVSE) used to transfer electrical energy to an EV from an Electric Utility Power System (Utility) in North America. This document defines, either directly or by reference, all characteristics of the total EV Energy Transfer System (EV-ETS) necessary to insure the functional interoperability of an EV and EVSE of the same physical system architecture. The ETS, regardless of architecture, is responsible for the conversion of AC electrical energy into DC electrical energy that can be used to charge the Storage Battery of an EV, as shown in Figure 1.
WIP Standard
2014-02-25
This SAE Recommended Practice establishes a procedure for determination of vehicle road load force for speeds between 115 and 15 km/h (71.5 and 9.3 mph). It employs the coastdown method and applies to vehicles designed for on-road operation. The final result is a model of road load force (as a function of speed) during operation on a dry, level road under reference conditions of 20°C (68°F), 98.21 kPa (29.00 in-Hg), no wind, no precipitation, and the transmission in neutral.
WIP Standard
2014-02-24
Develop a standardized method for calculating and reporting vehicle fuel consumption.
Standard
2014-02-21
This SAE document defines a recommended practice for implementing circuit identification for electrical power and signal distribution systems of the Class 8 trucks and tractors. This document provides a description of a supplemental circuit identifier that shall be utilized in conjunction with the original equipment manufacturer’s primary circuit identification as used in wire harnesses but does not include electrical or electronic devices which have pigtails. The supplemental circuit identifier is cross-referenced to a specified subsystem of the power and signal distribution system identified in Section 5.
WIP Standard
2014-02-20
This Aerospace Recommended Practice (ARP) provides design and test requirements for factory precharged, welded bellows hydraulic accumulators.
WIP Standard
2014-02-12
This SAE Aerospace Recommended Practice (ARP) is an application guide for fixed and variable displacement hydraulic motors. It provides details of the characteristics of fixed and variable displacement hydraulic motors, architectures, circuit designs, controls, and typical applications. The applications include airborne and defense vehicles with emphasis on high performance applications.
Standard
2014-02-06
This document reviews briefly the subject of woven metal screens. Conditions that can promote damaging corrosion in stainless steel filter screens are discussed and recommendations are listed for minimizing corrosion damage. This is a general document only; for specific applications it is suggested that the reader refer to the technical literature, and selected references listed below.
Standard
2014-02-05
This SAE recommended practice specifies a standard geometry leak channel to set the leak threshold and compare results from a variety of leak test technologies and test conditions. This practice applies to fuel system assemblies and components which have a risk of allowing regulated fuel or fuel vapors to continuously escape to atmosphere. A component or assembly tested to this standard has a zero HC leakage threshold because the selected leak channel (Equivalent Channel) will self-plug and will not emit measurable hydrocarbon liquid or vapors. Therefore this standard eliminates leaks as a source of evaporative emission. This practice was primarily developed for pressurized and non-pressurized fuel systems and components containing liquid hydrocarbon based fuels.
Standard
2014-02-03
This document provides a summary of names commonly used throughout the industry for aircraft fuel system components. It is a thesaurus intended to aid those not familiar with the lexicon of the industry.
Standard
2014-01-24
This procedure covers vehicle operation and electric dynamometer load coefficient adjustment to simulate track road load within dynamometer inertia and road load simulation capabilities. 1.1 Purpose To provide a uniform procedure for adjusting an electric chassis roll dynamometer to provide accurate simulation of the resistance which must be overcome by the vehicle powertrain to maintain steady speed on a flat road, as determined by track coastdown tests on that vehicle.
Standard
2014-01-24
This SAE Recommended Practice establishes uniform procedures for evaluating conformity between the actual and target drive speeds for chassis dynamometer testing utilizing standard fuel economy and emissions drive schedules.
WIP Standard
2014-01-24
This SAE Information Report establishes use cases for a Plug-in Electric Vehicle (PEV) communicating with an Energy Management System (EMS) as a Distributed Energy Resource (DER). The primary purpose of SAE J2836/3™ is to define use cases which must be supported by SAE J2847/3. This document also provides guidance for updates to SAE J2847/2 to allow an inverter in an EVSE to use the PEV battery when operating together as a distributed energy resource (DER).
WIP Standard
2014-01-23
This SAE Aerospace Recommended Practice (ARP) presents a procedure for evaluating cleaning methods with respect to contaminant removal and element degradation particularly for metallic filter elements. A procedure for checking durability of cleaning equipment and a referee cleaning method are also included. It is applicable only to the evaluation of cleaning methods proposed for removal of service dirt and not for built-in dirt, liquid oxygen (LOX) cleaning, etc. Supporting information for use with the ARP is also included.
WIP Standard
2014-01-23
This SAE Recommended Practice SAE J2953/2 establishes the test procedures to ensure the interoperability of Plug-In Vehicles (PEV) and Electric Vehicle Supply Equipment (EVSE) for multiple suppliers.
Standard
2014-01-22
This SAE Recommended Practice SAE J2953/2 establishes the test procedures to ensure the interoperability of Plug-In Vehicles (PEV) and Electric Vehicle Supply Equipment (EVSE) for multiple suppliers.
WIP Standard
2014-01-20
Identify issues of concern to the railroads engine and equipment manufacturers and fuel suppliers upon introduction of biodiesel blends in the diesel pool in North America. Formulate and propose a path forward for successful use of biodiesel in railroad engine operations.
Standard
2014-01-14
This section presents the basic equations for computing ice protection requirements for nontransparent and transparent surfaces and for fog and frost protection of windshields. Simplified graphical presentations suitable for preliminary design and a description of various types of ice, fog, frost, and rain protection systems are also presented.
Viewing 1 to 30 of 1659